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Abstract

Motivation: The human microbiome is notoriously variable across individuals, with a wide range

of ‘healthy’ microbiomes. Paired and longitudinal studies of the microbiome have become increas-

ingly popular as a way to reduce unmeasured confounding and to increase statistical power by

reducing large inter-subject variability. Statistical methods for analyzing such datasets are scarce.

Results: We introduce a paired UniFrac dissimilarity that summarizes within-individual (or within-

pair) shifts in microbiome composition and then compares these compositional shifts across indi-

viduals (or pairs). This dissimilarity depends on a novel transformation of relative abundances,

which we then extend to more than two time points and incorporate into several phylogenetic and

non-phylogenetic dissimilarities. The data transformation and resulting dissimilarities may be used

in a wide variety of downstream analyses, including ordination analysis and distance-based hy-

pothesis testing. Simulations demonstrate that tests based on these dissimilarities retain appropri-

ate type 1 error and high power. We apply the method in two real datasets.

Availability and implementation: The R package pldist is available on GitHub at https://github.com/

aplantin/pldist.

Contact: amp9@williams.edu or mcwu@fhcrc.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Interest in the human microbiome has grown rapidly as its vital role

in human health has become increasingly apparent. The micro-

biome, defined as the community of bacteria and other microorgan-

isms living in and on a person, is associated with conditions such as

obesity (Turnbaugh et al., 2009), graft-versus-host disease (Jenq

et al., 2015), menopause symptoms (Mitchell et al., 2018) and type

2 diabetes (Qin et al., 2012). Its role also extends to mediating

disease treatment responses. For example, the gut microbiome is

associated with efficacy of dietary interventions in irritable bowel

disease (Chumpitazi et al., 2015) and affects success of some cancer

immunotherapies (Routy et al., 2018). Ongoing research continues

to explore such associations.

Two approaches to characterizing the microbiome are 16s rRNA

sequencing and shotgun metagenomics (Jovel et al., 2016). The for-

mer proceeds by amplifying and sequencing the 16S rRNA gene,

then clustering reads into operational taxonomic units (OTUs) at a

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3567

Bioinformatics, 35(19), 2019, 3567–3575

doi: 10.1093/bioinformatics/btz120

Advance Access Publication Date: 19 February 2019

Original Paper

https://github.com/aplantin/pldist
https://github.com/aplantin/pldist
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz120#supplementary-data
https://academic.oup.com/


desired level of similarity. The 16S sequences may also be used to

build a phylogenetic tree describing the evolutionary relationships

between OTUs in the study. In shotgun metagenomics, all genetic

material present is sequenced, resulting in more information about

functional capability, but at substantially higher cost. Regardless of

sequencing method, the sequencing data may be summarized as a set

of taxon counts for each individual, potentially accompanied by a

phylogenetic tree relating the taxa. This count matrix is frequently

used for downstream analysis.

A common class of microbiome analyses evaluates each taxon in-

dependently for association with an outcome of interest using stand-

ard statistical methodology or microbiome-specific approaches. Due

to the potentially large number of OTUs measured (hundreds to

thousands), this type of analysis often requires severe multiple testing

corrections. A popular alternative is distance-based multivariate ana-

lysis, which assesses the global association between the microbiome

and many types of outcome measures (Koh et al., 2017; Plantinga

et al., 2017; Tang et al., 2016; Zhan et al., 2017; Zhao et al., 2015).

These methods use a relevant distance metric to quantify the dissimi-

larity between microbiomes, then compare the pairwise dissimilar-

ities (often transformed to similarities) to similarity in outcome

measures using a PERMANOVA-type test (Anderson, 2001).

The vast majority of distance-based methods cannot accommo-

date related samples. However, studies based on independent sam-

ples are easy to be confounded, since the human microbiome is

highly variable and is subject to the influence of a large array of

environmental factors. Longitudinal study of the microbiome, which

uses each individual as his or her own control, has become increas-

ingly popular due to its ability to reduce potential unmeasured

confounding effects as well as to increase the statistical power by

reducing large inter-subject variation (Faust et al., 2015). For ex-

ample, Kong et al. (2012) compared children’s skin microbiome at

baseline, during atopic dermatitis flares and post-treatment, finding

substantially lower diversity during disease flares and restored diver-

sity post-treatment. Lewis et al. (2015) studied the gut microbiome

of children with Crohn’s disease across different 8-week treatment

plans, tracking and comparing changes in the microbiome along

with clinical response to treatment. Unfortunately, statistical meth-

ods for analyzing such longitudinal datasets are scarce.

Distance-based analysis can be modified to new settings, such as

longitudinal studies, in two ways: by modifying the model used to

relate pairwise distances to the outcome, or by modifying the distan-

ces themselves to accommodate additional information. Taking the

former approach, a linear mixed model framework has allowed the

extension of formal distance-based association tests to longitudinal

study designs for quantitative phenotypes (Zhai et al., 2018; Zhan

et al., 2018). Similar methods do not exist for more complex out-

comes, such as time-to-event data, multivariate phenotypes or even

dichotomous outcomes, and specialized extensions would be

required for each of these models.

We instead consider modifying the distance metric. This approach

has already proven valuable in the UniFrac family of distances: after the

original proposal of (unweighted) UniFrac (Lozupone and Knight,

2005), differences in taxon abundance were incorporated into weighted

UniFrac (Lozupone et al., 2007). Variance-adjusted weighted UniFrac

improved power by weighting differences in branch proportions by the

corresponding variance (Chang et al., 2011), and generalized UniFrac

moderates the weight placed on abundant or rare lineages (Chen et al.,

2012). Each of these adaptations allows greater flexibility and informa-

tion content in the quantification of (dis)similarity.

In this spirit, we propose a UniFrac-type dissimilarity between

two subjects that compares, instead of taxon abundances, a

normalized measure of change between the two time points for each

subject. We develop both an unweighted version of the dissimilarity,

which considers only changes in taxon presence, and a generalized

version, which incorporates changes in abundance. We then extend

the measure of change for paired samples to more than two time

points, and we incorporate this data transformation into non-

phylogenetic dissimilarities. This paired and longitudinal distance-

based approach, termed pldist, is independent of the choice of

sequencing and quantification method, provided that the data may

be summarized as a table of taxon counts and possibly a phylogenet-

ic tree. pldist may be used in any existing distance-based testing

framework or visualization procedure, allowing longitudinal ana-

lysis with a wide variety of outcome types. In contrast to a linear

mixed model approach, pldist explicitly considers changes in the

microbiome over time, permitting direct answers to the scientific

questions often posed in longitudinal studies.

In the following sections, we introduce unweighted and general-

ized UniFrac dissimilarity metrics for paired data; generalize the

underlying data transformation to more than two time points; in-

corporate the paired and longitudinal transformations into other

dissimilarity metrics; perform simulation studies to verify proper

type 1 error control and power to detect true longitudinal associa-

tions; and apply the methods to two real microbiome datasets.

2 Materials and methods

We begin by introducing two measures of dissimilarity for paired data

that are analogous to the unweighted and generalized UniFrac distances

(PUniFrac). Both utilize a two-stage approach. In the first stage, the

changes in taxon presence (unweighted) or abundance (generalized) for

each subject are summarized; in the second stage, these changes are

compared across subjects, incorporating phylogenetic structure in much

the same way as the other UniFrac distances. We then extend the trans-

formations to more than two time points and incorporate the same

Stage 1 data transformations into several non-phylogenetic metrics.

2.1 Paired UniFrac dissimilarities
The original unweighted UniFrac metric sums the lengths of

branches on a phylogenetic tree that are unshared between two mi-

crobial communities (Lozupone and Knight, 2005). That is, if a

taxon is present in one community but not the other, then the length

of that taxon’s branch of the tree contributes to the distance between

the communities.

To extend this to two time points, we define change between

time points for subject i and taxon j based on taxon presence or ab-

sence. Suppose we have measured OTU abundance for p taxa on n

subjects at two time points, t1 and t2. Let pi;t1

k indicate the propor-

tion of reads for subject i at time point t1 that belong to taxon k.

Then define

di
kðt1; t2Þ ¼ I

�
p
ði;t1Þ
k > 0

�
� I
�

p
ði;t2Þ
k > 0

�
2 f�1;0; 1g

for each subject i ¼ 1; . . . ; n and taxon k ¼ 1; . . . ;p, where Ið�Þ is the

indicator function. Hence di
kðt1; t2Þ is nonzero if and only if the taxon

was present at exactly one of the measured time points for subject i;

di
k ¼ 1 if taxon k was present at time 2 but absent at time 1 (acquired

between time points), and di
k ¼ �1 if taxon k was present at time 1

but absent at time 2 (lost between time points). We will henceforth

suppress the (t1, t2) notation and refer to these changes just as di
k.

The unweighted PUniFrac distance between subjects i and j is

constructed based on di
k and d j

k via
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Dij ¼

Pp
k¼1

bk � 1
2 jdi

k � d j
kj

Pp
k¼1

bk

so that Dij summarizes the difference between subjects i and j in changes

in presence/absence, weighted by branch length and normalized to fall in

[0, 1]. In Section 1 of the Appendix we prove that this metric is a proper

distance. Figure 1 provides a visual representation of the approach.

Weighted UniFrac at a single time point extends the unweighted

UniFrac distance by defining differences between communities in

terms of differences in taxon proportion rather than taxon presence.

Generalized UniFrac then weights each branch by a term depending

upon its overall abundance to avoid overweighting particularly rare

or abundant lineages. The corresponding version for paired data is

based upon similar adjustments.

For the generalized PUniFrac dissimilarity, we define change between

times for subject i and taxon k based upon differences in abundance as

di
kðt1; t2Þ ¼

p
ði;t2Þ
k � p

ði;t1Þ
k

p
ði;t2Þ
k þ p

ði;t1Þ
k

2 ½�1;1�:

The sign indicates whether the taxon was more (þ) or less (�)

abundant at time 2 than at time 1, and the difference in proportion

is normalized by overall taxon abundance. Using this measure of

change, we then construct the generalized paired UniFrac dissimilar-

ity between subjects i and j via

Dij ¼

Pp
k¼1

bkð�pi
k þ �pj

kÞ
c � 1

2 jdi
k � dj

kj

Pp
k¼1

bkð�pi
k þ �pj

kÞ
c

where �pi
k ¼ ðp

ði;t1Þ
k þ p

ði;t2Þ
k Þ=2 is the average abundance of a particu-

lar taxon across times for subject i. The parameter c 2 ½0;1�, which

is constant for each matrix D, controls the weight on abundant

branches. Larger c places higher weight on the contribution of com-

mon taxa, whereas small c places similar weight on common and

rare taxa. Therefore Dij summarizes the (normalized) difference in

abundance of taxa between subjects, weighted by branch length and

average taxon abundance.

To better understand this measure of dissimilarity, notice that

the term involving magnitude of change in abundance is 1
2 jdi

k � dj
kj,

corresponding to the ‘weighting’ term in weighted UniFrac. This is

normalized to the absolute abundance of a taxon through the defin-

ition of di
k. For example, a change from a relative abundance of 0.2

to 0.1 results in exactly the same di
k as a change from a relative

abundance of 0.4 to 0.2. This takes its largest value of 1 if di
k ¼ 1

and dj
k ¼ �1, which happens if taxon k is gained in subject i and

lost in subject j, or vice versa. It takes its smallest value of 0 if taxon

k’s abundance changes equally in the two subjects. The ‘generaliza-

tion’ (similar to generalized UniFrac) refers to the weighting of

branch lengths by average abundance, ð�pi
k þ �pj

kÞ
c. This term does in-

volve absolute proportions, so in the toy example above, it would

weight a taxon with average abundance of 0.3 differently than a

taxon with average abundance of 0.15.

The power of the test based on this D depends strongly on the

choice of c and the true association. We recommend trying a range of

c, such as (0.25, 0.5, 0.75, 1), and using a permutation test to assess

overall significance. See Zhao et al. (2015) and Koh et al. (2017) for

further descriptions of the permutation testing procedure for multiple

kernels with continuous, binary and time-to-event outcomes.

In the Appendix we show by counterexample that this measure

of dissimilarity is not guaranteed to satisfy the triangle inequality, so

it is not a proper distance. Although proper distance metrics are

preferable in some situations, for global analysis of the microbiome,

this is often overlooked. Application of this dissimilarity is statistic-

ally valid despite potential failure of the triangle inequality, but it

should be noted that these may not represent dissimilarities in

Euclidean space without transformation.

2.2 Multiple time points
Longitudinal studies often include more than two time points. If the

study has a balanced design, i.e. the same time points are observed

for every individual, pairwise distances could be calculated between

every pair of time points (or consecutive time points). The existing

framework for omnibus tests of multiple kernels could then be used

to see whether the outcome of interest is associated with changes in

the microbiome between any pair of (consecutive) time points.

However, many longitudinal studies are not balanced, either by

design or due to missing data. Previous studies have shown that vari-

ability of the microbiome, as well as composition, differs between

healthy and diseased subjects. The gut microbiome of individuals

with irritable bowel disease (IBD), for example, fluctuates more

than that of healthy subjects (Halfvarson et al., 2017). Therefore,

for studies with more than two observations per subject and poten-

tially unbalanced designs, the paired transformations may be mean-

ingfully extended to measures of compositional ‘volatility’ or

variability of the microbial community.

The qualitative transformation for longitudinal data with q time

points indicated by t ¼ ðt1; . . . ; tqÞ is defined as

di
kðtÞ ¼

1

q� 1

Xq�1

l¼1

1

tlþ1 � tl

� �
� jIðpi;tlþ1

k > 0Þ � Iðpi;tl

k > 0Þj

so that di
k measures the average change in presence of taxon k for

subject i in one unit of time. This is not equivalent to the paired

transformation even when applied at two time points, since for the

longitudinal transformation, only absolute magnitude of change is

considered, not direction of change. That is, in the paired

Fig. 1. Schematic for calculation of unweighted PUniFrac metric. Dark lines

are phylogenetic distances that contribute to the PUniFrac dissimilarity, at

half weight if the change was observed in one subject and full weight if

opposing changes in presence or absence were observed

pldist 3569



transformation, taxon gain is treated differently than taxon loss. In

the longitudinal version, taxon gain and taxon loss are equivalent

magnitudes of change in a single taxon.

Similarly, the quantitative transformation for longitudinal data

with q time points is defined as

di
kðtÞ ¼

1

q� 1

Xq�1

l¼1

1

tlþ1 � tl

� �
�

p
ði;tlþ1Þ
k � p

ði;tlÞ
k

p
ði;tlþ1Þ
k þ p

ði;tlÞ
k

�����
�����

so di
k now measures the average change in abundance of taxon k for

subject i in one unit of time (normalized to the average abundance

across each pair of measured time points). The paired and longitu-

dinal transformations are summarized in Supplementary Table S1.

Substituting these longitudinal di
k for the paired di

k in Section 2.1

yields longitudinal variants of the UniFrac metric that formally com-

pare volatility, or average magnitude of fluctuations, in the micro-

biome across time for each subject. We refer to these as the

LUniFrac dissimilarities. We caution that use of this transformation

with highly unbalanced designs may be unreliable, since similar

microbiome volatility may result in quite different di
k values if there

are substantially longer or shorter gaps between samples for differ-

ent subjects.

Table 1 summarizes the scientific questions and analysis

approaches that may be answered using these transformations and

associated dissimilarity metrics.

2.3 Non-phylogenetic distances and dissimilarities
The key difference between the PUniFrac or LUniFrac and standard

UniFrac dissimilarities is the transformation applied to the paired or

longitudinal data, as specified in the preceding sections and

Supplementary Table S1. These transformations may also be incorpo-

rated into non-phylogenetic distances such as Gower’s distance

(Gower, 1971), Bray-Curtis dissimilarity (Bray and Curtis, 1957),

Jaccard distance (Jaccard, 1912) and Kulczynski distance (Kulczy�nski,

1928). For the quantitative longitudinal versions of non-phylogenetic

dissimilarities, we do not normalize di
k to the overall taxon proportion,

since no weighting term exists to independently control the weight

placed on abundant taxa. Thus the unnormalized quantitative trans-

formation for paired data is defined as

di
kðt1; t2Þ ¼ p

ði;t2Þ
k � p

ði;t1Þ
k

and in the longitudinal case as

1

q� 1

Xq�1

i¼1

1

tlþ1 � tl

� �
p
ði;tlþ1Þ
k � p

ði;tlÞ
k

��� ���:

Using this definition, the quantitative versions of the non-

phylogenetic dissimilarities place relatively high weight on higher-

abundance taxa.

When using the paired or longitudinal transformations in a dis-

tance metric, some adjustments must be made to the definition of

the dissimilarity due to differences in behavior between the di
k and

the original proportions pi
k, namely, that di

k need not sum to one for

each individual and that paired di
k may be either positive or nega-

tive. Supplementary Table S2 summarizes the single time point,

paired and longitudinal variants of these four distances/dissimilar-

ities as well as the unweighted and generalized UniFrac metrics.

2.4 Data compositionality and normalization
To account for compositionality, the data may be transformed to a

space that is not compositionally constrained. Most commonly used

is the centered log-ratio transformation (CLR), defined by clrðpi
jÞ ¼

logðpi
j=gmðpiÞÞ where gm() indicates the geometric mean (Gloor and

Reid, 2016). CLR-transformed data have a singular covariance ma-

trix, which may be problematic for ordination or correlation-based

analysis. This may be avoided by employing an isometric log-ratio

transformation (ILR) instead, which uses a sequential binary parti-

tion to build an orthonormal basis that is interpretable in terms of

subparts of the composition (Egozcue et al., 2003); the partition

may also be based on phylogenetic information (Silverman et al.,

2017). Although ILR may be mathematically superior to CLR for

some ordination or correlation-based analyses (Filzmoser et al.,

2009), CLR is more interpretable and more widely used, and fea-

tures still correspond to biological taxa. We therefore use the CLR

transformation.

Both CLR and ILR require no zero components, whereas micro-

biome data often has a high proportion of zeros. A variety of meth-

ods exist to eliminate zeros (Weiss et al., 2017); we take the simplest

and most common approach, replacing zeros with a small pseudo-

count. We use the minimum rounding error of 0.5 to replace zero

counts, or 1e�6 to replace zero proportions.

Following CLR transformation, within-subject changes di
j repre-

sent the log of the ratio of fold-differences between the observed

abundance of taxon j and the geometric mean abundance for subject

i at each time. Similarly, differences between di
j, used in many of the

distance metrics, is a ratio (between subjects) of ratios of fold-

differences in taxon abundance.

2.5 Ordination analysis and testing
b-Diversity metrics have wide-ranging utility in microbiome data

analysis. Four main uses for measures of b-diversity are data visual-

ization, creation of low-dimensional representations of the micro-

biome for incorporation in downstream models, classification and

clustering and global hypothesis testing. Distances or dissimilarities

based on transformed paired or longitudinal data may be utilized in

any analysis where a b-diversity matrix is required.

In ordination analysis, high-dimensional data are mapped into a

low-dimensional space, often two or three dimensions, so that simi-

lar observations lie near each other in the low-dimensional space

Table 1. Summary of study designs, associated scientific questions and recommendations for how to apply these methods to answer the

specified questions

Question Approach

Is change/difference between paired samples (e.g. two time points per

subject or paired subjects) associated with a phenotype?

Paired transformations using any metric, or multiple metrics with omnibus

test for overall significance

In a balanced design, is change/difference between any pair of time points

associated with the phenotype?

Paired analysis for each pair of time points þ omnibus test for overall

significance

In a balanced or unbalanced design, is overall volatility (variability) of the

microbiome over time associated with the phenotype?

Longitudinal transformations using any metric, or multiple metrics with

omnibus test for overall significance
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and dissimilar observations lie far from each other. Several well-

known ordination methods are principal components analysis

(PCA), non-metric multidimensional scaling (NMDS) and principal

coordinates analysis (PCoA), also known as multidimensional scal-

ing (MDS). Once the data are represented in low-dimensional space,

observations may be plotted along these axes to visualize dissimilar-

ity in the microbiome across several groups (Erb-Downward et al.,

2011; Yatsunenko et al., 2012). The low-dimensional representation

may also be included as a covariate or outcome measure in further

analyses (Muegge et al., 2011; Qin et al., 2012).

For classification and clustering, the goal is again to explore rela-

tionships among samples, in this case by linking progressively more

closely related samples. Clustering algorithms include hierarchical clus-

tering, in which similarity between observations may be represented on

a dendrogram, and discrete clustering methods such as K-means clus-

tering or partitioning around medoids (PAM), which result in unstruc-

tured subgroups of samples. These types of methods have been used,

for example, in relation to the idea of distinct ‘enterotypes’ in the gut

microbiome (Arumugam et al., 2011; Koren et al., 2013). Although re-

cently enterotypes have been increasingly viewed along a gradient ra-

ther than as discrete categories (Jeffery et al., 2012; Knights et al.,

2014), discrete categorization remains a useful descriptive tool.

Finally, global hypothesis testing may be carried out by testing

whether b-diversity differs across values of the outcome of interest.

The category of distance-based multivariate analysis includes,

among others, permutation-based methods such as PERMANOVA

(Anderson, 2001) and kernel machine regression-based association

tests (Chen and Li, 2013; Plantinga et al., 2017; Wu et al., 2016;

Zhan et al., 2017; Zhao et al., 2015). All of these formally test

whether individuals with more similar outcomes also tend to have

more similar microbiomes (as measured by b-diversity).

Because all of these classes of analysis rely on a measure of b-di-

versity, distances based on paired and longitudinal transformations

of microbiome profiles provide a straightforward means of extend-

ing each of these analyses to explore change in the microbiome

across time.

3 Results

This section begins by presenting empirical size and power results.

The pldist transformations and dissimilarities are then applied in a

dataset examining the association between the gut microbiome and

GVHD and one exploring the variability of the gut microbiome with

antibiotic use.

3.1 Simulation studies
Simulations were performed to verify that use of paired and longitu-

dinal dissimilarities preserves type 1 error control in existing kernel

machine regression (KMR)-based global association tests and com-

pare the power of tests based on phylogenetic or non-phylogenetic

and quantitative or qualitative dissimilarities across association set-

tings. All simulations were performed with both the normalized

proportion-based di
j and the normalized di

j following CLR

transformation.

3.1.1 Simulation methods

OTU counts for the first time point were simulated from a Dirichlet-

multinomial distribution with parameters estimated from real

respiratory-tract data (Charlson et al., 2010), as previously

described (Plantinga et al., 2017; Zhao et al., 2015). The dataset

includes 856 OTUs, for which we generated 1000 reads per sample.

The subsequent time point(s) for each subject were generated by per-

turbation of the OTU counts from the previous time point.

Specifically, the probability of an exact zero in each simulated data-

set was generated as 1� Betað3; 30Þ, yielding probability of exact

zeros centered around about 8.2% with IQR of approximately 5%

to 12%. Non-zero weights were generated as expðNð0; s
ffiffiffi
2
p
ÞÞ where

s � Betað20; 20Þ so that the nonzero weights ranged from 0 to ap-

proximately 40 with median 0.9 and IQR approximately 0.5 to 1.5.

Zero counts can never change to nonzero counts based on this per-

turbation scheme; allowing taxon acquisition would improve power

of the unweighted paired or longitudinal metrics, but it does not af-

fect type 1 error and is unlikely to substantially impact the perform-

ance of the quantitative metrics. Two time points were generated for

paired data and four for longitudinal data.

Quantitative, dichotomous and time-to-event outcomes were simu-

lated using changes in OTU presence or abundance. OTUs were assigned

to each of 20 clusters using the Partitioning Around Medoids (PAM) al-

gorithm. A moderately common cluster (7.8% of reads) and a rare clus-

ter (1.7% of reads) were selected to be associated with the outcome. In

non-phylogenetic simulations, either the ten most common OTUs or 60

randomly selected OTUs were associated with the outcome.

Continuous outcomes were simulated as in Zhao et al. (2015)

under the model

y ¼ 0:5X1i þ 0:5X2i þ b scale
X
j2A

di
j

� �
þ �i

where �i � Nð0; 1Þ and di
j is the normalized change in taxon

presence (di
j defined as for unweighted LUniFrac) or proportion

(di
j defined as for generalized LUniFrac). The active set, A, denotes

the set of OTUs in the associated cluster. X1i � Nð0; 1Þ and X2i �
Bernoullið0:5Þ are time-invariant covariates, and the scale() function

standardizes the total changes in OTU abundance in the associated

cluster to have mean 0 and variance 1. Similarly, binary outcomes

were simulated under the model

logit
�

EðyijXi;ZiÞ
�
¼ 0:5X1i þ 0:5X2i þ b scale

X
j2A

di
j

� �

Finally, as in Plantinga et al. (2017), survival times were simu-

lated via

Ti ¼
�logðUiÞ

exp
�

0:5X1i þ 0:5X2i þ b scaleð
P

j2A di
jÞ
�

where Ui � Uniformð0;1Þ, and censoring times were generated inde-

pendently from the microbiome to yield approximately 25% censor-

ing. For type 1 error simulations, we set b¼0.

3.1.2 Size and power of KMR-Based tests

We first verify that the KMR-based tests for longitudinal, dichotom-

ous and time-to-event outcomes have appropriate size using kernels

computed from pldist dissimilarities (Koh et al., 2018; Plantinga

et al., 2017; Zhao et al., 2015). Based on analysis using the R pack-

ages MiRKAT and OMiSA with pldist dissimilarities, when no true

association exists, type 1 error is indeed controlled at or near the

nominal level of a ¼ 0:05 (Table 2 and Supplementary Tables S5

and S6).

Power results for continuous outcomes are presented in Figure 2;

results for binary and time-to-event outcomes are similar

(Supplementary Figs S2–S7). The paired Jaccard index was chosen

as a representative non-phylogenetic dissimilarity because the

Jaccard index is fairly commonly used, but the results using other
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non-phylogenetic methods are generally similar to those using the

Jaccard index. Supplementary Figures S8 and S9 compare the non-

phylogenetic metrics in two simulation scenarios.

When the change in presence or absence of OTUs in a low-

abundance phylogenetic cluster is associated with the outcome

(Panel A), the unweighted PUniFrac kernel, which is based on

changes in taxon presence or absence and incorporates phylogenetic

information, has highest power. When 60 random OTUs are chosen

to be associated with the outcome, many of them will be rare, since

most OTUs are low-abundance. The binary paired Jaccard kernel,

which is based on changes in taxon presence or absence, and CLR-

transformed Jaccard kernel have highest power to detect associa-

tions between changes in presence of these randomly selected OTUs

and the outcome (Panel B).

When the change in abundance of OTUs in a moderately com-

mon phylogenetic cluster is associated with the outcome (Panel C),

the CLR-transformed Jaccard kernel interestingly has high power

again, as does the generalized PUniFrac kernel (c ¼ 0:5), which

incorporates both phylogenetic structure and magnitude of abund-

nace changes. When changes in the abundance of the ten most com-

mon OTUs are associated with the outcome, phylogenetic structure

does not improve power, since the associated taxa are not necessar-

ily phylogenetically related. The quantitative paired Jaccard kernel,

which has no phylogenetic component but is calculated using

changes in taxon abundance, has highest power to detect associa-

tions in this case (Panel D).

For both CLR-transformed abundance of a common phylogenet-

ic cluster (Panel E) and common but unclustered taxa (Panel F), the

CLR-transformed Jaccard kernel again has highest power, demon-

strating that it is a useful metric across a wide range of settings.

Therefore, as previously noted for each kernel machine

regression-based test at single time points (Plantinga et al., 2017;

Zhao et al., 2015), the power is generally highest when the selected

kernel best matches the true form of the association between

(changes in) the microbiome and the outcome, although the CLR-

transformed Jaccard kernel performs well in most situations. In all

settings, the omnibus test has power close to that of the best-

performing kernel. The omnibus test therefore provides an attractive

alternative to choosing a single kernel, since in most real-data set-

tings, the true form of the association between the longitudinal

microbiome and the outcome is not known in advance.

3.2 Gut microbiome and GVHD
Acute graft-versus-host disease (aGVHD) occurs in 30–70% of allo-

geneic blood or bone marrow transplant patients and is a leading

cause of death following transplant. Current approaches to treat-

ment and prevention are only moderately effective (Ferrara et al.,

2009; Jagasia et al., 2015). There is evidence that the gut micro-

biome is involved in the immune response to transplant with or

without concomitant antibiotic treatment regimens (Holler et al.,

2014; Mathewson and Reddy, 2015; Vossen et al., 2014), but this

relationship is not well understood. Therefore, Jenq et al. (2015) re-

cently studied the association of diversity of the gut microbiome and

abundance of the genus Blautia with time to severe aGVHD,

aGVHD-related mortality and overall mortality.

The data were processed as described in Plantinga et al. (2017).

We excluded any samples with fewer than 500 reads. To assess the

sensitivity of this analysis to read depth variability, we also consid-

ered excluding samples with fewer than 1000 reads and rarefying to

500 or 1000 reads; results for all of the sensitivity analyses were

similar to the primary results. We considered three analyses. For the

first analysis, with paired data, we included the last sample taken

pre-transplant as our first time point for each subject (range: 1–

14 days pre-transplant) and the sample collected closest to day 12

post-transplant, but at most 4 days away, as our second time point

(range: 8–16 days post-transplant). These time points represent

points of scientific interest; in particular, we are interested in

Table 2. Empirical size for each outcome type using PUniFrac dis-

similarities (unweighted, KU; generalized with c ¼ 0:5; K0:5;

weighted, KW), the quantitative (KJQ) and qualitative (KJB) paired

Jaccard dissimilarities, and the omnibus test for all proposed dis-

similarities (Komni), based on 2000 simulations with n¼ 50, 100 or

200 and nominal level a ¼ 0:05

Outcome type n KU K0:5 KW KJQ KJB Komni

Continuous 50 0.052 0.050 0.043 0.046 0.050 0.048

100 0.052 0.054 0.051 0.046 0.042 0.050

200 0.054 0.052 0.051 0.042 0.051 0.049

Binary 50 0.042 0.045 0.049 0.036 0.043 0.045

100 0.050 0.043 0.046 0.042 0.044 0.045

200 0.051 0.052 0.054 0.049 0.045 0.052

Time-to-Event 50 0.054 0.048 0.051 0.054 0.050 0.051

100 0.047 0.052 0.047 0.050 0.044 0.047

200 0.057 0.051 0.047 0.053 0.055 0.048

A B

C D

E F

Fig. 2. Empirical power based on 1000 simulated datasets with n¼ 100, two

time points and continuous outcomes. Komni is the omnibus test, K1 and K0:5

are generalized PUniFrac with c ¼ 1 or 0.5, KU is unweighted PUniFrac, KJQ is

the quantitative paired Jaccard kernel, KJB is the qualitative paired Jaccard

kernel, and KJC is the Jaccard kernel using CLR-transformed proportions. The

continuous outcome is associated with: (A) Change in presence of a rare clus-

ter. (B) Change in presence of 60 randomly selected taxa. (C) Change in abun-

dance of a moderately common cluster. (D) Change in abundance of the 10

most abundant taxa. (E) Change in CLR-transformed abundance of a moder-

ately common cluster. (F) Change in CLR-transformed abundance of the 10

most abundant taxa
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changes between the pre- and post-transplant microbiome, and

aGVHD often occurs around 2–3 weeks post-transplant, so observa-

tions near Day 12 are close to when aGVHD may begin to occur.

Subjects missing a pre-transplant sample were excluded, leaving 85

subjects total. For the second analysis, we included up to 6 observa-

tions per subject, randomly selecting 6 observations for subjects

with more than 6 samples. Finally, for comparison, we analyzed the

data at only the time point within four days of day 12 post-

transplant (using the same set of subjects as in the first two analy-

ses). All analyses were adjusted for age and sex by including them as

covariates in the kernel machine regression (Plantinga et al., 2017).

All quantitative kernels are based on CLR-transformed data to

account for compositionality. For CLR-transformed single

time point analysis, we calculated the Jaccard dissimilarity on

CLR-transformed data with a constant added so that all values were

positive, and the UniFrac distances using a method analagous to

CLR-transformed LUniFrac.

Using MiRKAT-S along with the omnibus test to evaluate the as-

sociation between the microbiome and adverse outcomes after allo-

geneic transplant, we find strong evidence for an association

between changes in the gut microbiome and overall survival only in

the post-transplant microbiome, although the association using the

longitudinal distances without CLR transformation is also marginal-

ly significant (Table 3). The compositive adverse event (grade 2

aGVHD) is the only outcome significantly associated with the paired

kernels using CLR-transformed data. For the longitudinal kernels,

no significant associations were found using CLR-transformed data,

but variability in relative abundances is associated with overall sur-

vival and the composite adverse event with grade 3 aGVHD. Based

on these results, it appears that both changes in the microbiome

(pre- versus post-transplant) and the post-transplant microbiome

alone are associated with survival and grade 2 or grade 3 composite

events (aGVHD, death or relapse), but the state of the post-

transplant microbiome is most important for that association.

3.3 Antibiotics and gut microbiome variability
To understand the temporal variability of the human microbiome,

Flores et al. (2014) sampled microbial communities at several body

sites weekly for three months in 85 college-age adults. The study

population was predominantly Caucasian individuals in a healthy

range of BMI values. We have between 7 and 10 samples for each of

75 individuals.

In this analysis, we consider the temporal variability of the gut

(fecal) microbiome and its association with antibiotic usage.

We consider variability in relative abundance and hence use non-

CLR-transformed distances for this analysis. In the original study,

although the largest shifts in the microbiome occurred soon after

oral antibiotic usage at an individual level, no overall association be-

tween temporal variability (measured by median intra-individual

UniFrac values) and antibiotic usage during the study period was

found.

We examine the association between the non-phylogenetic longi-

tudinal dissimilarities from pldist and an indicator that the individ-

ual ever used oral antibiotics during the study period using

MiRKAT. To account for the effect of potentially different sampling

intervals between subjects, we adjust for total number of samples

along with sex as covariates in the kernel machine regression model.

The longitudinal transformation essentially summarizes average

change in each taxon (presence or abundance) per week, so that glo-

bal tests assess whether variability in relative abundances (average

weekly change) differs between subjects who did and did not take

antibiotics.

We find borderline evidence of a global association between gut

microbiome variability and antibiotic use during the study period

(Table 4). The P-values are lower for each qualitative dissimilarity

than the corresponding quantitative version, indicating that change

in which taxa are present across the study period is driving this asso-

ciation. That is, we see different amounts of variability in commu-

nity membership (taxon presence) among subjects who take

antibiotics compared to those who do not, adjusting for sex and the

number of samples per subject. Hence in this case, the longitudinal

analysis can formalize suspected associations and clarify whether

variability in presence or abundance is driving the association with

antibiotic use.

4 Discussion

We have developed pldist, a family of data transformations and

resulting ecological dissimilarities for paired or longitudinal micro-

biome data. Each of these dissimilarities compares changes in OTU

presence, relative abundance or CLR-transformed relative abun-

dance across time between different individuals. They may be used

in any existing distance-based analyses, including testing in the ker-

nel machine regression framework, PERMANOVA, ordination

methods such as PCoA, and other distance-based global microbiome

analyses. The family of transformations provides high power to de-

tect associations between changes in the microbiome and clinical,

biological or environmental outcomes.

Unequal sampling depth is a common concern for microbiome

analysis. Rare taxa may be observed or missed in different commun-

ities due simply to the fact that one community had a higher overall

read count than another. This matters especially for qualitative (i.e.

dichotomized) transformations. If great variation in read counts

exists, either rarefaction or an approach specifically targeted to-

wards estimating sampling versus structural zeros is recommended

prior to using qualitative transformations.

Table 3. Omnibus P-values from MiRKAT-S based on P/LUniFrac

kernels (unweighted and c ¼ 0:5 or 1) and binary or quantitative

Jaccard kernels

Analysis CLR OS Adv (gr. 2) Adv (gr. 3)

Post-transplant No 0.007 0.018 0.012

Yes 0.003 0.019 0.027

Paired No 0.183 0.041 0.057

Yes 0.061 0.004 0.091

Longitudinal No 0.035 0.069 0.028

Yes 0.226 0.326 0.538

Note: CLR indicates whether quantitative kernels used the CLR transform-

ation. OS denotes overall survival. Adv (gr. X) denotes the composite out-

come of relapse, aGVHD of the specified grade or death from any cause.

Analyses were adjusted for age and sex.

Table 4. Association between variability of microbiome and anti-

biotic use

Bray-Curtis Gower Jaccard Kulczynski Omnibus

Qualitative 0.060 0.086 0.015 0.012 0.047

Quantitative 0.875 0.116 0.371 0.343

Note: P-values are from MiRKAT using quantitative and qualitative Bray-

Curtis, Gower, Jaccard and Kulczynski kernels, adjusting for sex and number

of observed time points.
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Compositionality, or the fact that relative abundances for each

subject must sum to one, is an important consideration for micro-

biome analyses based upon relative abundances. In the context of

longitudinal data, an important concern is that changes in the abun-

dance of a single taxon can induce spurious changes in the relative

abundance of many or all taxa. Therefore, changes in relative abun-

dance are generally unable to provide evidence for association be-

tween one taxon and an outcome without specialized methods or

transformations; absolute abundances from qPCR would be needed.

Because the goal of distance-based analysis is testing whether

higher overall dissimilarity between microbiomes is associated

with greater dissimilarity in outcomes, it matters somewhat less

for distance-based analysis whether the observed changes in rela-

tive abundance are due to a large change in the absolute abun-

dance of one taxon or smaller changes in many taxa. However, it

remains important to account for data compositionality if results

are to be understood on any scale except relative abundances

Gloor et al. (2017). We use the CLR transformation for this pur-

pose. Our simulation results and data analyses show that, although

distance matrices are similar with and without CLR transform-

ation, results may differ depending on whether or not the trans-

formation is used. This choice should be based upon scientific

interest in differences in relative abundances or log-ratios of

abundances.

As in generalized UniFrac and other families of distances, the

power of tests based on the proposed dissimilarities depends on the

true form of the association between changes in the microbiome and

the outcome. Omnibus tests, available for most microbiome kernel

methods, allow multiple kernels to be considered simultaneously

with minimal loss of power compared to the best individual kernel.

Hence the use of multiple dissimilarities with an omnibus test is rec-

ommended for most applications of these methods. Because they can

be used in existing testing frameworks, tests based on the pldist dis-

similarities can be very fast, adjust for relevant covariates, and ac-

commodate a variety of outcome types.
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