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Abstract

Motivation: Drug repurposing is a potential alternative to the classical drug discovery pipeline.

Repurposing involves finding novel indications for already approved drugs. In this work, we pre-

sent a novel machine learning-based method for drug repurposing. This method explores the

anti-similarity between drugs and a disease to uncover new uses for the drugs. More specifically,

our proposed method takes into account three sources of information: (i) large-scale gene expres-

sion profiles corresponding to human cell lines treated with small molecules, (ii) gene expression

profile of a human disease and (iii) the known relationship between Food and Drug Administration

(FDA)-approved drugs and diseases. Using these data, our proposed method learns a similarity

metric through a supervised machine learning-based algorithm such that a disease and its associ-

ated FDA-approved drugs have smaller distance than the other disease-drug pairs.

Results: We validated our framework by showing that the proposed method incorporating distance

metric learning technique can retrieve FDA-approved drugs for their approved indications. Once

validated, we used our approach to identify a few strong candidates for repurposing.

Availability and implementation: The R scripts are available on demand from the authors.

Contact: Sorin@wayne.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The traditional drug discovery process is extremely slow and costly.

Developing a new drug takes �10–17 years and requires anything

between $500 million and $2 billion, depending on the drug and

pharmaceutical company (Adams and Brantner, 2006; Dickson and

Gagnon, 2009; DiMasi et al., 2003). In spite of unprecedented

investments in research and development, the number of new Food

and Drug Administration (FDA)-approved drugs remains low,

reflecting the limitations of the current research and development

model (Munos, 2009). In this context, the identification of novel dis-

ease indications for approved drugs, known as drug repositioning

(or repurposing), is a very effective way to increase the therapeutic

arsenal at a very reduced cost (Ashburn and Thor, 2004). In fact,

some authors believe that repurposing should be ‘the primary

strategy in drug discovery for every broadly focused, research-based

pharmaceutical company’ (Tobinick, 2009). Approximately 90% of

drug leads fail to move beyond early development and toxicity test-

ing, and many of the few drugs that make it to clinical trials fail be-

cause of side-effects or adverse events. Finding new disease

indications for existing drugs sidesteps all these issues and can there-

fore increase the available therapeutic choices at a fraction of the

cost of new drug development. Some of the examples of successful

repurposed drugs are sildenafil citrate, repurposed from angina to

erectile dysfunction; thalidomide, repurposed from morning sickness

to multiple myeloma (Novac, 2013) and phenytoin, repurposed

from seizures to bipolar disorder (Mariotti et al., 2010).

A number of computational approaches for drug repurposing

have been developed (Lotfi Shahreza et al., 2017). Based on
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available clinical knowledge such as drug chemical or pharmaceut-

ical information, disease biomarkers, target pathways or symptom-

atology information, these methods can be roughly divided into: (i)

drug-based methods, and (ii) disease-based methods (Dudley et al.,

2011). In the following, we review some methods from each of the

two categories, as well as methods that incorporate knowledge from

both categories.

Keiser et al. (2009) proposed a method that predicts several off-

target interactions based on the fact that the chemical structure

influences the therapeutic effect of a drug. This method calculates a

similarity score for each drug–target pair using Similarity Ensemble

Approach (Keiser et al., 2007). A new target is proposed for a drug

based on this similarity score.

A number of methods have been proposed for drug–target inter-

action (DTI) prediction based on personal recommendation algo-

rithms were recently reviewed in Alaimo et al. (2016). Cheng et al.

(2012) proposed a network-based inference method based on per-

sonal recommendation algorithms for DTI prediction. In order to

construct the drug–target bipartite network, this method calculates

a drug–target similarity score based on the drug–drug structural

similarity and target–target genomic sequence similarity. Alaimo

et al. (2013) introduced a new model called domain tuned-hybrid

for DTI prediction. This method extends the network-based infer-

ence algorithm by adding drug–target domain knowledge into the

framework. Chen et al. (2015) also proposed two methods called

ProbS and HeatS to predict direct drug–disease associations based

on the personal recommendation algorithms.

Several methods have been proposed based on the idea that if a

drug-exposure gene expression profile inversely correlates with a

disease gene expression profile, the drug may have a therapeutic

effect on the disease (Lamb et al., 2006; Sirota et al., 2011). These

methods support the systematic identification of new indications for

already approved drugs (Iorio et al., 2013). The Connectivity Map

(CMap) project is one of the first systematic approaches that aims to

compare gene expression profiles across experimental conditions

(Lamb et al., 2006). CMap has been used to identify cimetidine, an

anti-ulcer drug, as potentially efficacious in lung adenocarcinoma,

efficacy which was subsequently demonstrated (Sirota et al., 2011).

Iorio et al. (2010) proposed a method to find drug similarities.

This method constructs a drug–drug network based on consensus

response pair-wise similarity. This similarity score is a novel

rank-based metric inherited from GSEA (Subramanian et al., 2005).

A recent method proposed by Vargas et al. (2018), identified a num-

ber of master regulators of Alzheimer disease based on the gene ex-

pression data of human hippocampus and transcription regulatory

network analysis. Using these master regulators and CMap method

(Lamb et al., 2006), six FDA-approved drugs with potential thera-

peutic effect on the Alzheimer disease were identified. Suthram et al.

(2010) introduced a method to find disease similarities by incorpo-

rating gene expression microarray data and protein–protein inter-

action network. This method constructs a disease–disease network

based on the functional module activity shared between diseases.

The hypothesis is that if two diseases share a common molecular

pathology, then the drug used for treating one of them can also be

used for treating the other one. Langhauser et al. (2018) proposed a

drug repurposing method based on this hypothesis. In particular,

they first constructed a disease–disease network in which the dis-

eases are connected to each other based on the number of shared

genes, existing physical protein interactions between them, symptom

similarity and co-morbidities information. This constructed network

revealed number of novel clusters of heterogeneous diseases with

common mechanisms. The authors experimentally validated the

therapeutic effect of soluble guanylate cyclase, used as a smooth

muscle relaxation, on the neurological diseases.

Sun et al. (2017) introduced a new method incorporating the

drug, disease and gene information obtained from GenBank (Benson

et al., 2002), drugBank (Law et al., 2014) and OMIM (Hamosh

et al., 2005) databases. Using these sources of information, they cre-

ated a network of diseases, drugs and genes. In this network, a drug

and a gene are connected if the drug targets one of the gene’s associ-

ated proteins. A gene is connected to its associated disease and a dis-

ease is connected to its approved drugs. Then, they investigated the

novel disease–drug pairs based on this constructed network. Finally,

they employed literature mining techniques in order to find scientific

articles supporting these novel disease–drug associations. The anti-

tubercular effect of the anti-psychotic drug, chlorpromazine, is one

of their promising finding.

A novel method proposed by Ghofrani et al. (2006) based on the

hypothesis that if a given treatment has a side effect that remedies a

given condition, then the drug may be repurposed for the latter con-

dition. As a well-known example, sildenafil citrate was repurposed

from angina to erectile dysfunction, when systematic erections were

noted in angina patients treated with this drug.

This work describes a machine learning-based method for drug

repurposing. This method is based on disease gene expression profiles,

large-scale drug-exposure gene expression profiles and the clinical

established knowledge between them. Based on these sources of infor-

mation, our proposed method ranks the drugs that are effective for a

given disease by incorporating a distance metric learning (DML) algo-

rithm in which the given disease and its FDA-approved drugs have

smaller distances compare to the other disease–drug pairs.

2 Materials and methods

2.1 Disease and drug gene expression data
Disease gene expression microarray data are obtained from NCBI

Gene Expression Omnibus (GEO) (Edgar et al., 2002). The pre-

processing procedure we use includes log2 transformation and

quantile normalization (Irizarry et al., 2003).

The drug data come from two different sources: CMap (Lamb

et al., 2006) for breast cancer and rheumatoid arthritis (RA) and

National Institutes of Health’s Library of Integrated Network-based

Cellular Signatures (http://www.lincsproject.org/) for

idiopathic pulmonary fibrosis (IPF). We use two different data sour-

ces in order to show the method is reliable and works independently

of the source of the drug data. The pre-processing steps for drug

gene expression data are included in the Supplementary Materials.

2.2 Framework overview
The main idea of this work is to represent a disease gene expression

profile and large-scale drug gene expression profiles in a common

space where the specific disease and its FDA-approved drugs are

mapped closer to each other compared to the other disease–drug

pairs. Figure 1 shows the pipeline of the framework. The first step of

the framework is to represent drugs and diseases in a meaningful

common space.

Let C ¼ fxdisease; xdrug1
;xdrug2

; . . . ;xdrugm
g be a collection of gene

expression profiles, where m is the number of drugs in this collec-

tion. Each xi 2 IRn is a vector representing a gene expression profile,

and n is the number of features of this vector, which represents

genes. The input matrix we use subsequently is a combination of the

reversed measurements of the genes in the disease profile and the

measurements of the same genes in each of the drug profiles. The
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intuition behind using gene expression representation of drugs and

diseases is directly influenced by the rationale behind the CMap

method (Lamb et al., 2006). With drug and disease activity repre-

sented through their gene expression profiles, it is possible to use a

distance measure in this space as a measure of anti-similarity or

effectiveness.

The second step of our framework is the incorporation of exist-

ing knowledge. This knowledge can be found in the extensive clinic-

al studies about diseases and FDA-approved drugs. These studies

have been conducted over several years (costing millions of dollars)

and reveal important relationships between certain disease–drug

pairs, including drug effectiveness. Our method capitalizes on this

kind of information by incorporating it through metric learning

algorithms. These algorithms are a class of machine learning-based

methods that keep all pairs of ‘similar’ points close, while separating

all ‘dissimilar’ pairs, where similarity and dissimilarity can be

custom-defined. Here, we use these algorithms to find a suitable dis-

tance measure in the gene expression representation space such that

the disease–drug pairs that have been clinically proved to be relevant

get closer to each other. More specifically, we use the Mahalanobis

distance, a distance between two N-dimensional points, that is

scaled by the statistical variation in each component of the point

(Dr�aghici, 2011; Mahalanobis, 1936). The Mahalanobis distance

between two points ~xdisease and~xdrug is given by:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~xdisease �~xdrugÞ0M�1ð~xdisease �~xdrugÞ

q

where M is a covariance matrix that captures the properties of the

multi-dimensional disease–drug space. M is learned such that

disease–drug pairs clinically proved to be relevant get close to each

other. In order to learn the matrix M, we use the DML method

(Xing et al., 2002). This method is based on posing metric learning

as a convex optimization problem. This requires reducing the

dimension of the gene expression representation because DML algo-

rithms are not applicable in high dimension problems due to high

computational complexity (Torresani and Lee, 2006). For this pur-

pose, we use two different methods: Principal Component Analysis

(PCA) (Jolliffe, 2002) and Locally Linear Embedding (LLE) (Roweis

and Saul, 2000). The details of LLE are included in the

Supplementary Materials.

In this step, we transform the input matrix into a lower dimen-

sionality matrix by applying LLE (Roweis and Saul, 2000), and then

perform a transformation of the data using DML algorithm. As the

final step, the Euclidean distance between the disease gene expres-

sion profile and each of the drug-exposure expression profiles is

calculated. We then rank the list of the drugs from nearest one to

the disease gene expression profile to the farthest one, based on the

computed Euclidean distance. We repeat this procedure k times

(where k is the number of FDA-approved drugs for the disease),

each time using one of the FDA-approved drugs for the disease for

the validation and using the rest of them for training the DML algo-

rithm. This is known as the leave-one-out method. For each drug, an

average of ranks is calculated over the k rounds of sampling. The

proposed drugs are the ones with the lower average rank.

In summary, our proposed framework includes the following

steps: (i) we construct the gene expression profiles for each drug and

disease; (ii) we incorporate the known relationship between disease

and its FDA-approved drugs into this space using DML; under this

new space and new metric, the clinically relevant drugs and disease

get close to each other; (iii) for each disease, we then retrieve its clos-

est drugs, based on the new learned metric. In particular, let C ¼
fdrug1; drug2;drug3; . . . ;drugkg be a collection of FDA-approved

drugs for the disease x. In each round of leave-one-out cross valid-

ation, we use one of the drugs from this list (called left-out drug) for

the validation and we use the rest for training the DML algorithm.

We then rank the list of drugs from the nearest one to the disease

Fig. 1. Framework overview. (A) We transform the input matrix into a lower dimensionality matrix by applying LLE (Roweis and Saul, 2000). (B) We incorporate

the known relationship between disease and its FDA-approved drugs into this space using DML algorithm. Our hypothesis is that under this new space and the

new metric, the clinically relevant drugs get close to the disease. We use the leave-one-out cross validation. In particular, in each round of sampling, we use one

of the FDA-approved drugs for the disease (called left-out drug) for validation and we use the rest of them for training the DML algorithm. We then rank the list of

drugs from the nearest one to the disease gene expression profile to the farthest one, based on the new learned metric. We repeat this procedure k times (where

k is the number of FDA-approved drugs for the disease). (C) For each drug, an average of ranks is calculated over the k rounds of sampling. The proposed drugs

are the ones with the lower average rank. In this figure, the red point represents the disease, the blue point represents the left-out drug and the green point repre-

sents the FDA-approved drug for the disease used for training the DML algorithm
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gene expression profile to the farthest one, based on the new learned

metric. We repeat this procedure k times (where k is the number of

FDA-approved drugs for the disease x). Finally, for each drug, an

average of ranks is calculated over the k rounds of sampling. The

proposed drugs are the ones with the lower average rank. The

Normalized Discounted Cumulative Gain (NDCG) and the area

under the curve (AUC) metrics that we use to assess the performance

of a method are now calculated based on the rank of the left-out

drug in each round of sampling. The reported NDCG and AUC val-

ues for each method are the average value of these metrics over the k

rounds of sampling.

2.3 Evaluation
We evaluate the quality of the ranking obtained from each method

using two different metrics. First, we use the NDCG metric (Järvelin

and Kekäläinen, 2002) to compare the quality of the ranking

obtained from each method. This score shows how close a particular

ranking is to the ideal ranking. For our purposes, in each round of

leave-one-out cross validation, the ideal ranking is the one where the

left-out drug is at the top of the ranked list. The reported NDCG

value for each method is the average of this metric over all rounds.

The details of this metric are included in the Supplementary

Materials. We also use the AUC of the receiver-operator characteris-

tic as an alternative assessment of how well the various methods

perform in terms of placing the FDA-approved drug for a disease at

the top of their ranked list. The reported AUC for each method is

the average of this score over all the rounds.

2.4 Assessment
The assessment and comparison of the proposed methods with the

existing approaches is based on the statistical power the ability to

find FDA-approved drugs for a given disease at the top of the ranked

list of drugs, as well as the ability to provide a meaningful ranking

of drugs (drugs at the top of the ranked list are most likely to be clin-

ically related to the given disease). We compare the following alter-

native approaches:

1. Incorporating gene expression data and calculating drug–disease

score (Sirota et al., 2011) for each disease–drug pair.

2. Incorporating gene expression data and calculating anti-

correlation for each disease–drug pair.

3. Incorporating gene expression data, PCA and calculating

Euclidean distance for each disease–drug pair (PCA-ED).

4. Incorporating gene expression data, LLE and calculating

Euclidean distance for each disease–drug pair (LLE-ED).

5. Incorporating gene expression data and calculating Euclidean

distance for each disease–drug pair.

6. Incorporating gene expression data, clinical studies, PCA, DML

and calculating Euclidean distance for each disease–drug pair

(PCA-DML).

7. Incorporating gene expression data, clinical studies, LLE, DML

and calculating Euclidean distance for each disease–drug pair

(LLE-DML).

The first method is proposed by Sirota et al. (2011). The second

method is based on the simple but intuitive idea that a drug would

be effective if it counteract the effect of the disease on every single

differentially expressed genes (simple anti-correlation of gene and

drug expression profiles). The methods 3–7 above are proposed in

this manuscript. The novel methods (items 3–7 above) and the anti-

correlation method (item 2) are implemented in R. Items 6–7 are

implemented using R package dml v1.1.0 (Tang et al., 2015). The

method proposed in Sirota et al. (2011) (item 1) is also available in

the same programing language by using the R package

DrugVsDisease v2.8.0 (Pacini, 2013).

3 Results/discussion

We use three different diseases (breast cancer, IPF and RA) in order

to illustrate the capabilities of our proposed methods. As it shown in

Table 1 and Figure 2, the proposed LLE-DML method performs bet-

ter in terms of placing the FDA-approved drugs for their approved

indications at the top of their ranked list.

The detailed results of breast cancer, IPF and RA are shown in

separate sections. Among the top ranked drugs, we only chose the

FDA-approved ones for further evaluation of their potential therapeutic

effect on a given disease. The reason is that off-label use of an FDA-

approved drug carry less risk compared to those experimental small

molecules that are not yet FDA-approved (Libermann, 2012). We com-

pare the proposed drug repurposing methods with other existing meth-

ods by comparing the rankings of FDA-approved drugs, as well as the

rankings of other alternative drugs proposed elsewhere in the literature.

3.1 Breast cancer
The first breast cancer dataset is the result of comparing gene ex-

pression levels between stroma surrounding invasive breast primary

tumors (n ¼ 6) and matched samples of normal stroma (n ¼ 6) using

Affymetrix Human Genome U133 Plus2.0 Array. This dataset is

available in GEO (ID: GSE26910) (Planche et al., 2011). The second

disease dataset compares four breast cancer samples with two

healthy samples using Affymetrix Human Genome U133A Array.

This dataset is available via GEO (ID: GSE1299) (Mecham et al.,

2004). The third dataset is a RNA-Seq data for breast cancer

obtained from the Cancer Genome Atlas (TCGA) research network

(The Cancer Genome Atlas Research Network, 2012).

The top 10 drugs for breast cancer as identified by each method for

the datasets GSE26910, GSE1299 and TCGA-BRCA are included in

the Supplementary Materials. Among the top ranked drugs, we chose

daunorubicin, ambroxol and ciclopirox that have lower average rank

across all the breast cancer datasets for further evaluations.

Daunorubicin is one of the drug candidates proposed by our method

for treating breast cancer. This drug is an anthracycline used in treat-

ment of leukemia. The anthracyclines are the inhibitors of Human

DNA topoisomerase II-alpha. Clinical studies proved that Human

DNA topoisomerase II-alpha is a marker of cell proliferation in breast

cancer (Lynch et al., 1997). Based on this evidence, Daunorubicin

which inhibits Human DNA topoisomerase II-alpha may have a poten-

tial therapeutic effect on breast cancer. This hypothesis is under phase I

clinical study evaluating the effectiveness of Daunorubicin in treating

breast cancer patients (ClinicalTrials.gov identifier: NCT00004207).

The other proposed drug is ambroxol. This drug is an inhibitor of

protein Cytochrome P450 3A4 which is used in the treatment of respira-

tory diseases. The potential therapeutic role of protein Cytochrome P450

3A4 in breast carcinogenesis has been already proved (Modugno et al.,

2003). redundant.

Ciclopirox is also one of the top rank drugs proposed by our

method for treating breast cancer. This drug is an antifungal medica-

tion that is able to inhibit the cell proliferation in breast cancer

(Zhou et al., 2010).

3.2 IPF
We analyze four gene expression profiles studying IPF disease. The

first such dataset analyzed the whole lung explant from advanced
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IPF patients using Affymetrix Human Genome U133 Plus 2.0 Array.

This dataset is available from GEO (ID: GSE24206) (Meltzer et al.,

2011). The second disease dataset is the result of comparing gene ex-

pression levels between lung tissue samples from 40 IPF patients and

8 healthy controls using Agilent-014850 Whole Human Genome

Microarray 4x44K G4112F (GEO ID: GSE53845) (DePianto et al.,

2015). The third IPF dataset used in this study was produced by

comparing 93 IPF patients with 30 healthy samples using Agilent-

014850 Whole Human Genome Microarray 4x44K G4112F. This

dataset is available via GEO (ID: GSE33566) (Yang et al., 2012).

The fourth dataset we use is the Lung Genomics Research

Consortium dataset. This dataset has gene expression arrays for

lung tissues from 61 patients with Interstitial Lung Disease and 17

controls (GEO ID: GSE47460). The top 10 drugs for IPF as identi-

fied by each method for these datasets are included in the

Supplementary Materials. In this case study, we chose erlotinib, gefi-

tinib and sorafenib that have lower average rank across all the IPF

datasets for further evaluation. The first two drugs, erlotinib and

gefitinib, are both the inhibitor of the epidermal growth factor re-

ceptor (EGFR) which are approved for treatment of advanced or

metastatic non-small cell lung cancer. The EGFR inhibitors are able

to prevent progression of pulmonary fibrosis (Hardie et al., 2008).

The protective effect of gefitinib and erlotinib on lung fibrosis

induced by bleomycin is reported in Ishii et al. (2006) and Hardie

et al. (2008). These findings suggest that the EGFR inhibitors may

have the therapeutic effect on IPF. Sorafenib have been approved for

treatment of advanced renal cell carcinoma. The therapeutic effect

of Sorafenib on the IPF has been reported in Chen et al. (2013).

3.3 RA
We use two different RA datasets. The first such dataset is the result of

comparing gene expression levels between synovial tissues from RA

patients (n ¼ 5) and normal donors (n ¼ 5) using Affymetrix Human

Genome U95A Array. The details of this study and its biological signifi-

cance are presented elsewhere (Ungethuem et al., 2010). This dataset is

available in GEO (ID: GSE1919). The second RA dataset is produced

by comparing 18 RA samples with 15 healthy samples using Illumina

human-6 v2.0 expression beadchip microarray platform. This dataset is

available via GEO (ID: GSE15573) (Teixeira et al., 2009). The top 10

drugs for RA as identified by each method for these datasets are

included in the Supplementary Materials. Sirolimus is an immunosup-

pressant drug predicted to have a therapeutic effect on RA disease by

our proposed method. Rapamycin (sirolimus), a natural product derived

from the soil bacteria Streptomyces hygrosopius, was approved for use

in organ transplantation (Kahan et al., 2000; Schreiber, 1991; Sehgal

et al., 1975; Vezina et al., 1975). Other independent studies have also

shown that sirolimus has therapeutic effects on inflammatory arthritis

(Cejka et al., 2010). In addition, there is a phase II clinical study aiming

to find out if sirolimus could be useful for patients with autoimmune

cytopenias such as RA (ClinicalTrials.gov identifier: NCT00392951).

Trimipramine and verteporfin are also suggested by our method for

treatment of RA disease. Trimipramine is an antidepressant drug. Based

on the results published in Grant Macfarlane et al. (1986), this drug is

able to reduce the joint pain in RA patients. The effect of laser therapy

using verteporfin, an antineovascularization drug, for RA in an animal

model has been published in Hendrich et al. (2001).

4 Conclusion

The main goal of computational drug repurposing methods is to find

new indications for already approved drugs, in a systematic manner.

Using the large number of publicly available datasets for diseases andT
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drugs and by taking advantage of known relations between them, we

propose a machine learning-based method for drug repurposing. In par-

ticular, our proposed method learns a similarity metric through a super-

vised machine learning-based algorithm and ranks drugs according to

their predicted effectiveness for a disease. We use measurements of more

than 20 000 genes in 9 datasets studying 3 different diseases, as well as

measurements of around 500 drug instances obtained from CMap and

Library of Integrated Network-based Cellular Signatures databases.

The results show that the proposed method provides better drug

ranking when compared to the classical approach proposed by Sirota

et al. (2011). We also investigate whether the better performance by

the LLE-DML method is actually due to the DML algorithm or due to

the dimensionality reduction algorithm by retrieving the closest drugs

to the disease after transforming the data to lower dimension using the

dimensionality reduction algorithm without incorporating DML algo-

rithm (competing methods 3 and 4). The results show that, the LLE-

DML method provides better results compared to the methods that are

only based on the dimensionality reduction algorithms. This leads us to

the conclusion that incorporating a non-linear dimensionality reduction

algorithm (LLE) with the DML algorithm is indeed able to transform

the data into a space in which the disease–drug pairs that have been

clinically proved to be relevant become closer to each other.

The method proposed here was based on transcriptional data alone.

However, incorporating transcriptional data with available clinical

knowledge such as drug (Guney et al., 2016), chemical or pharmaceut-

ical information (Napolitano et al., 2013), disease biomarkers, target

pathways or symptomatology information may yield still better results.
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