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Abstract
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Background: DNA methylation (DNAm) is a critical reqgulator of both development and cellular identity and shows
unique patterns in neurons. To better characterize maturational changes in DNAm patterns in these cells, we profile
the DNAm landscape at single-base resolution across the first two decades of human neocortical development in
NeuN-+ neurons using whole-genome bisulfite sequencing and compare them to non-neurons (primarily glia) and

prenatal homogenate cortex.

Results: We show that DNAmM changes more dramatically during the first 5 years of postnatal life than during the
entire remaining period. We further refine global patterns of increasingly divergent neuronal CpG and CpH
methylation (MCpG and mCpH) into six developmental trajectories and find that in contrast to genome-wide
patterns, neighboring mCpG and mCpH levels within these regions are highly correlated. We integrate paired RNA-
seq data and identify putative regulation of hundreds of transcripts and their splicing events exclusively by mCpH
levels, independently from mCpG levels, across this period. We finally explore the relationship between DNAmM
patterns and development of brain-related phenotypes and find enriched heritability for many phenotypes within

identified DNAm features.

Conclusions: By profiling DNAmM changes in NeuN-sorted neurons over the span of human cortical development,
we identify novel, dynamic regions of DNAm that would be masked in homogenate DNAm data; expand on the
relationship between CpG methylation, CpH methylation, and gene expression; and find enrichment particularly
for neuropsychiatric diseases in genomic regions with cell type-specific, developmentally dynamic DNAm patterns.
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Background

Neurons are unique cells that persist throughout the life-
span, accumulating programmed developmental changes
and environmental experience that fine-tune neural cir-
cuitry in the brain. During development and maturation,
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neurons undergo precisely coordinated cascades of genetic
regulation that combine with experience to shape the cellu-
lar output via progressive changes to the epigenome. DNA
methylation (DNAm) is an integral facet of the epigenome
that plays a role in establishing cell identity and develop-
mental trajectories as well as adapting to experience via
regulation of gene expression. Previous large-scale studies
of DNAm across human brain development have identified
widespread reconfiguration of the methylome during devel-
opment, but have been limited to homogenate tissue [1] or
have used microarray technologies [2], creating ambiguity
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about the extent of cell type-specific developmental DNAm
changes and effects on transcript isoforms across the gen-
ome [3]. Although cell type-specific DNAm patterns can be
inferred for genes with known cell type-specific expression
patterns, beginning an analysis with cell type-resolved
DNAm data would facilitate the identification of DNAm re-
modeling outside that context.

To better characterize the DNAm landscape across hu-
man cortical development, we performed whole-genome
bisulfite sequencing (WGBS, see the “Methods” section) on
homogenate tissue and on a neuron-enriched population
isolated from 24 human dorsolateral prefrontal cortex
(DLPEC) samples aged 0-23years using NeuN-based
fluorescence-activated nuclear sorting (FANS, Add-
itional file 1: Figure S1A). To complement these data, we
sequenced 8 FANS-derived NeuN- postnatal samples and
20 homogenate prenatal cortical samples, for a total of 75
samples after quality control (Additional file 2: Table S1).
We fully characterized the landscape of DNAm at both
CpG and non-CpG (CpH) dinucleotides in these samples,
allowing for a finer dissection of differential DNAm func-
tional specificity. We also sequenced matched transcrip-
tomes of homogenate cortical samples from these donors
and a subset of 3 nuclear transcriptomes each from NeuN+
and NeuN- samples to assess the functional consequences
of epigenomic remodeling (53 total transcriptomes, Add-
itional file 2: Table S2). By exploring DNAm patterns in
neurons across prenatal and postnatal human brain devel-
opment, we show that the first 5 years of postnatal life are a
critical period in epigenetic plasticity, and we identify devel-
opmental shifts in neuronal DNAm in both the CpG and
CpH contexts. We also clarify the relationship between
CpG but particularly CpH methylation (mCpG and mCpH,
respectively) and gene expression and splicing in neuronal
development and explore the ramifications of these insights
for neuropsychiatric disease.

Results

After data processing, quality control, and filtering, we
analyzed 18.7 million cytosines in the CpG context at an
average coverage of 15x (see the “Methods” section).
Comparable to previous reports [1, 4, 5], CpGs were
overall highly methylated (71-76% CpGs with S > 80%,
Additional file 2: Table S3).

While NeuN antibody labels most mature neuronal
subtypes in the human cortex, some neurons will not be
labeled and will be captured in the NeuN- fraction
amidst a diverse array of non-neuronal cell types, includ-
ing oligodendrocytes, astrocytes, microglia, and epithelial
cells. Gene expression differences between fractions con-
firmed, however, that NeuN+ and NeuN- samples are
enriched for neuronal and glial lineage cells, respectively
(Additional file 1: Figure S1B-D). Therefore, in this
work, we refer to NeuN+ and NeuN- samples as
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“neurons” and “glia,” respectively, although we acknow-
ledge that these samples do not perfectly reflect these
identities and mask more granular differences between
subcellular identities contained within.

Developmental DNAm changes identified in hom-
ogenate cortex were strongly confounded by shifting cell
type proportions (OR = 7.5, p <107, Additional file 1:
Figure S2A) [2]. While homogenate measurements were
positively correlated with developmental changes that
occurred in both neuronal and glial cell types (  =0.79,
p <1071, cell type-specific developmental changes
were less consistently observed in homogenate prepara-
tions ( =-0.26, p <107, Additional file 1: Figure
S2B-D). Overall, ~40% of cell type-specific developmen-
tal DNAm changes could not be detected at all in the
homogenate cortex (Additional file 1: Figure S2E), and
many of the cell type-specific effects could not be accur-
ately identified in homogenate tissue. These results high-
light the importance of measuring DNAm in the
appropriate cellular context for improved resolution to
detect true developmental changes.

DNAm as a map of putative functional genomic states
Local CpG methylation (mCpG) patterns are known to
distinguish genomic states of DNA and chromatin. For in-
stance, unmethylated regions (UMRs) are associated with
promoters, with a subset of longer UMRs (DNAm valleys,
DMVs) that overlap developmental genes often encoding
transcription factors (TFs) [6, 7]; low-methylated regions
(LMRs) often signify enhancer sequence [8]; and partially
methylated domains (PMDs) are associated with hetero-
chromatin and late replicating DNA [9-11]. To better re-
solve the developing regulatory landscape in postnatal
neurons and glia and in bulk prenatal cortex, we assessed
the temporal dynamics of these selected DNAm patterns
in the CpG context. Compared to prenatal homogenate
cortex and postnatal glial cells, postnatal neurons showed
a general accumulation of mCpG, at a rate 50% faster than
the other cells. This was evident in the LMR and to a
lesser extent the UMR landscape, since fewer and smaller
LMRs were identified as neuronal development pro-
gressed (Additional file 1: Figure S3A-B; Additional file 2:
Table S4). As expected, UMRs and LMRs were highly
enriched for transcription start sites (TSSs) and enhancers
in DLPFC chromatin state data from the Roadmap Epige-
nomics Consortium [12] (Additional file 1: Figure S3C).
Interestingly, LMRs were similarly enriched in these states
in both adult and fetal brain; this correspondence may re-
flect a shared regulatory landscape established early in the
development.

While PMDs are a common feature of most cell types,
they have not been conclusively identified in neurons.
Here, we identified a range of 245 to 404 PMDs per neur-
onal sample (Additional file 1: Figure S4A). PMDs were



Price et al. Genome Biology (2019) 20:196

especially enriched for heterochromatin and, interestingly,
enhancers in our postnatal neuronal samples (Add-
itional file 1: Figure S4B). 65.4% of PMD base pairs were
also identified as PMD in an independent WGBS dataset
of NeuN-sorted human neurons (Additional file 1: Figure
S4C). 40.3-61.0% of PMD bases per neuronal sample were
identified as common PMD sequence, and 9.3-15.0%
bases were additionally identified as PMD in at least one
sample in a recent study profiling PMDs in multiple cell
types and tissues [13] (Additional file 1: Figure S4D).
These data suggest that although the neuronal genome
was overall highly methylated, a small but consistent por-
tion displayed the characteristics of PMDs.

We further identified significant neuronal DMV changes
through the accumulation of mCpG that revealed regula-
tors of cell identity and development and their temporal
windows of expression change. Compared to the bulk pre-
natal cortex, postnatal neurons and glia showed a marked
reduction in the size of DMVs (Additional file 1: Figure
S5A). Although most transcription factor genes within
DMVs were shared, methylation shifts within DMVs across
the timespan studied led to the inclusion and exclusion of
several genes, and on average, transcription factor genes
were higher expressed in the age group in which the gene
was escaping the DMV state by accumulating DNAm
(Additional file 1: Figure S5B-C). These results underscore
the substantial DNAm landscape alterations that neurons
and glia undergo during development in defined mCpG
patterns, including previously unobserved PMDs.

Developmental shifts in neuronal mCpG highlight
synaptic remodeling during the first 5 years of postnatal
life

We next quantified more localized changing mCpG levels
by exploiting the correlation between neighboring mCpG
levels to identify the genomic regions with differential
mCpG levels. We identified 11,179 differentially methylated
regions (DMRs, FWER< 5%, see the “Methods” section) in
the CpG context between cell types (covering 31.1 Mb) that
replicated in independent WGBS data [1] (98.4% concord-
ant, p = 0.925, Additional file 1: Figure S6A). Many of these
DMRs overlapped genes involved in neuronal or glial-
specific processes (Additional file 1: Figure S6B). We found
fewer DMRs for developmental mCpG changes compared
with the cell type differences, the majority being within ra-
ther than across cell types (2178 vs 129 DMRs, at ~ 5%
change in DNAm per decade of life, FWER< 5%).

Among the 2178 cell type-specific developmental DMRs
(cdDMRs, 3 Mb, Additional file 2: Table S5), neuronal
mCpG patterns seemed to diverge from an immature
landscape shared by the glia and prenatal cortex (Fig. 1a),
with the largest changes occurring in the first 5 years of
life (Additional file 1: Figure S6C). Indeed, the magnitude
of DNAm changes in neurons and glia in the samples
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5 years and younger was double that of older samples
( file 1: Figure S6D-E). These results provide epigenetic
correlates to the known developmental processes occur-
ring in the cortex in the first five postnatal years, including
prolific synaptogenesis and gliogenesis.

We further parsed these cdDMRs using k-means clus-
tering to partition the ¢cdDMRs into six groups with
unique DNAm characteristics (Fig. 1b). 71.1% of cdDMRs
were in groups characterized by increasing neuronal and/
or decreasing glial DNAm over postnatal development
(Fig. 1b; groups 1, 2, and 6). A varying proportion of each
c¢dDMR group corresponded to the sequence differentially
methylated by neuronal subtype from publicly available
data [14] depending on the trajectory of neuronal methy-
lation patterns in the group, suggesting that assorted
neuronal subclasses contribute to these developmental
patterns (Additional file 1: Figure S7A-B). Gene ontology
enrichment in the six groups suggested that these groups
are associated with a continuum of biological roles, many
relating to the functions specific to the cell type with de-
creasing methylation (Fig. 1c). For example, Fig. 1d shows
a group 3 cdDMR within SNAP2S, a presynaptic neuronal
gene, in which neurons uniquely and progressively lost
DNAm over development. This pattern suggests increased
repression of neuronal fate in maturing glia not mirrored
in neurons over postnatal development in group 3
cdDMRSs. Likewise, the opposite pattern was observed in a
group 6 cdDMR within MBP, an oligodendrocyte gene en-
coding a component of the myelin sheath, in which glia
but not neurons progressively lost DNAm (Fig. 1e).

We lastly compared these cdDMR groups to a list of
putative enhancers active in human brain development
curated by evolutionary age [15] and found strong enrich-
ment for these sequences across all six groups (Add-
itional file 1: Figure S8A). Human accelerated regions, or
conserved sequences that have experienced rapid muta-
tion in the human lineage [16], were also enriched for
dynamic DNAm remodeling (Additional file 1: Figure
S8B), suggesting that our CpG-based cdDMRs may be
enriched for sequences related to higher cognitive func-
tions associated with the human DLPFC.

Overlapping cdDMRs with the mCpG features identified
above provided additional insight to the potential functional
genomic states underlying these regions. For instance,
cdDMRs scarcely overlapped heterochromatic PMDs;
c¢dDMRs losing neuronal mCpG were positively correlated
with increasing LMR overlap, potentially reflecting enhancer
element activation during cortical maturation in these
groups (groups 3 and 5 cdDMRs; both with ¢ > 3.8, p > 0.63,
and FDR<2.7e-03). Curiously, a high proportion of
c¢dDMRs gaining DNAm in glia but not in neurons (group 4
cdDMRs) overlapped DM Vs early in the development in glia
but steadily lost DMV status over time (¢t = - 4.3, p = - 0.87,
FDR = 1.3e-02, Additional file 1: Figure S9A). Assessing
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chromatin state from the homogenate Roadmap Epige-
nomics brain maps, in contrast, lacked the resolution to pro-
vide this nuance: all six cdDMR groups were similarly
enriched for transcriptional (particularly TSS-flanking) and
enhancer chromatin states and depleted for heterochroma-
tin and quiescent states (Additional file 1: Figure S9B).
These results confirm the role of dynamic DNAm in
helping establish epigenomic states that guide cell lineage
differentiation and emphasize the utility of creating genome-
wide DNAm maps to better parse the functional diversity of
cell type-specific developmental DNAm remodeling in the
human cortex, a process that is particularly critical during
the first 5 years of postnatal development.

Abundant neuronal CpH methylation is highly correlated
with neighboring CpG methylation

Unlike in most other somatic tissues and cell types,
mCpH is an abundant, conserved feature of the neuronal
epigenome [1, 4]. We therefore analyzed 58.1 million cy-
tosines in CpH contexts (H=A, T, or C) that had evi-
dence of methylation across the samples (coverage >5,

at least 5 samples with 5> 0, see the “Methods” section).
As shown previously [1], mCpH sites were predomin-
antly lowly methylated (92-99% CpHs with S <20%,
Additional file 2: Table S3). While mCpH was distrib-
uted throughout the genome (Additional file 1: Figure
S10A), it was greater in neurons than in glia (98.9% of 7,
682,075 differentially methylated CpHs between cell
types were in hypermethylated neurons at FDR < 5%)
and mostly accumulated across postnatal development
(99.3% of 3,194,618 CpHs, at FDR < 5%; Additional file 2:
Table S6). Most mCpH accumulated primarily in either
the CAG or CAC context over the first 5 years of post-
natal life—similarly to mCpG—followed by a tapered
global increase into adulthood (Additional file 1: Figure
S10B-C).

While the majority of mCpH in embryonic stem cells
(ESCs) occur in the CAG context, previous work has
shown that ESCs undergo loss of mCAG during neur-
onal differentiation followed by preferential accumula-
tion of mCAC [17]. Here, we further refined these
patterns and found a cell type-specific relationship with
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trinucleotide context: overall, total mCAG increased
40% faster than mCAC in neurons, while in glia, mCAG
accumulated 50% slower than mCAC (Additional file 1:
Figure S10C). Taking into account the relative genome-
wide proportions of CAG and CAC though, neuronal
mCAG accumulated 30% slower than mCAC (Fig. 2a).
mCpH that was greater in glia than in neurons, or in
younger than in older neurons, was more likely to be in
the CAG than CAC context (OR>4.13, p<2.2e-16).
Interestingly, the 3286 and 1744 genes that contained
significantly increasing and decreasing mCAC vs mCAG
over development, respectively, were associated with dif-
ferent biological processes related to neuronal function
and activity, particularly involving the synapse (Add-
itional file 1: Figure S10D). These results reinforce that
methylation of different trinucleotide contexts may be
regulated by distinct mechanisms playing non-redundant
biological roles in human brain development.

We next examined the relationship between neighboring
mC levels by measuring autocorrelation, defined as how
correlated the methylation level of a cytosine is with that of
cytosines progressively further away. Unlike in the CpG
context, where neighboring mCpG levels were highly
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correlated as previously described [18], neighboring CpH
DNAm levels across the genome were not autocorrelated.
Within the cdDMRs, however, while mCpH levels separ-
ately remained uncorrelated, together all methylated cyto-
sines (i.e, mCpH+mCpQG) showed similar autocorrelation
as mCp@ levels alone (Fig. 2b). This was especially surpris-
ing given that there were about two times as many CpHs
than CpGs within these regions and that the CpG and CpH
were relatively interspersed, suggesting potential functional
convergence in the developmentally regulated patterns
identified by mCpG in these regions. Indeed, unsupervised
hierarchical clustering of CpH within the cdDMRs showed
infant neuronal mCpH levels were even more similar to glia
compared to older neurons than mCpG (Fig. 2¢). Examin-
ing the mean mCpH compared to mCpG within the k-
means cdDMR clusters showed that the groups gaining
mCpG were the most correlated with mCpH trajectories
within the ¢cdDMRs (p = 0.97, t=17.6, p =2.0e-14) and
that although mCpG (unlike mCpH) is present at high
levels prenatally, both mCpG and mCpH accumulate at
similar rates over postnatal development in these groups,
once again especially in the first 5 years of postnatal life
where the majority of the methylation change takes place
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(£=-10.091, p = 0.94; Additional file 1: Figure S6C and Add-
itional file 1: Figure S11). These results emphasize the po-
tential regulatory importance of ¢cdDMRs and putative
functional agreement between both contexts of DNAm in
these regions.

mCpG and mCpH levels influence transcript isoform use
Previous studies show that both mCpG and mCpH in
gene bodies but particularly in the promoter and first 2
kb of the gene are negatively associated with gene ex-
pression and that genic mCpH is the most discriminat-
ing predictor of gene expression [1, 5]. To anchor our
DNAm patterns in transcriptional activity, we compared
our WGBS data with NeuN-sorted nuclear RNA-seq
data (see the “Methods” section). We took the average
DNAm levels across the six groups—infant (ages 0-1),
child (ages 1-10), and teen (age 10+) within both cell
types (neuronal and glial)—and calculated the associa-
tions between DNAm and expression. Gene expression
was negatively correlated with mCpG levels regardless of
age and cell type in both promoter sequence and gene
bodies (-042<p <-022, p~0; 57,332 genes, p<
10719 Additional file 1: Figure S12A). Interestingly,
mCpG in exons was significantly but weakly positively
correlated with exon expression in infancy, particularly
in glial samples (p = 0.094, p < 107'%°), which may relate
to the previously identified positive relationship between
mCpG and expression and higher methylation in exons
than introns [9].

Across promoters, gene bodies, and exons, neurons
showed a negative correlation between gene expression
and mCpH that became stronger over the development,
while glial samples showed a much weaker and develop-
mentally consistent negative correlation (Additional file 1:
Figure S12B). This pattern was consistent with the pref-
erential accumulation of mCpH in neurons as the brain
matures. mCAC and mCAG showed similar patterns of
increasingly strong negative correlation preferentially in
neurons between methylation and expression across
these features (Additional file 1: Figure S12C-D). Both
mCpG and mCpH surrounding the exon-exon splice
junctions were weakly negatively correlated with the ex-
pression of the junction in neurons (Additional file 1:
Figure S12E).

Because mCpG has previously been associated with
alternative splicing [19] and mCpH is 15-20% greater in
exons than in introns [9], we hypothesized that accumu-
lating mCpH may contribute to the diversity of alternative
splicing characteristic of the brain particularly during de-
velopment. Leveraging our single-base resolution data, we
were able to identify genome-wide functional correlates of
mCpH, independent of nearby mCpG, by associating
DNAm with nearby expression in the same cortical sam-
ples. Specifically, we tested whether methylation levels
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directly associated with gene or exon expression levels as
well as the “percent spliced in” (PSI) of alternative splicing
events using the 22 neuronal samples with matching hom-
ogenate polyA+ RNA-seq data (see the “Methods” section)
[20]. We found 40,940 CpG and 40,303 CpH associations
that explain changes in these three expression summariza-
tions at FDR < 5% with a genome-wide p<5x 107 We
further identified 220,622 marginal (p < 0.01) CpG associa-
tions with expression within 1kb around the associated
CpH. While an independent association of mCpH at the
gene and PSI summarizations was rare, there were sub-
stantially more exons exclusively regulated by local
mCpH, largely in the CHH context, in developing postna-
tal neurons (Fig. 3a). Three examples of methylation-
associated isoform changes are shown in Fig. 3b.

Regardless of the context specificity, these expression-
associated cytosines were depleted in gene promoters
and instead enriched in the gene bodies and flanking
regions (Table 1, see the “Methods” section). Both con-
texts were enriched for the high-GC 3" and 5" canonical
splice site sequences (FDR < 1.1e-04), although the asso-
ciated cytosine could be either inside or outside the
corresponding expression feature. Only 3.5-13.7% of the
expression-associated cytosines overlapped DMR se-
quence after stratifying by expressed feature and di-
nucleotide context, indicating that these associations
may arise from a more individualized mC effect than the
DMRs.

Although the majority of these DNAm-expression as-
sociations were independent from development despite
being identified in developing neurons, the mCpH
changes at these sites were independently associated
with age and expression. The genes including PSI events
regulated by local DNAm levels in both CpG and CpH
contexts were consistently enriched for neuronal compo-
nents (Additional file 1: Figure S13), while genes containing
methylation-associated alternative exons were enriched for
synaptic signaling and neurotransmitter transport (Fig. 3¢
and Additional file 2: Table S7), suggesting that we are de-
tecting true neuronal mC-expression associations despite
measuring splicing in homogenate RNA-seq. Many of these
genes were also differentially expressed between neuronal
and glial nuclear RNA (FDR < 0.05, Table 1). Most, but not
all, expression-associated cytosines at the gene- and exon
level showed significant decreases in the expression as
methylation levels increased.

The associations between these putatively regulatory cy-
tosines and nearby expression levels can be explored in a
web tool (https://jhubiostatistics.shinyapps.io/wgbsExprs/
). The results can be interactively summarized such as in
Table 1 for user-selected subsets and visualized as in
Fig. 3b or via the UCSC genome browser (Additional file 1:
Figure S14). By integrating neuronal mCpG and mCpH
levels with accompanying RNA-seq data in the same
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brains, we have identified for the first time a direct associ-
ation of hundreds of transcripts and their splicing events
exclusively with mCpH, independent of mCpG levels,
across the first two decades of human cortical
development.

DNAm patterns shed light on the active cell type and
timing of neuropsychiatric phenotype development
Previous work has attributed a high proportion of neuro-
psychiatric trait heritability to neuron-specific DNA methy-
lation patterns [21]. Given the role of dynamic DNAm in
marking DNA sequence function over the development, we
examined the relationship between our methylation features
and heritability for 30 human behavioral-cognitive traits,
psychiatric and neurological disorders, and non-brain-
related traits [22] (Additional file 2: Table S8), hypothesizing
that DNAm patterns may illuminate not only the active cell
type but potential critical time frames for genomic activity
in these complex phenotypes. We used stratified linkage dis-
equilibrium score regression (LDSC) [23] to estimate the
proportion of heritability measured in GWAS summary sta-
tistics for each phenotype that could be attributed to each of
16 genomic features, including 10 sets of DMRs, LMRs
identified in the prenatal, glial or neuronal methylome, hu-
man brain regulatory sequence annotated by chromHMM
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or the LDSC package, or non-differential CpG clusters
(Fig. 4a). In agreement with previous findings [21, 24], hu-
man brain annotated regulatory sequence was broadly
enriched for heritability of brain-specific traits (14 of 26
brain-associated phenotypes enriched in chromHMM or
CNS (LDSC) regions at FDR < 0.05), as were neuronal fea-
tures (10 of 26 brain phenotypes enriched in neuronal hypo-
methylated regions, FDR < 0.05; Additional file 2: Table S9).
Significantly, differentially hypomethylated neuronal regions
had on average 1.85 times higher enrichment scores than
non-differential neuronal LMRs, meaning the DMRs ex-
plained 1.85x more heritability over regions containing a
similar number of single nucleotide polymorphisms (SNPs)
than the LMRs. Interestingly, body mass index (BMI) herit-
ability was enriched in general brain regulatory sequence
and hypomethylated neuronal DMRs (FDR < 0.05), consist-
ent with previous evidence linking this metabolic phenotype
to regulatory sequence active in cells of the human central
nervous system [23].

In terms of developmental DNAm patterns, heritability
of BM], IQ, neuroticism, and major depressive disorder
was enriched in both postnatal neuronal and prenatal
LMRs, suggesting early action of genetic influence on
the development of these phenotypes (FDR < 0.05). Few
developmental differential groups captured a significant
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Fig. 4 DNAm patterns and brain trait heritability. a Results assessing enrichment for heritability of 30 phenotypes within 16 groups of DNAmM
features using stratified linkage disequilibrium score regression (LDSC). Each dot represents the results for a single phenotype: DNAm feature pair.
The color indicates the DNAm feature, and the phenotypes are stratified by column into psychiatric phenotypes, other brain-related phenotypes
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proportion of heritability for the 30 traits tested, perhaps
because of their small size compared to the cell type-
specific or non-differential groups (cdDMRs covered ~
31, 240, and 838 times less sequence and included ~ 32,
273, and 904 times fewer SNPs than cell type DMRs,
LMRs, or general brain features, respectively). However,
despite covering only 607 kb, group 3 cdDMRs (i.e.,
static glial and decreasing neuronal DNAm) were signifi-
cantly enriched for heritability of schizophrenia (coefti-
cient z-score =2.74, FDR=0.039). Group 4 cdDMRs
(111.7 kb; increasing glial, static neuronal DNAm) were
also enriched for heritability of PTSD (coefficient z-
score = 3.21, FDR = 0.01).

Given the enrichment for psychiatric disease heritability
measured in common SNPs in these cdDMR groups, we
then expanded our analysis to include seven curated gene
sets containing de novo and rare inherited variation—in-
cluding rare copy number variants (CNVs) and syndromic
variants—associated with psychiatric, neurodevelopmen-
tal, and neurodegenerative disorders [25, 26]. We again
found significant enrichment of hypomethylated neuronal
DMRs in genes implicated in psychiatric and neurodeve-
lopmental disorders (i.e., schizophrenia, autism spectrum
disorder (ASD), syndromal neurodevelopmental disorders,
and intellectual disability; all with OR >2.04 and FDR <
1.9e-02; Additional file 2: Table S10). In this analysis, we
also found an enrichment for hypermethylated neuronal
DMRs in ASD genes from the SFARI Gene database and
schizophrenia genes containing de novo mutations (both
with OR>1.92 and FDR < 5.0e-03). These results con-
firmed a prominent role of neuronal functioning in most
of the neurodevelopmental disorders using an orthogonal
measurement approach as done previously [24]. Over the
postnatal development, group 5 cdDMRs (increasing glial,
decreasing neuronal DNAm) were enriched in ASD genes
from the SFARI Gene database (OR = 5.7, FDR = 4.1e-03),
while group 6 cdDMRs (decreasing glial, static neuronal
DNAm) were enriched in ASD, syndromal neurodevelop-
mental disorder, and intellectual disability genes (all with
OR > 3.1 and FDR < 1.9e-02). In contrast, a curated set of
neurodegenerative disorder genes showed no enrichment
for cdDMRs, perhaps reflecting lesser relevance of the first
two decades of postnatal epigenomic remodeling to the
etiology of those disorders.

In the non-CpG context, we found significant enrich-
ment of both increasing and decreasing mCpH levels in
genes associated with schizophrenia, ASD, and syndro-
mal neurodevelopmental disorders (all with OR>2.1
and FDR <2.0e-02). CpH hypomethylation in neurons
was also enriched in the neurodegenerative disease gene
set (OR=2.6, FDR =3.7e-03). Finally, significantly in-
creasing mCpH was depleted in genes associated with
intellectual disability (OR =0.34, FDR = 3.7e-06). While
enrichment for conflicting mCpH patterns is at first

Page 10 of 20

curious given the overall negative association between
mCpH and gene expression, outside of the context of
DMRs, individual mCpH could be associated both posi-
tively and negatively with expression. Indeed, many
genes, exons, and PSI events whose expression both
positively and negatively associated with both mCpH
and mCpG were also enriched in genes associated with
schizophrenia, ASD, and syndromal neurodevelopmental
disorders (all with OR>2.1 and FDR < 2.5e-02; Add-
itional file 2: Table S11). Overall, these results suggest
that these examples of dynamic methylation and associ-
ated isoform switching may play a role in the develop-
ment of higher cognitive functions during brain
maturation associated with these diseases.

Discussion

Here, we have created a single-base resolution map of
the dynamic DNAm landscape across the first two de-
cades of postnatal human brain development in two cell
type-enriched populations. Using FANS-derived samples,
we were able to identify 40% more developmentally reg-
ulated regions of changing DNAm than were identified
in homogenate DNAm cortical data. We profiled specific
features of the DNAm landscape including LMRs,
UMRs, PMDs, and DMVs and found that across fea-
tures, neurons were typified by a general accumulation
of mCpG. In the absence of complementary cell type-
specific chromatin data, characterizing known DNAm
features provided a more granular view of the potential
functional genomic state in these regions than the avail-
able predictions derived from a few homogenate cortical
samples. Particularly in studies using human postmor-
tem brain, where tissue is often subjected to long post-
mortem intervals and low pH that degrades less stable
epigenetic signatures, DNAm is a robust and durable
marker that can be used to map the functional genomic
terrain. These DNAm maps complement recently avail-
able epigenomic maps of different modalities generated
on FANS-derived samples in the psychENCODE Con-
sortium [27].

We further parsed the general accumulation of neuronal
DNAm into six trajectories of cell type-specific develop-
mental patterns and found that neuronal mCpG progres-
sively diverged from a shared landscape with the glia and
bulk prenatal cortex as the brain matured. Importantly,
these diverging patterns were most striking during infancy
through the first 5 years of postnatal life. The human brain
experiences an explosion of synaptic connections during
this time period, to nearly double the number found in the
mature adult brain [28]. Although previous work has
underscored this time frame in terms of rapid DNAm accu-
mulation [1], this is the first work to refine DNAm patterns
to reflect cell type-specific gain and loss of mCpG and
mCpH within this critical window. By parsing these
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neuronal and glial DNAm patterns, we have highlighted
epigenetically dynamic regions that may be contributing to
the developmental processes such as synaptogenesis occur-
ring during this time frame that establish the foundation
for fine-tuning connections throughout the remainder of
brain maturation. These results provide a finely resolved
depiction of epigenetic plasticity being greatest during this
period of life and support other evidence that environmen-
tal experience during these years may have an especially en-
during impact on brain function [29].

mCpH is unusually abundant in neurons compared to
other cell types and appears to undergo trinucleotide-
specific reprogramming during differentiation from ESCs
[17]. While most mCpH in ESCs occurs in the CAG
context, neuronal mCpH predominantly accumulates in
the CAC context [17]. Here, we elaborate on this rela-
tionship, showing that while both mCAG and mCAC ag-
gregate in neurons as they mature and mCAG is gained
faster than mCAC overall, mCAC accumulates propor-
tionally faster in both neurons and glia over time. Inter-
estingly, although neurons and glia contained mCpH in
both trinucleotide contexts, mCAG was more likely to
have higher levels in glia than neurons or be decreasing
over the development; indeed, genes containing decreas-
ing mCAG but not mCAC were strongly associated with
neuronal biological processes. mCpH trinucleotide con-
text, therefore, may have as yet not well-understood
ramifications in brain development.

Because methylation levels in WGBS data are estimated
by counting the number of cytosine (C) vs thymine (T)
reads at any given cytosine site following bisulfite treat-
ment, C/T SNPs at these sites may lead to the confounding
of methylation results. However, only ~ 5% (N = 342,706) of
the CpGs tested in this study that overlapped a SNP from
dbSNP144. (~38.8% of 18.7 million CpGs overlapped a
SNP with a minor allele frequency > 5%) were polymorphic
in our samples, and the proportion was similar in the CpH
context (~4% of CpH sites were polymorphic). Likewise,
less than 1% of the CpGs significantly associated with cell
type, age, or their interaction overlapped SNPs, a much
smaller percent than the rest of the methylome. Therefore,
we conclude that genetic variation at cytosines was not a
significant confounder of methylation level assessment in
our samples.

In terms of the relationship between mCpH and mCpG,
we found that while neighboring mC (i.e., mCpG+mCpH)
was not correlated genome-wide, mC was highly correlated
within the cdDMRs despite local mCpH not being corre-
lated. In other words, there was a convergence of levels of
all contexts of methylation within the cdDMRs that was not
detected genome-wide. mCpH also recapitulated the pattern
seen in mCpG of diverging from a shared DNAm landscape
with glia. Given that mCpH and mCpG have previously
been shown to work in concert to recruit MECP2 binding
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to fine-tune gene expression [30], it is sensible that levels of
both contexts would perhaps reflect a shared functional role
within putatively regulatory cdDMR sequence, since
cdDMRs were also enriched for gene bodies and brain en-
hancer sequence. This work quantifies this correlation for
the first time, a DNAm relationship unique to only a selec-
tion of cell types including neurons.

The identification of widespread association of
mCpG and mCpH with the expression and specific
splicing events, particularly in neuronal genes
enriched for neuropsychiatric diseases, highlights a
potential novel role of mCpH and further expands
the role of mCpG in the regulation of gene expres-
sion in neurons. Splicing is predominantly a co-
transcriptional process influenced by changes in chro-
matin modifications and RNA-binding proteins; the
effects of DNAm on splicing decisions are not yet
well studied [31]. Here, we found thousands of associ-
ations between mC levels and gene, exon, and PSI ex-
pression in developing postnatal neurons, particularly
featuring many exons that are exclusively associated
with mCpH. Although it is not possible to establish a
causal role for mC in these data, these analyses,
which are summarized in the provided website, can
empower other researchers to explore the connection
between DNAm and alternative isoform wuse, a
phenomenon particularly prevalent in the developing
brain that is often associated with disease [20].

We also explored the relationship between DNAm
patterns and genetic associations with various pheno-
types and found both expected and surprising associa-
tions. We confirmed enrichment for heritability of brain
traits generally in neurons and heritability for schizo-
phrenia, a disorder with strong neurodevelopmental
underpinnings, specifically in genomic regions losing
DNAm preferentially in neurons over early postnatal de-
velopment (i.e., group 3 ¢cdDMRs). This result empha-
sizes the critical nature of neuronal development and
maturation in the early establishment of pathological
connectivity and function for this adult-onset disorder,
as most DNAm loss—generally associated with increased
activity of a gene or regulatory element—occurred
within the first five postnatal years. Indeed, group 3
cdDMRs were present in genes such as GRINI, SYNI,
and CAMK?2A, and others involved in establishing syn-
apse organization and function, a hallmark of early post-
natal brain development, implicating abnormal genetic
regulation of neuronal connectivity in schizophrenia
development. Interestingly, heritability for PTSD was
significantly enriched in regions preferentially gaining
DNAm in the non-neurons over the development (group
4 cdDMRs), regions associated with neural precursor cell
proliferation, and cell-cell connective properties (Fig. 1c).
This association, particularly given the small amount of
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sequence covered by group 4 cdDMRs, could lead to
fruitful insights into susceptibility for PTSD and war-
rants further study.

We also found enrichment of genes associated with
rare variants implicated in psychiatric and neurodevelop-
mental disease in a variety of cell types and developmen-
tal trajectories, highlighting the genomic boundaries,
developmental timing, and cellular context of epige-
nomic remodeling of regulatory elements or expressed
features associated with known risk genes. Two exam-
ples of this are HDAC4 and CACNAIB, genes associated
with ASD in the SFARI Gene database. We identified a
566-bp group 3 (decreasing neuronal, static glial DNAm)
cdDMR within an intron of HDAC4, a calcium-sensitive
transcriptional repressor, and a 3.6-kb group 5 (decreas-
ing neuronal, increasing glial DNAm) cdDMR within
CACNAIB, a gene encoding a voltage-gated calcium
channel subunit (Fig. 4b, c). Even though both genes are
implicated in ASD and both ¢cdDMRs are hypomethy-
lated in neurons, the timing of loss of mCpG suggests
that CACNA 1B activity occurs earlier in postnatal devel-
opment than HDAC4. Given that ASD onset is typically
in early childhood, these risk genes may therefore have
differing implications in the etiology of ASD. Another
example is a 646-bp group 6 (decreasing glial, static
neuronal DNAm) ¢cdDMR that overlaps the last intron
and exon of AKT3, a serine/threonine-protein kinase
gene. Although the AKT3/1q44 locus has been associ-
ated with schizophrenia risk, the mechanisms are not yet
known given that AKT3 is involved in many biological
functions [32]. Interestingly, this cdDMR selectively lost
mCpQG in the glial samples beginning in infancy, suggest-
ing that AKT3 activity in human DLPFC may be local-
ized to glia beginning in infancy or earlier (Fig. 4d). This
work provides the first ex vivo look at DNAm dynamics
within human neurons and glia and thus allows for the
first examination of these parameters within the relevant
organ, the brain.

Despite these insights, our data invoke several caveats.
While NeuN-based FANS greatly improves identifying de-
velopmental DNAm changes over homogenate data, desig-
nating NeuN+ and NeuN- samples as “neurons” and “glia,”
respectively, is not completely accurate in that NeuN- sam-
ples will include the signal from unlabeled neurons and
mask non-neuronal diversity. However, recent work asses-
sing the brain regional DNAm differences between NeuN+
and NeuN- found that NeuN- contributed comparatively
marginal variability in DNAm compared to NeuN+, sug-
gesting that neuronal methylomes are much more dynamic
than non-neurons [21]. Likewise, while a percentage of the
bases in the DMRs identified in this work has also been
previously shown to be differentially methylated by neur-
onal subtypes whose unique methylomes are masked using
NeuN-based FANS [5, 14, 33], the proportion of these
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subtypes should be stable over postnatal development [34].
Future epigenomics studies however can improve on the
resolution of our study by isolating more specific neuronal
subpopulations to refine the cellular specificity of these
neuronal methylation changes largely occurring in the first
few years of life.

Another caveat is that WGBS does not allow for the dis-
crimination between mC and hydroxymethyl-cytosines
(hmC), an intermediary in the demethylation pathway. Pre-
vious work has shown [5] that only a fraction of CpGs have
measurable levels of hmC, suggesting that our results are
not confounded. In the cited study [5], hmCpG signal from
the homogenate cortex represented 10% of the hyperme-
thylation found in excitatory neuron mCpG, suggesting that
most of the mCpG signal in our neuronal data likely is true
mCpG. The level of hmC in the non-CpG context remains
controversial, with some studies not identifying hmCpH [5]
and others detecting low amounts (1% in FANS-derived
human glutamatergic and 0.47% in GABAergic neurons)
[35]. Further, FANS-derived human oligodendrocytes
showed little hmC in the same study [35]. Overlap of our
cdDMRs with DMRs between neurons and oligodendro-
cytes in a study of mC in FANS-derived human PFC sam-
ples [35] showed that cell type differences primarily
reflected true mC rather than hmC contamination in
WGBS, while hmC DMRs between neuronal subtypes pri-
marily were reflected in hypomethylated neuronal cdDMR
groups and not the hypermethylated neuronal groups that
would potentially include hmC signal contamination (Add-
itional file 1: Figure S7B). Future work, however, should
more closely examine the contribution of hmC to the glo-
bal hypermethylation seen during neurodevelopment.

Conclusions

By mapping the changing DNAm landscape over human
postnatal neuronal and glial development, we have iden-
tified unique trajectories of DNAm change particularly
dynamic during the first 5 years of life which show con-
vergence between mCpG and mCpH, as well as associa-
tions between single mCpG and mCpH and alternative
splicing. These patterns may also help illuminate the
mechanisms through which psychological, neurological,
and psychiatric traits are developed by placing known
genetic contribution in an epigenomic context.

Methods

Postmortem brain tissue acquisition and processing
Homogenate postmortem tissue of the prefrontal cortex
(dorsolateral prefrontal cortex, DLPFC, BA46/9) was col-
lected from 24 postnatal and 20 prenatal donors. Clinical
characterization, diagnosis, and macro- and microscopic
neuropathological examinations were performed on all
samples using a standardized paradigm, and subjects
with evidence of macro- or microscopic neuropathology
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were excluded, as were all subjects with any psychiatric
diagnoses. Details of tissue acquisition, handling, pro-
cessing, dissection, clinical characterization, diagnosis,
neuropathological examinations, and quality control
measures have been further described previously [36].

Fluorescence-activated nuclei sorting

The nuclei were isolated from 100 to 300 mg of pulver-
ized DLPFC tissue using dounce homogenization
followed by ultracentrifugation over a sucrose density
gradient. Homogenization was performed on ice in 5 mL
lysis buffer [0.32 M sucrose, 3 mM magnesium acetate,
5mM calcium chloride, 5mM EDTA (pH 8.0), 10 mM
Tris-HCI (pH 8.0), 0.1% Triton X-100], and the resulting
homogenate was layered over 38 mL sucrose buffer [1.8
M sucrose, 3 mM magnesium acetate, 10 mM Tris-HCl
(pH 8.0)] and centrifuged at 139,800xg for 2h at 4°C.
Cellular debris and lysis and sucrose buffers were re-
moved, and the pelleted nuclei were resuspended in
500 uL PBS. the nuclei were then labeled in a solution of
anti-NeuN antibody conjugated to Alexa Fluor 488
(A60, Millipore, 1/1000) and 0.1% BSA, rocking for 30
min at 4°C, followed by the addition of DAPI. Nuclei
sorting was performed at the Johns Hopkins School of
Public Health Flow Cytometry Core with a MoFlo Leg-
acy (Beckman Coulter) using Summit (version 4.3) soft-
ware. The purity of the sorted populations was
determined to be >99% based on resorting NeuN+ and
NeuN- populations through the same gates.

The identity of the NeuN+ and NeuN- populations as
neuron-enriched and glia-enriched, respectively, was
confirmed by sequencing nuclear RNA from each popu-
lation and determining that neuronal and glial biological
processes were enriched in genes differentially expressed
between the two groups (FDR < 0.05; Additional file 1:
Figure S1B). Likewise, cell type marker gene expression
patterns also corroborated the neuronal- and glial-
enriched identities of NeuN+ and NeuN- samples, re-
spectively (Additional file 1: Figure S1C). The estimated
proportion of neurons in homogenate DNA methylation
data based on deconvolution using differentially methyl-
ated sites between NeuN+ and NeuN- samples was
highly correlated with the empirical proportion of neu-
rons (Additional file 1: Figure S1D). Raw sorting data is
shown in Additional file 1: Figure S15.

Whole genome bisulfite library preparation and
sequencing

Genomic DNA extraction was performed using the
DNeasy Blood and Tissue Kit (Qiagen). Bisulfite conver-
sion of 600ng genomic DNA was performed with the
EZ DNA methylation kit (Zymo Research). Sequencing
libraries were made with Illumina TruSeq DNA Methy-
lation library preparation kits. Lambda DNA sequence
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was spiked in at 1% concentration to assess the bisulfite
conversion efficiency. Library concentrations were mea-
sured using a NanoDrop, and library fragment sizes were
measured using an Agilent Bioanalyzer 2100. Libraries
were spiked with 10% PhiX to improve base calibration
calls and subsequently sequenced on an Illumina X-Ten
Platform with paired-end (PE) reads (2 x 150 bp), target-
ing 30x coverage and Q30 > 70% read quality.

RNA-seq library preparation and sequencing

RNA was extracted from homogenate and sorted sam-
ples using TRIzol LS Reagent (Thermo Fisher Scientific)
followed by the RNeasy MinElute Cleanup Kit (Qiagen).
RNA sequencing libraries were made with the TruSeq
RNA Library Prep Kit (Illumina) and the RiboGone
Low-Input Ribosomal RNA Removal Kit (Clontech). Li-
brary concentrations were measured using a Qubit 2.0,
and library fragment sizes were measured using Caliper
Life Sciences LabChip GX. One hundred-base-pair PE
sequencing was run on an Illumina HiSeq 2000.

WGBS data processing/alignment

We aligned the PE reads for each sample to the in silico
bisulfite-treated hgl9 genome, which we created using
the Bismark v0.15.0 [37] bismark_genome_preparation
program. For each library of PE reads (one per sample),
the following processing was performed (Additional file 1:
Figure S16):

e FastQC v0.11.4, to assess the read quality, presence
of adapter sequence, and overrepresented sequences.

e Trimmomatic v0.35 [38], to trim low-quality and
adapter-containing portions of the reads, with the
following parameters: PE -threads 12 -phred33
ILLUMINACLIP:/Trimmomatic-0.35/adapters/Tru-
Seq3-PE.fa:2:30:10:1 LEADING:3 TRAILING:3 SLI-
DINGWINDOW:4:15 MINLEN:75. This resulted in
three sub-libraries of reads per sample: one PE sub-
library, and two single-end sub-libraries where the
corresponding paired read was trimmed to a length
below the defined threshold.

e FastQC v0.11.4, on each of the three sub-libraries, to
assess the improvement in read quality and adapter
content following trimming.

e FLASh v1.2.11 [39], to merge the PE sub-library
reads into longer single-end reads, as reads that
overlapped around CpGs and CpHs might bias or at
least double-count the DNAm estimates. Further-
more, Bismark [37] could only be run on single- or
paired-end reads and not a combination of both.
This further split the PE sub-library into three sub-
libraries: the subset of PE reads that were merged
into longer single-end reads and then left and right
single-end reads that could not be merged.
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e Bismark v0.15.0 [37], to align each of the five now-
single-end sub-libraries (left-trimmed, right-
trimmed, FLASh-merged, FLASh-left-unmerged,
and FLASh-right-unmerged) to the bisulfite-
converted hgl9 genome using bowtie2 [40] and the
--non-directional argument.

e Resulting alignment (BAM) files across five sub-
libraries were merged, sorted, and indexed using
samtools v1.3 [41] to produce one large/merged
BAM file per sample.

e Alignments with evidence of duplication were
removed using the MarkDuplicates program in
Picard tools v1.141, which systematically appeared
to be localized to low complexity DNA sequence
near centromeres.

e The Bismark [37] bismark_methylation_extractor
program was run on each post-duplicate-removed
BAM file per sample to extract CpG and CpH
DNAm levels.

We additionally aligned reads from each sample to the
PhiX and Lambda genomes to compute quality control
metrics related to sequencing and bisulfite conversion
quality. The average percentage of reads mapping back
to the Lambda genome was 1.32%, and the average bi-
sulfite conversion efficiency was 98.64%. The average bi-
sulfite conversion efficiency was not associated (p > 0.05)
with cell type, age, cell type (adjusting for age), age
(adjusting for cell type), and the interaction of them in
the NeuN- (glia) and NeuN+ (neuron) samples as well
as for age in the homogenate samples. The genome
coverage decreased from an initial average of 43x to 10x
across the processing stages as shown in Additional file 1:
Figure S17 (coverage). For each of the processing stages,
there was no significant difference between cell types
(adjusting for age), age (adjusting for cell type), and the
interaction between age and cell type (p Bonferroni >
0.05). The genome coverage was extracted from the
FASTQC reports and by using bamcount v0.2.6. [42]

We processed the prenatal and postnatal homogenate
brain samples using the same procedure described above
to produce Bismark [37] report files. Then, using bsseq
[43], we extracted the methylation values for the CpG
positions observed in our postnatal sorted samples in
order to make them comparable to each other by filter-
ing to CpGs with coverage in all 55 postnatal samples.

RNA-seq data processing

Raw sequencing reads were mapped to the hgl9/
GRCh37 human reference genome with splice-aware
aligner HISAT2 v2.0.4 [44]. Feature-level quantification
based on GENCODE release 25 (GRCh38.p7) annotation
on hgl9 coordinates was run on aligned reads using fea-
tureCounts (subread v1.5.0-p3) [45]. Using custom R
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code, we processed the different feature counts and cre-
ated RangedSummarizedExperiment objects using the
SummarizedExperiment Bioconductor package v1.4.0.
We calculated the “percent spliced in” (PSI) using the
SGSeq [46] Bioconductor package v1.12.0 and the Gen-
code v25 annotation for the GRCh37 human reference
genome (fip://ftp.ebi.ac.uk/pub/databases/gencode/Gen-
code_human/release_25/GRCh37_mapping/gencode.v25
lift37.annotation.gtf.gz) from the BAM files generated by
HISAT2. We used default arguments except for the
function analyzeVariants() where we used a min_denom-
inator=10.

Comparing homogenate vs cell type-specific WGBS

We first filtered CpGs to those with coverage in all 55
postnatal samples. For homogenate samples, we used
ImFit() and ebayes() from the limma [47] Bioconductor
package v3.34.5 to assess the age-associated changes to
DNAm levels with the linear model ~ Age. For the cell
type-specific samples, we used a linear model ~ Age *
Cell Type to assess cell type, overall age, and age in a
cell type changes to DNAm levels. We subset CpGs to
those that were significantly differentially methylated by
age in homogenate samples (p<1x10™*) and plotted
the coefficients for each CpG in Additional file 1: Figure
S2A-D. The relationship between each variable was
quantified using Fisher’s exact test.

Identifying methylation features

We identified PMDs, UMRs, and LMRs using the bio-
conductor package MethylSeekR (version 1.20.0). We
obtained coverage information from the cleaned set of
~ 18 million CpGs by extracting coverage and methyla-
tion using the getCoverage() function from the bsseq
bioconductor package [43] v1.10.0. PMDs were called
using segmentPMDs() and were visually inspected using
plotPMDSegmentation(). To create a more stringent
cutoff for PMDs, we filtered PMDs to those longer than
100 Kbp. We calculated the FDRs using calculateFDRs(),
while masking the > 100 Kbp PMDs, setting the m par-
ameter to 0.5 and the FDR cutoff to 10. PMDs were fur-
ther filtered to exclude overlaps with the UCSC “gap”
database table from hgl9 except for the gaps labeled as
heterochromatin. We calculated UMRs and LMRs using
segmentUMRSLMRs(). DMVs were defined as UMRs in
which pmeth was less than or equal to 0.15, and the
width was greater than or equal to 5 Kbp.

Identifying CpG differentially methylated regions

Using the bsseq [43] Bioconductor package v1.10.0, we
loaded the Bismark [37] report files and filtered the CpG
data to keep only the bases where all samples had a
minimum coverage of 3 (18,664,892 number passed the
filter). We smoothed the methylation values of the
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remaining CpGs using the BSmooth() function from
bsseq with the parallelBy = “sample” option. To identify
the age and cell type DMRs, we used a model that ad-
justed for both covariates while for the interaction
model, we included an additional interaction covariate.
We identified the DMRs using the bumphunter [48] Bio-
conductor package v1.14.0 using the maxGap = 1000,
B =250, nullMethod = “permutation,” smooth = FALSE
options, which tends to be conservative in DMR identifi-
cation [48]. For the cutoff option, we used 0.1 for the
cell type DMRs adjusting for age, 0.005 for the age
DMRs adjusting for cell type, and 0.009 for the age and
cell type interaction DMRs. These first two parameter
cutoffs correspond to 10% minimum DNAm differences
between neurons and glia and 5% change in DNAm per
decade of life across cell types and were chosen based
on functionally relevant change in DNAm. The cutoff
for the interaction model (cdDMRs) was based on select-
ing the equivalent percentile of change from the overall
age model (86th percentile)—this percentile-based cutoff
was in line with recommendations for selecting cutoffs
for statistical models with less clear biological interpreta-
tions [48]. We used a family wise error rate (FWER)
threshold of 5% to determine the DMRs: fwer output
from the bumphunter() function. A small subset of
DMRs involved a single CpG, which arises from having
a more significant area (length times effect size) than
any DMRs identified in null permuted data. All DMRs
showed less than 10% median percent absolute bias to
the technical and biological covariates as shown in Add-
itional file 1: Figure S18 (sensitivity).

cdDMR processing

For the “interaction” DMRs with FWER<5% (ie.,
cdDMRs), we extracted the methylation values from the
glial and neuronal samples using bsseq [43] v1.13.9 and
then computed a mean methylation value per DMR for
each cell type. We also calculated the mean interaction
coefficient for each DMR across all the cytosines in the
DMR by cell type. Using the mean coefficients by cell
type, we clustered the interaction DMRs using the
kmeans() function with centers=6 and nstart=100
options. We chose centers = 6 based on the biological in-
terpretability of the results and because k=6 results in
an optimal AIC for clusters computed with mean cen-
tered and scaled data. For each cytosine in the cdDMRs,
we calculated the ¢-statistic and coefficient for age
explaining the differences in methylation adjusted for
cell type: ~ age + cell type. For each DMR, we computed
the mean age coefficient by cell type and then calculated
the median absolute coefficient across all cdDMRs. The
neuronal/glia ratio is 1.5 for such median absolute age
effects across the cdDMRs.
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Plots for the DMRs were made using bsseq [43]
v1.14.0, EnsDb.Hsapiens.v75 v2.99.0, and RColorBrewer
v1.1-2. Genes within 20 kb of a DMR were retained for
the plots. Genes and exons were included using the
annoTrack argument, and we used extend =2000 for
making the plots.

Roadmap epigenome enrichments

We computed the relative enrichments of different gen-
omic regions using Epigenome Roadmap data [12] by
computing the proportion of bases in each of the 15
ChromHMM states for each of the cells and tissues pro-
vided by the Consortium. We compared the proportion
of bases in each state within each candidate region set to
the overall genome and computed the corresponding
log2 enrichments between the regions and this genomic
background. We compared DMR and mCpG-based
methylation feature regions to all profiled cell types in
the Consortium for these analyses.

Assessing the contribution of neuronal subtypes

The percent of neuronal subtype-specific bases was cal-
culated by reducing the total subtype-specific CpG-
DMRs from Luo et al. [14], reducing the bases in each
group of cdDMRs and calculating the percent of cdDMR
bases that intersected the merged subtype-specific CpG-
DMR bases.

Enrichments for HARs and enhancers

We calculated the enrichment of genomic segments
overlapping cdDMRs and human accelerated regions
(HARs) and enhancers [15] using Fisher’s exact test. We
calculated the overlap of methylation features (DMRs,
mCpH, expression-associated cytosines) and HARs or
enhancers with the entire set of CpG clusters used to
identify DMRs as background. We corrected for multiple
testing using the false discovery rate (FDR).

Gene Ontology analyses

Gene Ontology enrichment analyses were performed using
clusterProfiler [49] v3.6.0 using the options pAdjust-
Method = “BH,” pvalueCutoff = 0.1, and qvalueCutoff = 0.05
on the Entrez IDs for each expression feature to test for
enriched biological processes (BP), cellular compartments
(CC), and molecular functions (MF). Only cytosines or
DMRs overlapping genes were included.

CpH processing

Using Bismark v0.16.3 [37], we created report files using
the methylation extractor program with the CX_context
and split_by_chromosome options for the hgl9 human
genome in order to extract the methylation values for
the CpHs. Then, for each chromosome, using the bsseq
[43] Bioconductor package v1.10.0, we loaded the
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Bismark [37] report files and added the c_context and
trinucleotide_context information from Bismark using
custom R code based on the bsseq internal code that
uses the data.table package v1.10.4. After combining the
results for each chromosome, we filtered the CpHs to
keep only those where all samples had a minimum
coverage of 5 (58,109,566 number passed the filter).

We chose the coverage thresholds of 5 reads for CpHs
rather than the 3 used for CpGs earlier to be more con-
servative in the CpHs that would be included, given the
number of tests that were performed in that context.
Despite the difference in the cutoffs, however, mean
coverage levels across the cytosines meeting these
thresholds were similar between CpGs and CpHs (me-
dian CpG coverage =13, IQR 10.6-15.8; median CpH
coverage = 11.7, IQR 10.3-13.3).

Global autocorrelation

Using CpG and CpH positions with a minimum cover-
age of 3 and 5, respectively, for all samples, we calcu-
lated the autocorrelation for the methylation levels for
the CpGs, the CpHs, the CpHs with a CHG trinucleotide
context, or the CpHs with a CHH trinucleotide context.
For each of the sets, we grouped the positions using der-
finder v1.12.0 into groups by a maximum distance of 1
kb. Only those groups with at least 5 Cs were further
considered. For each sample, we then calculated the
autocorrelation using the acf() function with lag.max =4
in parallel for each chromosome using BiocParallel
v1.12.0. For each cluster of cytosines, we calculated the
mean across the neuronal (NeuN+) and the glial (NeuN
-) samples at each autocorrelation lag. After combining
and tidying the results, we visualized the global auto cor-
relation using ggplot2 v2.2.1. We repeated this same
analysis for the Lister et al. data [1].

Autocorrelation within DMRs

Similar to the global autocorrelation, we extracted the
methylation values at CpGs with a minimum coverage
of 3 and the CpHs with a minimum coverage of 5 that
were within each of the sets of DMRs (age, cell type, or
interaction). We then computed the autocorrelation for
DMRs with a least 5 different cytosines using the acf()
function with a lagmax=4 and calculated the mean
auto-correlation among the neuronal and glial samples.
The lag is proportional to the genomic distance as
shown in Additional file 1: Figure S19 (lag and distance).

Lister et al. [1] data processing

We downloaded the WGBS data from Lister et al. [1]
(SRA accession SRP026048). We then processed and
aligned the data following the same steps we used for
our data. Using bsseq [43] as in the “CpH processing”
section, we extracted the methylation values from the
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Bismark [37] report files and added the c_context and
trinucleotide_context information per chromosome. We
then merged the results for all the chromosomes retain-
ing only the CpG and CpH positions we observed with a
minimum coverage of 3 and 5 in our data, respectively.
To assess the replication of our cell type DMR results,
we computed the mean methylation differences across
the CpG positions comparing neuron and non-neuron
samples in the Lister et al. data [1] using the rowttests()
function from the genefilter package version 1.56.0. We
then computed the mean difference for each of the
DMRs and compared this mean difference against the
DMR mean methylation difference derived from our
data to derive the concordance and correlation between
them. To assess the replication of our age DMR results,
we modeled age as a continuous variable and calculated
the mean methylation difference per year for every CpG
contained in the age DMRs using ImFit() function from
limma. Finally, we compared the mean methylation dif-
ference in the Lister et al. data [1] against the observed
mean methylation difference for the age DMRs we
derived.

Identification of differentially methylated positions

With the set of CpGs and CpHs with a minimum cover-
age 3 and 5 in all samples, respectively, and the same
models for identifying the DMRs, we identified the dif-
ferentially methylated positions (DMPs), keeping the
CpGs and CpHs separate. For the CpHs, we further fil-
tered to keep only those where at least 5 samples had a
methylation value greater than 0 (40,818,742 or 70.2%).
We used the limma Bioconductor package v3.30.13 for
determining the DMPs by running the functions ImFit()
and eBayes() with default parameters and FDR < 5%.

Differential expression between cell types

We combined the gene counts for the polyA+ and
RiboZero sequencing protocols for the sorted RNA-
seq data: 3 NeuN+ and 3 NeuN- samples for a total
of 12 RNA-seq sequencing runs. We calculated the li-
brary size normalization factors using calcNormFac-
tors() from edgeR [50] (v3.22.3) and identified
differentially expressed genes using voom(), lmFit(),
and eBayes() from limma [47, 51]. We repeated this
procedure for the exon counts. We chose cell type-
specific marker genes to check for the correct expres-
sion patterns from a database for cell type-specific
RNA-seq identified in mouse [52].

Methylation vs expression associations

With the sorted RNA-seq data, we computed the average
gene expression per age group (infant, child, teen) and cell
type (six groups) and correlated these values to average
DNAm levels in the same groups in both the CpG and
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CpH contexts at the gene promoter and body, exon (500 bp
window), and splice junction (50 bp into each intron) levels.
With the RangedSummarizedExperiment objects with the
RNA-seq polyA homogenate data and the bsseq objects
with the CpG and CpH data, we determined which CpG
and CpH positions explained the changes in expression
(FPKM) at the gene or exon level as well as in percent
spliced in (PSI). We retained only the expression and PSI
data from the postnatal samples and matched them by
brain identifier to the neuronal methylation data with a
final sample size of 22. We filtered lowly expressed features
using the expression_cutoff() function from the jaffelab
package v0.99.18: mean FPKM > 0.22 mean for genes and
0.26 for exons. For genes and exons, we transformed the
expression values to log2(FPKM + 1) and extracted the raw
PSI values. Using MatrixEQTL [53] v2.2 (GitHub b9a9f01
patch), we then identified the methylation quantitative trait
loci (QTL) for the CpG and CpH methylation data separ-
ately using the function Matrix_eQTL_main()function with
options pvOutputThreshold = 0, pvOutputThreshold.cis =
5e—4, useModel = modelLINEAR, and cisDist = 1000. We
identified marginal CpG associations near CpH associations
by running MatrixEQTL again for the CpG in a1l kb win-
dow around the CpH positions with an association with ex-
pression at FDR <5% for each expression feature type
using the same parameters as above except for pvOutput-
Threshold.cis = 0.01. We filtered the associations to retain
only those having at least 11 samples with non-zero methy-
lation and 11 samples with non-one methylation values to
remove extreme cases. We further restricted the results to
protein-coding genes and dropped any with infinite ¢-statis-
tics. To assess whether age confounds the relationship be-
tween methylation and expression, we used a multiple
linear regression model adjusting for age and checked if the
methylation coefficient was still FDR < 5%. Venn diagrams
in Fig. 3 were made with the VennDiagram package
v1.6.18. For the gene and PSI associations, we used the gene
ID to check if it was present in the 3473 differentially
expressed genes from the sorted RNA-seq data (described
above) with higher expression in neurons and the top 5000
DE genes with higher expression in glia at FDR < 5%; simi-
larly, we did so for exons and the top 5000 DE exons
(FDR < 5%) with higher expression in each cell type. The
LIBD WBGS Expression explorer at https://jhubiostatistics.
shinyapps.io/wgbsExprs/ was made using the bsseq [43]
v1.14.0, DT v0.4, SGSeq [46] v1.12.0 and shiny v1.0.5 R
packages.

Stratified linkage disequilibrium score regression

GWAS summary statistics for 30 phenotypes [21, 22] were
downloaded from the sources listed in Additional file 2:
Table S8. We used LDSC (LD SCore) v1.0.0 to estimate the
proportion of heritability captured in 16 sets of genomic
DNAm features for each GWAS phenotype, including the
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DMRs and LMRs defined above in this work, non-
differentially methylated CpG clusters (called above before
the DMR analysis, excluding DMR sequence), central ner-
vous system annotations included in the LDSC package
(referred to as CNS (LDSC)), and regions annotated as pu-
tatively regulatory in the human brain using chromHMM
(ie., the union of regions annotated as “Bivalent Enhancer,”
“Bivalent/Poised TSS,” “Genic enhancers,” “Flanking Active
TSS,” “Active TSS,” “Strong transcription,” and “Enhancers”
in the following tracks accessed using the AnnotationHub
Bioconductor package (v2.14.5) [54]: AH46920, AH46921,
AH46922, AH46923, AH46924, AH46925, AH46926,
AH46927, AH46934, and AH46935).

We first converted the GWAS summary statistics into
the .sumstats format using munge_sumstats.py, keeping
only HapMap 3 SNPs (downloaded from https://data.
broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.
bz2) as described in the Partitioned Heritability LDSC tu-
torial. We made .annot files for each custom feature set
based on the list of SNPs in the CNS cell type annota-
tions provided in the LDSC package and estimated par-
titioned LD scores for each feature using 1000
Genomes plink files (downloaded from https://data.
broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase
3_plinkfiles.tgz) using ldsc.py. We finally estimated the
partitioned heritability for each feature-phenotype com-
bination by adding each feature individually to the
“baseline model” including 53 baseline annotations de-
scribed in Finucane et al. [23].

Enrichments for genes associated with brain disorders
We calculated the enrichment of genes overlapping dif-
ferent methylation features in gene sets described by
Birnbaum et al. [25]. We measured what fraction of the
genes in each set overlapped methylation features (i.e.,
DMRs, mCpH, and expression-associated cytosines) with
Fisher’s exact test using all expressed genes with Entrez
IDs as background. We corrected for testing multiple
disorder gene sets using the false discovery rate (FDR).

Additional files

Additional file 1: Figure S1. Confirmation of neuronal- and glial-
enriched identity of NeuN+ and NeuN- samples. Figure S2. Detecting de-
velopmental changes in homogenate vs. cell type-specific DNAm data.
Figure S3. Unmethylated Regions (UMRs) and Low-methylated regions
(LMRs). Figure S4. Partially methylated domains (PMDs). Figure S5. DNA
methylation valleys (DMVs). Figure S6. Differentially methylated regions
(DMRs). Figure S7. Cell type-specific developmental DMRs and neuronal
subtype methylation and hydroxymethylation. Figure S8. cdDMR overlap
of human brain developmental enhancers and Human Accelerated Re-
gions (HARs). Figure S9. Cell type-specific, developmentally dynamic
DMRs (cdDMRs) and epigenetic states. Figure S10. CpH methylation dis-
tribution, levels and context-specific biological process ontology. Figure
S11. Trajectories of CpH methylation accumulation in cdDMR groups.

Figure S12. Relationship between methylation and expression. Figure
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$13. Cellular compartment ontology. Figure S14. Web meQTL browser
display. Figure S15. Raw sort data. Figure S16. Data processing/align-
ment pipeline. Figure S17. Genome coverage across processing stages.
Figure S18. DMR sensitivity analyses. Figure S19. genome distance ver-
sus autocorrelation lag. (PDF 18992 kb)

Additional file 2: Table S1. WGBS Phenotype, Sequencing Data. Table
S2. RNA Phenotype, Sequencing Data. Table S3. Number of cytosines
measured and distribution of methylation by context. Table S4. Number
of Low Methylation Regions (LMRs) and Unmethylated Regions (UMRs)
per sample. Table S5. Cell type-specific, developmental differentially
methylated regions (cdDMRs). Table $6. mC association with cell type
and age in postnatal cell type-specific samples. Table S7. Molecular func-
tion gene ontology enrichment for genes including exons whose expres-
sion is associated with cytosine methylation levels. Table S8. GWAS traits
assessed using LDSC. Table S9. Stratified linkage disequilibrium score re-
gression results. Table $10. Enrichment of DMRs and mCpH for disease-
associated gene sets. Table S11. Enrichment for disease gene sets in
DNAm-splicing association features. Table S12. Variable dictionary for
Table 1. (XLSX 437 kb)
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