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Abstract

Motivation: Most trait-associated genetic variants identified in genome-wide association studies

(GWASs) are located in non-coding regions of the genome and thought to act through their regula-

tory roles.

Results: To account for enriched association signals in DNA regulatory elements, we propose a

novel and general gene-based association testing strategy that integrates enhancer-target gene

pairs and methylation quantitative trait locus data with GWAS summary results; it aims to both

boost statistical power for new discoveries and enhance mechanistic interpretability of any new

discovery. By reanalyzing two large-scale schizophrenia GWAS summary datasets, we demon-

strate that the proposed method could identify some significant and novel genes (containing no

genome-wide significant SNPs nearby) that would have been missed by other competing

approaches, including the standard and some integrative gene-based association methods, such

as one incorporating enhancer-target gene pairs and one integrating expression quantitative trait

loci.

Availability and implementation: Software: wuchong.org/egmethyl.html

Contact: cwu3@fsu.edu or panxx014@umn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWASs) have identified thou-

sands of loci associated with complex diseases and traits (Visscher

et al., 2017). However, the identified genetic variants can only ex-

plain a small proportion of the heritability, known as the ‘missing

heritability’ problem (Eichler et al., 2010). As an alternative, various

gene-based analysis approaches have been adopted (Chen and

Wang, 2017; Chen et al., 2017; Pan, 2009; Pan et al., 2014; Wang,

2017; Wu et al., 2011), in which a gene body region is extended up

to several kb to cover some regulatory regions, such as promoters.

Although appealing, the vast majority (93%) of trait-associated var-

iants are located in non-coding regulatory regions (Maurano et al.,

2012) and can affect phenotypes through complex distal genetic

regulation (Farh et al., 2015; Wu et al., 2018; Zhu et al., 2016),

implying that the usual strategy of mapping the uncovered genetic

variants to the nearest genes may be problematic. More importantly,

an extension by several kb of a gene body region may not be enough

to include all or a majority of its regulatory elements, since some dis-

tal regulatory elements are as far as 2 or 3 Mb away from the gene

(Krivega and Dean, 2012); on the other hand, a too large extension

of a gene region may include too many non-associated SNPs or

SNPs from other genes, leading to not only substantial power loss

but also difficulties in interpretation.

To boost statistical power and offer biological insights, several

integrative gene-based tests (Gamazon et al., 2015; Gusev et al.,

2016; Wu and Pan, 2018) have been proposed to incorporate vari-

ous sources of external information on genetic regulation into
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GWAS analysis. For example, recent studies show that GWAS risk

loci are enriched in enhancers (Ernst et al., 2011), and distal

enhancers play important regulatory roles for their target genes

through enhancer–promoter interactions in a 3D structure of the

chromatin fiber (Ong and Corces, 2014). Accordingly, a new gene-

based method, called ‘E þ G’ (Wu and Pan, 2018), has been

proposed to integrate enhancer-promoter interactions with GWAS

summary results. Specifically, when testing on a gene, in addition to

its gene body and promoter regions, ‘E þ G’ also includes its enhan-

cer regions. Although Hi-C and related technologies have made it

possible to experimentally measure enhancer–promoter interactions

(Rao et al., 2014), due to their high cost as well as the availability of

other (epi-)genomic data, computational methods have emerged to

predict enhancers and their target genes (Cao et al., 2017). In the

following, we will use ‘enhancer–promoter interactions’ and

‘enhancer–target gene pairs’ exchangeably because either refers to a

correspondence between an enhancer and its target gene. In a similar

line, inspired by the fact that many genetic variants influence com-

plex traits through transcriptional regulation (Lappalainen et al.,

2013; Westra et al., 2013), transcriptome-wide association studies

(TWASs) have been proposed (Gamazon et al., 2015; Gusev et al.,

2016), which use external expression quantitative trait locus (eQTL)

information or databases to select and weight the SNPs associated

with gene expression in a largely extended gene region (e.g. up to

1 Mb). As shown previously (Wu and Pan, 2018), either ‘E þ G’ or

TWAS could identify some significant and novel genes that would

be missed by the other and by the standard gene-based testing, indi-

cating their complementary usefulness with possible power gains.

DNA methylation is an extensively studied epigenetic phenom-

enon, well known to influence gene expression (Wagner et al., 2014)

and other genomic functions, including alternative splicing, pro-

moter usage and transcription factor binding (Maunakea et al.,

2010; Xu et al., 2015). In turn, DNA methylation may be associated

with some genetic variants called methylation quantitative trait loci

(mQTLs). To better understand the biological mechanism underly-

ing a disease or phenotype, some association methods have been

proposed to integrate genetic and epigenetic information (Freytag

et al., 2018; Hannon et al., 2017; So, 2017; Wu et al., 2018).

However, these integrative methods are mainly for the purpose of

co-localization or mediation analyses, as reviewed in Teschendorff

and Relton (2017). For example, Hannon et al. (2017) proposed a

modified summary data-based Mendelian randomization to identify

pleiotropic genetic variants that are associated with both a complex

trait and DNA methylation. By Mendelian randomization, Wu et al.

(2018) demonstrated a plausible mechanism by which the effects of

genetic variants on a complex trait are mediated through DNA

methylation to transcription. Our motivation here is different: by

taking advantage of the regulatory roles of DNA methylation and its

possibly closer proximity to causal genetic variants than gene ex-

pression in causal pathways, we aim to improve statistical power

while enhancing the interpretability of any new discoveries. Note

that DNA methylation sites associated with gene expression are

enriched in enhancers, promoters and gene body regions (including

exons and introns) (Gutierrez-Arcelus et al., 2015). In particular,

increased DNA methylation in enhancer regions is also known to

be associated with gene expression changes of the linked genes

(Lu et al., 2014), suggesting the potential usefulness of simultaneous

integration of both mQTL and enhancer–promoter interaction in-

formation. In particular, as shown in cancer (Aran and Hellman,

2013), for many genes, the correlation between methylation of

enhancers and gene expression is much higher than that between

SNPs and gene expression. For example, Li et al. (2013) showed

that, for a prominent breast cancer oncogene CCND1, although

DNA sequence variants of its enhancer region are associated with

breast cancer risk, they are not significantly correlated with CCND1

expression level; in contrast, Aran and Hellman (2013) demon-

strated a striking correlation of CCND1 expression level with

methylation of the same enhancer region. Hence, integrating methy-

lation data may go beyond using only eQTL data to uncover novel

risk loci for complex traits. Although integrating either eQTL data

or mQTL data alone with GWAS results (Freytag et al., 2018;

Gamazon et al., 2015; Gusev et al., 2016; Hannon et al., 2017;

So, 2017; Wu et al., 2018; Xu et al., 2017) has become increasingly

popular recently, to our knowledge, no previous study has inte-

grated both mQTL data and promoter-enhancer interactions with

GWAS summary results. In this article, we propose a new gene-

based association testing method, called ‘E þ G þMethyl’, that inte-

grates enhancer-target gene maps, mQTL databases, and GWAS

summary results to identify significant and novel genes that may be

missed by other methods. The main idea is that, when testing on a

gene, we search for and then test only on the mQTLs in its gene

body (including exons and introns), promoter and enhancer regions.

Note that ‘E þ G þ Methyl’ can be viewed as an extension of ‘E þ
G’ (Wu and Pan, 2018): instead of using all SNPs in its gene body,

promoter and enhancer regions, ‘E þ G þMethyl’ uses only mQTLs

while excluding other SNPs. In other words, we focus on genetic

variants that exert their effects on a trait through some methylation

pathways while accounting for enriched association signals in

mQTLs and enhancers.

To illustrate the potential usefulness of our new method and bet-

ter understand the mechanism underlying schizophrenia (SCZ), we

reanalyzed two SCZ GWAS summary datasets (Ripke et al., 2013,

2014). These analyses show that, when applied to the smaller SCZ

GWAS dataset, our new method ‘E þ G þ Methyl’ could identify

many significant and novel genes that were replicated by the larger

GWAS dataset, but would have been missed by other competing

methods, such as ‘E þ G’, TWAS and the standard gene-based test-

ing. Similarly, when applied to the larger SCZ GWAS data, ‘E þ G

þ Methyl’ could identify 16 significant and novel genes that were

missed by competing methods. In summary, we view ‘E þ G þ
Methyl’ as a powerful integrative gene-based association method

that is useful and complementary to the existing approaches.

2 Materials and methods

2.1 Enhancer–target and mQTL databases
Enhancers, bound by transcription factors, act independently of the

orientation and distance to their target genes, thus it is challenging

to determine enhancer–target gene pairs (Shlyueva et al., 2014). We

used two publicly available databases as in Wu and Pan (2018) to

determine the enhancer regions for each target gene: (i) experimen-

tally measured from the MCF-7 cell line by using genome-wide

chromatin interaction analysis with paired-end-tag sequencing (Li

et al., 2012), denoted as MCF7 in the following; (ii) computational-

ly predicted for the brain hippocampus region by analyzing

ENCODE and Roadmap data with a statistical model (Cao et al.,

2017), denoted as Hippo in the following. Note that in (i), for sim-

plicity, we call any DNA fragment interacting with a promoter as an

enhancer. Given our focus on SCZ and the relatedness of patho-

physiology of SCZ to the hippocampus (Harrison, 2004), we used

the computationally predicted enhancer–target gene pairs for the

hippocampus as an example of data drawn from a trait-relevant tis-

sue. Since enhancer–promoter interactions are tissue-specific
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(Andersson et al., 2014), it would be ideal to utilize enhancer–pro-

moter interaction information drawn from a disease- or trait-related

tissue. However, because data from some tissues may not be avail-

able, and 55–75% DNA interactions are shared among different cell

lines (Rao et al., 2014), it might be potentially useful to use the data

from a tissue or cell line not necessarily most relevant to the disease

or trait, such as from the MCF-7 cell line (Wu and Pan, 2018). Note

that in the Hippo data, only enhancers within 1 Mb of each tran-

scription start site (TSS) were considered by the original authors

(Cao et al., 2017); for the MCF7 data, there was no such restriction

(Li et al., 2012).

The effects of SNPs on complex traits are potentially mediated

through some highly dynamic epigenetic processes, such as DNA

methylation (Relton and Smith, 2010). To understand how genetic

factors (e.g. mQTLs) influence DNA methylation, Gaunt et al.

(2016) developed a genome-wide cis- and trans-mQTL database

based on analyzing blood samples in the Avon longitudinal study of

parents and children. This mQTL database provides mQTL infor-

mation at five life stages in human blood, and we used middle age

mQTL information for the subsequent analysis. It contains

5 421 792 significant SNP–CpG site associations (P-value < 1 � 10–7),

covering 1 926 067 SNPs and 45 070 CpG sites.

The genomic coordinates of the SNPs and genes were obtained

from the human genome assembly GRCh37 (hg19). Because DNA

methylation in enhancer and promoter regions may play some im-

portant roles in gene regulation (Lu et al., 2014; Wu et al., 2018),

we were motivated to focus on mQTLs located in enhancers, pro-

moters, and gene body (including both exons and introns) regions.

Thus we defined a SNP set for each gene to be tested by integrating

enhancer–promoter interaction and mQTL data by the following

steps.

• Gene body: All the introns and exons of a target gene were

included and called the gene body. In other words, a gene body

region was defined as that flanking its TSS and transcription end

site (TES).
• Promoters: Two promoter regions of a target gene were defined

as a 500-bp extension (Andersson et al., 2014) on either side of

the gene body region beyond its TSS and TES respectively.

Although most promoters lie immediately upstream of the TSS, a

gene might have several proximal promoters scattered around its

TES and even introns (Go~ni et al., 2007). Hence we extended

500 bp upstream TSS and downstream TES respectively to in-

clude its potential cis-acting regulatory elements. For simplicity,

we denote the target gene body plus its two promoter regions as

region ‘G’.
• Enhancers: An enhancer of a target gene was defined as the DNA

fragment interacting with a promoter (or as predicted to regulate

the target gene). Note that the defined enhancer regions are tis-

sue- or database-dependent, so they may vary with different data

sources (e.g. MCF7 and Hippo). We denote the enhancer regions

as ‘E’, and further denote the target gene body plus its two pro-

moter regions and its all enhancer regions as ‘E þ G’.
• mQTL: For each SNP in the ‘E þ G’ region of a target gene, we

searched the mQTL database: if it was an mQTL for any CpG

site in the target gene ‘E þ G’ region, we kept it; otherwise, it

was excluded.

For simplicity, we denote the set of SNPs in an ‘E þ G’ region

that could pass the mQTL searching (with pruning) as ‘E þ G þ
Methyl’. We further denote the set of SNPs inside an ‘E þ G’ region

(with pruning) as ‘E þ G’ (Wu and Pan, 2018), while that inside a

‘G’ region (with pruning) as ‘STD’ (for the standard gene-based test-

ing). Note that to reduce the computational burden and minimize

the effect of collinearity for the subsequent association testing, we

pruned the set of SNPs selected for each gene such that no SNP pairs

within the set were highly correlated (with r2 > 0.95).

We point out that the proposed ‘E þ G þMethyl’ can be viewed

as an extension of ‘E þ G’: ‘E þ G þ Methyl’ selects the subset of

SNPs in ‘E þ G’ that are mQTLs (while excluding all other SNPs).

Because DNA methylation sites in the enhancer and gene body (in-

tron) regions may play vital regulatory roles (Lu et al., 2014; Wu

et al., 2018), whereas other SNPs are less likely to be associated

with the trait, only using mQTLs inside ‘E þ G’ (i.e. ‘E þ G þ
Methyl’) may reduce the number of non-informative SNPs being

tested and thus increase statistical power to identify significant and

novel genes that are associated with the trait through DNA methyla-

tion pathways. Note that because ‘E þ G þMethyl’ only selects the

mQTL SNPs that pass the mQTL searching, thus including only a

subset of SNPs in ‘E þ G’ might be more informative for identifying

significant genes.

2.2 Statistical tests
For illustration, we applied two representative gene-based tests, a

burden test called SPU(1) (i.e. Sum test) and a variance-component

test called SPU(2) (i.e. SSU test) (Kwak and Pan, 2016; Pan et al.,

2014; Wu et al., 2011), to a set of SNPs for a target gene to test the

association between the target gene and a trait. Although not our

focus, we also illustrated the application of an adaptive test called

aSPU (Kwak and Pan, 2016; Pan et al., 2014). Note that other gene-

or SNP set-based tests (Chen and Wang, 2017; Chen et al., 2017;

Wang, 2017) can be equally applied.

Here, we focused on analyzing GWAS summary data (i.e. mar-

ginal association statistics), which are often publicly available with

the estimated marginal effect size, its standard error and P-value of

each SNP and some information on each SNP (such as its chromo-

some position and major allele). We applied SPU(1), SPU(2), and

sometimes aSPU, to the ‘E þ G þ Methyl’ SNP set for each target

gene. To save space, a detailed testing procedure was relegated to

the Supplementary Material. For comparison, we also applied both

SPU(1) and SPU(2) to the ‘E þ G’ region and the standard gene

regions (denoted ‘STD’) respectively. Since mQTL and eQTL pro-

vide orthogonal ways of functionally annotating SNPs for complex

traits, and TWAS (Gusev et al., 2016) and its extension (Xu et al.,

2017) use eQTL data to weight SNPs (Gamazon et al., 2013), we

applied them as well. For notational simplicity, we used (weighted)

SPU(1) to represent TWAS and (weighted) SPU(2) to represent its

extension. The four sets of eQTL-derived weights (NTR, YFS,

METSIM, and CMC) were downloaded from the TWAS/FUSION

website (Gusev et al., 2016).

2.3 Application to GWAS
To demonstrate the potential usefulness of our new method ‘E þ
G þ Methyl’ and better understand the genetic basis of SCZ, we

applied different gene-based association tests to identify SCZ-

associated genes by reanalyzing two SCZ GWAS summary datasets:

a meta-analyzed SCZ GWAS dataset with 8832 cases and 12 067

controls (Ripke et al., 2013), denoted as SCZ1, and a larger one

with 36 989 cases and 113 075 controls, denoted as SCZ2 (Ripke

et al., 2014).

When we focused on the common gene set analyzed by all meth-

ods, we used a conservative Bonferroni correction cutoff 0.05/

3578 C.Wu and W.Pan
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10 000 ¼ 5 � 10�6; otherwise, we used the Bonferroni correction to

each method (with possibly different numbers of genes being tested

and thus different cutoffs) separately to control for multiple testing.

Following Gusev et al. (2016) and Wu and Pan (2018), we evaluated

the performance of the methods via the following steps. First, based

on the SCZ1 data, we identified the significant and novel genes; a

significant and novel gene in one study is defined as a significantly

associated gene that does not cover any significant SNP in an

extended gene region (with an extension of 6500 kb upstream and

downstream its gene body region). Second, we calculated the repli-

cation rate of the identified significant and novel genes that also

covered one or more genome-wide significant SNPs in the SCZ2

data. Third, the P-value for the replication rate was calculated by a

hypergeometric test with the background probability estimated from

all the genes being tested.

2.4 Availability of data and materials
The SCZ1 (Ripke et al., 2013) and SCZ2 (Ripke et al., 2014)

GWAS summary data are available at the PGC web site https://

www.med.unc.edu/pgc/results-and-downloads. TWAS- and eQTL-

based weights can be obtained from http://gusevlab.org/projects/fu

sion/. Our user-friendly software, and some information on

the processed mQTLs, enhancer–promoter interactions and the

1000 Genomes reference panel, are available at wuchong.org/

egmethyl.html.

3 Results

3.1 Using SCZ1 for discovery
We consider applications to the smaller SCZ1 dataset for discovery.

First, with simulated null Z score vectors, we confirmed that ‘E þ G

þ Methyl’ with the standard gene-based tests, such as SPU(1) and

SPU(2), yielded well-controlled Type I error rates under various

nominal significance levels (Supplementary Fig. S1). Importantly,

the well-controlled Type I error rates of SPU(1) and SPU(2) were

also established by previous studies (Gusev et al., 2016; Pan, 2009;

Pan et al., 2014). Second, we compared the discovery power for dif-

ferent methods. For a fair comparison, we focused on the common

set of 3521 genes that could be analyzed by all methods. Figure 1

shows that ‘E þ G þMethyl’, ‘E þ G’, STD and TWAS identified 6,

4, 3 and 7 significant and novel genes, respectively; a novel gene is

defined as one that does not cover any genome-wide significant SNP

within a 6500 kb extension upstream and downstream its gene

body in the same dataset (i.e. SCZ1 here). Both ‘E þ G þ Methyl’

and TWAS identified four significant and novel genes that were

missed by other methods. Figure 1 displays the combined results

from SPU(1) and SPU(2), while the separate results of SPU(1) and

SPU(2) showed similar patterns and thus were relegated to

Supplementary Figures S2 and S3. Supplementary Table S1 gives the

numbers of the significant genes identified by various methods. Note

that, although STD identified more significant genes than both ‘E þ
G þ Methyl’ and TWAS, it was likely due to its testing on more

genes.

3.2 Using SCZ2 for validation
To further validate our approach, we focused on all significant and

novel genes identified from the SCZ1 data that could be confirmed

with genome-wide significant SNPs in the larger (but overlapping)

SCZ2 data (Table 1). For a fair comparison, we used the Bonferroni

correction for each method (with a possibly different number of

genes and thus different cutoffs) separately. Supplementary Table S2

shows the replication rates and corresponding statistical significance

levels by a hypergeometric test. ‘E þ G þMethyl’ with SPU(1) based

on MCF7 identified 10 novel genes in the SCZ1 data, of which 6

(60%) contained genome-wide significant SNPs in an extended gene

region (6500 kb as before) in the larger SCZ2 data (P-value ¼ 9.6

� 10�6 by a hypergeometric test), constituting a highly significant

replication rate of the identified genes by our new method ‘E þ G þ
Methyl’. Both ‘E þ G’ and TWAS show similar patterns with highly

significant replication rates, confirming the usefulness of incorporat-

ing information from other sources.

Furthermore, we searched the GWAS Catalog v1.0 (MacArthur

et al., 2017) to identify the genes reported by other studies. Table 2

lists the significant and novel genes identified by ‘E þ G þ Methyl’,

a high proportion of which (12 out of 22, 55%) contained at least

one genome-wide significant SNP (P-value < 5 � 10�8) in the (over-

lapping but larger) SCZ2 data. Importantly, many of them (14 out

of 22, 64%) have been reported by other studies. Importantly, the

reported genes in the gene list in Table 2 were over-enriched by

14.88 folds (P-value ¼ 1.1 � 10�14 by a hypergeometric test) over

that by chance. Overall, these results showcase the power of the

‘E þ G þ Methyl’ approach in identifying significant and novel

genes that were validated by other studies but were missed by the

competing methods.

3.3 New discoveries from the larger SCZ2 data
Having established the usefulness of our new method, we applied

the ‘E þ G þ Methyl’ method to the larger SCZ2 data to identify

significant and novel genes. We used a conservative and common

Bonferroni cutoff (0.05/10 000 ¼ 5 � 10�6) for all the methods.

Overall, ‘E þ G þ Methyl’ identified 38 significant and novel SCZ-

associated genes (Supplementary Table S3), of which 16 were missed

by STD, ‘E þ G’ based on MCF7 or Hippo, and TWAS with four

sets of weights (Table 3). Among these 16 genes, 3 of them have

been reported by other studies (Goes et al., 2015). Importantly,

there are biological findings supporting our results. For example, the

protein encoded by gene CREB1 is a transcription factor involved in

regulating gene expression as part of cAMP signaling cascades in the

brain (Montminy, 1997), and is a critical component of memory-

related synaptic plasticity (Kandel, 2012). Furthermore, some CpG

Fig. 1. Venn diagrams of the significant and novel genes identified by the dif-

ferent methods applied to the SCZ1 data. ‘E þ G’ and ‘E þ GþMethyl’ com-

bine the results (i.e. taking the union) of using MCF7 and Hippo data, while

TWAS combines the results of using YFS-, NTR-, METSIM- and CMC-based

weights. We analyzed the common set of 3521 genes, combined the results

from SPU(1) and SPU(2), and used the same significance cutoff (P � 5 � 10�6)
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sites inside the introns of CREB1 were reported to be associated

with SCZ (Kumar et al., 2015), partially explaining why ‘E þ G þ
Methyl’ could successfully identify CREB1 while the other methods

failed. Another example is gene CHRM3: it has been shown that

CHRM3 plays a vital role in abnormal thalamo-orbital frontal cor-

tex functional connectivity in SCZ subjects (Wang et al., 2016).

Overall, these 16 newly identified genes represent a class of discov-

eries that would be missed by other competing methods, showcasing

the power of our proposed approach to integrating enhancer–pro-

moter interactions, mQTL data and GWAS summary results to gain

insights into the genetic basis of complex diseases.

3.4 Power gains with an adaptive gene-based test
We also applied aSPU with ‘E þ G þ Methyl’ to the SCZ1 to show

possible power gains from a more powerful and adaptive SNP-set

test like aSPU. We used a conservative and common Bonferroni cut-

off (0.05/10 000 ¼ 5 � 10–6) in the following. Figure 2 shows that

SPU(1), SPU(2) and aSPU identified 6, 9 and 10 novel genes, respect-

ively. Importantly, most novel genes identified by SPU(1) and

SPU(2) were recovered by aSPU, showcasing the high power by

aSPU. Supplementary Table S4 lists the significant and novel genes

identified by aSPU with ‘E þ G þ Methyl’: a high proportion of

them contained at least one genome-wide significant SNP (19 out of

24, 79%) in the SCZ2 data or were reported previously (20 out of

24, 83%). Overall, these results constituted a highly significant rep-

lication of the identified genes by aSPU with ‘E þ G þ Methyl’.

Importantly, the Type I error rates of aSPU were well-controlled

under the null (Supplementary Fig. S1). To further discover some

significant and novel genes that would have been missed by other

methods, we applied aSPU with ‘E þ G þMethyl’ to the SCZ2 data.

Table 4 lists six significant and novel genes uniquely identified by

aSPU with ‘E þG þ Methyl’. These new findings may further pro-

vide biological insights into the mechanism of SCZ.

Table 1. The numbers of the significant and novel genes identified by analyzing the SCZ1 data

E þ G þMethyl E þ G STD TWAS

MCF7 Hippo MCF7 Hippo (STD) YFS NTR METSIM CMC

No. genes 4588 2340 9127 4600 22 842 4697 2452 4665 5412

SPU(1) 10/6 4/3 1/1 2/2 4/4 3/3 4/4 3/2 6/4

SPU(2) 11/7 12/6 10/6 12/8 12/10 6/3 8/8 9/9 14/11

Note: The numbers a/b in each cell indicate the numbers of (a) the significant and novel genes; and (b) the significant genes that covered one or more GWAS

risk variants within 6500 kb in the SCZ2 data.

Table 2. Significant and novel genes (with their P-values) identified

by the ‘E þ G þMethyl’ approach based on the SCZ1 data

Gene CHR No.

mQTL

No.

CpG

SPU(1) SPU(2) References

Source: Hippo

PLCH2a 1 258 49 3:4� 10�3 8:5� 10�6 [1, 2]

PLEKHG5 1 103 23 2:1� 10�2 1:4� 10�5

NGEFa 2 23 3 4:6� 10�1 1:4� 10�5 [2, 3]

PSMG4 6 248 24 6:7� 10�5 5:0� 10�10

FAM20C 7 1579 339 2:6� 10�1 1:1� 10�16

TOLLIP 11 559 68 9:5� 10�1 7:8� 10�6

LRP6 12 163 32 1:1� 10�2 9:9� 10�7

MPHOSPH9a 12 7 1 1:6� 10�5 1:0� 10�5 [2, 3]

C12orf65a 12 4 1 1:8� 10�5 1:6� 10�5 [2]

CDK2AP1a 12 4 2 2:8� 10�5 2:4� 10�6 [2]

HMOX2 16 5 4 1:3� 10�5 1:2� 10�5

YJEFN3a 19 3 4 2:2� 10�6 2:6� 10�6

Source:MCF7

SH3RF1a 4 10 2 1:1� 10�2 9:3� 10�6

CREB1 2 3 1 1:5� 10�7 7:8� 10�8 [1]

CNOT7 8 5 1 6:4� 10�6 5:0� 10�6

VPS37A 8 8 1 1:3� 10�6 1:1� 10�6 [3]

PIK3C2A 11 3 1 2:5� 10�6 1:8� 10�5 [1, 4, 5]

OGFOD2a 12 4 3 1:1� 10�5 1:0� 10�5 [2, 3]

PITPNM2a 12 13 3 7:1� 10�5 2:7� 10�6 [2, 3]

CDK2AP1a 12 6 2 1:1� 10�6 1:8� 10�7 [2]

XRCC3a 14 5 2 4:1� 10�7 2:6� 10�4 [2]

SUGP1a 19 3 1 2:0� 10�6 1:8� 10�6 [2]

NDUFA13a 19 2 3 8:6� 10�6 5:8� 10�6 [2]

YJEFN3a 19 3 4 1:7� 10�6 2:0� 10�6

Note: ‘sig SNP’ give the P-value of the most significant SNP within a 6 500

kb extension for each gene in the SCZ2 data; the previously reported gene–

SCZ associations appear in ‘References’: [1] Goes et al. (2015); [2] Ripke

et al. (2014); [3] Li et al. (2017); [4] Ripke et al. (2011); [5] Ruderfer et al.

(2014).
aNovel genes, not overlapping with a genome-wide significant SNP within

a 6 500 kb extension for each gene in the SCZ2 data.

Table 3. Significant and novel genes identified by both SPU(1) and

SPU(2) with the ‘E þ G þ Methyl’ approach, but not by the STD, ‘E

þ G,’ and TWAS based on the SCZ2 data

Gene CHR No.

mQTL

No.

CpG

SPU(1) SPU(2) References

Source: Hippo

CHRM3 1 2 2 2:7� 10�7 2:5� 10�7

KCNS3 2 12 4 9:8� 10�1 3:3� 10�7 [1]

EFR3B 2 3 1 5:6� 10�7 5:2� 10�7 [1]

CHL1 3 1340 191 9:5� 10�1 1:8� 10�9

PSMG4 6 248 24 4:0� 10�4 0:0� 100

FAM20C 7 1579 339 5:8� 10�1 0:0� 100

C7orf50 7 805 135 1:1� 10�1 8:8� 10�9

DRD4 11 109 39 6:3� 10�3 7:7� 10�7

TOLLIP 11 559 68 4:4� 10�1 9:1� 10�10

LRP6 12 163 32 3:5� 10�4 1:6� 10�13

FAM177A1 14 9 2 2:3� 10�6 8:9� 10�7

MADCAM1 19 404 85 3:0� 10�4 3:4� 10�6

CSNK1G2 19 68 17 3:1� 10�8 4:7� 10�9

Source:MCF7

PRADC1 2 2 1 4:6� 10�6 4:7� 10�6

CREB1 2 3 1 1:0� 10�6 7:6� 10�7 [1]

ZNF623 8 13 3 1:2� 10�5 3:1� 10�6

Note: ‘sig SNP’ gives the P-value of the most significant SNP within a 6

500 kb extension for each gene in the SCZ2 data; the previously reported

gene-SCZ associations appear in ‘References’: [1] Goes et al. (2015).
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3.5 Data summary
We provide some basic statistics for ‘E þ G þ Methyl’ regions. On

average, for each target gene, MCF7- and Hippo-based ‘E þ G þ
Methyl’ regions contained 3.1 and 1.6 enhancer regions, respectively

(Supplementary Table S5). For MCF7-based ‘E þ G þ Methyl’, the

enhancer (‘E’) regions and ‘G’ regions were 5.2 and 62 kb, respect-

ively (Supplementary Table S5). Because ‘E þ G þ Methyl’ only

selected the mQTLs in the ‘E þ G’ regions, for the SCZ1 dataset,

MCF7-based’E þ G þ Methyl’ contained 29.4 SNPs on average

while ‘E þ G’ contained 34.3 SNPs on average (Supplementary

Table S6). Note that ‘E þ G þ Methyl’ only included a subset of

SNPs in ‘E þ G’, and the ‘E þ G þ Methyl’ set might be more in-

formative for identifying significant genes that influence a trait

through some methylation pathways.

4 Discussion

Most identified GWAS variants are thought to act by affecting gene

regulation, rather than altering protein products, highlighting the

importance and thus potential power gains of integrating genetic

regulatory information when conducting gene-based association

testing. Here we have introduced a new method, called ‘E þ G þ
Methyl’, for identifying trait-associated genes via integrating both

mQTL and enhancer–promoter interaction data with GWAS

association results. Our approach allows to identify some significant

and novel genes that would be missed by other methods, and to gain

insights into the genetic mechanisms underlying complex traits. Our

method differs from other gene-based tests in how to construct a

SNP set for a gene being tested. To the best of our knowledge, ‘E þ
G þ Methyl’ is the first approach to combine mQTL data and

enhancer–target gene maps in the gene-based testing framework for

GWAS.

To further demonstrate the usefulness of integrating mQTL

data, we explored using mQTLs inside the gene body region with a

20-kb extension, denoted as ‘G þ Methyl’. As shown in

Supplementary Figure S4, ‘G þ Methyl’ could identify some signifi-

cant and novel genes that would be missed by other methods, indi-

cating that mQTLs are indeed informative for GWAS analysis.

We view our method complementary to existing methods, such

as TWAS, ‘E þ G’ and standard gene-based approaches.

Comparatively, we expect that TWAS will be advantageous when

one gene contains several cis-eQTLs that are possibly outside anno-

tated enhancers, while ‘E þ G’ will be highly powerful when a gene

has one or more (far away) enhancers that are enriched with trait-

associated SNPs (which may not be either eQTL or mQTL). In con-

trast, our new method ‘E þ G þ Methyl’ will be most useful when

the enhancers, especially those far away from a gene, contain trait-

associated mQTLs. It is noted that, for example in cancer, some

known risk variants in enhancers are methylated, but are not easily

detectable as eQTLs for their target genes (Aran and Hellman,

2013; Li et al., 2013), suggesting possible gains from integrating

methylation data, not just eQTL data, with GWAS.

We note several possible limitations of the proposed ‘E þ G þ
Methyl’ method. First, due to the lack of data, the used ChIA-PET

enhancer–promoter interaction data was not from a brain tissue

most relevant to SCZ. Although 55%–75% promoter-enhancer

interactions are shared among different cell lines (Rao et al., 2014),

we expect our method to be more powerful when data drawn from

the most relevant tissues are used. There is a similar issue with the

mQTL database used (Gutierrez-Arcelus et al., 2015). Second, al-

though we have integrated multiple sources of (epi-)genomic infor-

mation, some other useful sources of genomic data and/or genome

annotations (Chen et al., 2016; Zhang and Hardison, 2017; Zhang

et al., 2016) have not been incorporated. Third, ‘E þ G þMethyl’ is

a GWAS summary data-based method and thus we only focused on

common variants, though its extension to including rare variants

seems possible. Despite these limitations, ‘E þ G þ Methyl’ is a

powerful new approach to identifying novel genes significantly asso-

ciated with complex traits.

Fig. 2. Venn diagrams of the significant and novel genes identified by the ‘E þ
GþMethyl’ with different methods applied to the SCZ1 data. We combined

the results of using MCF7 and Hippo data, and used the same significance

cutoff (P � 5 � 10�6)

Table 4. Significant and novel genes identified by aSPU with the ‘E þ G þMethyl’ approach, but not by the SPU(1) and SPU(2) with ‘E þ G þ
Methyl’, STD, ‘E þ G’ and TWAS based on the SCZ2 data

# #

Gene CHR mQTL CpG SPU(1) SPU(2) aSPU References

Source: Hippo

TCEA3 1 20 4 7:5� 10�1 9:3� 10�3 1:4� 10�6

TRAPPC3 1 4 2 6:9� 10�5 1:4� 10�5 3:7� 10�6 [1]

TTLL7 1 13 3 3:8� 10�2 4:8� 10�5 4:0� 10�7

C6orf195 6 45 10 1:0� 10�2 2:0� 10�5 4:8� 10�6

PRH1 12 183 18 2:6� 10�2 1:1� 10�4 1:0� 10�7

FLYWCH1 16 61 13 3:0� 10�1 2:3� 10�2 1:0� 10�7

Note: ‘sig SNP’ gives the P-value of the most significant SNP within a 6 500 kb extension for each gene in the SCZ2 data; the previously reported gene-SCZ

associations appear in ‘Reference’: [1] Goes et al. (2015).
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