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Abstract

Motivation: It has been shown that the machine learning approach random forest can be success-

fully applied to omics data, such as gene expression data, for classification or regression and to se-

lect variables that are important for prediction. However, the complex relationships between pre-

dictor variables, in particular between causal predictor variables, make the interpretation of

currently applied variable selection techniques difficult.

Results: Here we propose a new variable selection approach called surrogate minimal depth

(SMD) that incorporates surrogate variables into the concept of minimal depth (MD) variable im-

portance. Applying SMD, we show that simulated correlation patterns can be reconstructed and

that the increased consideration of variable relationships improves variable selection. When com-

pared with existing state-of-the-art methods and MD, SMD has higher empirical power to identify

causal variables while the resulting variable lists are equally stable. In conclusion, SMD is a promis-

ing approach to get more insight into the complex interplay of predictor variables and outcome in

a high-dimensional data setting.

Availability and implementation: https://github.com/StephanSeifert/SurrogateMinimalDepth.

Contact: seifert@medinfo.uni-kiel.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the last years, the investigation of different types of omics data,

measuring e.g. gene expression, methylation status or metabolite

concentrations has become popular to characterize patients and

healthy controls, to understand complex diseases and to develop ef-

fective treatments (Ibrahim et al., 2016). Since omics datasets are

large and heterogeneous, statistical and computational analysis

poses several challenges: First, the big p and small n problem results

from the situation that the number of variables is much bigger than

the number of probands that are investigated (Johnstone and

Titterington, 2009). Second, the variables usually have complex

relationships, due to underlying molecular networks and pathways

that should be incorporated into the analysis. Third, the vast major-

ity of the variables are usually not relevant for the research subject,

which means that the extensive dataset could be reduced to a smaller

set of important variables.

It has been shown that machine learning methods, and in par-

ticular random forests (RFs) (Breiman, 2001), can be successfully

applied to exploit omics data for classification, regression (Strobl

et al., 2009) and survival outcomes (Ishwaran et al., 2011). One

main goal of these applications, besides the generation of valid pre-

diction models, is variable selection, i.e. the separation of relevant

from irrelevant variables. RFs provide a permutation variable im-

portance (VIMP) that is obtained by permuting the variables and

calculating the difference in prediction error. Hence, variables are

ranked according to their impact on prediction performance.

Various approaches have been developed to select important varia-

bles based on VIMP and were recently evaluated in a comprehensive

comparison study (Degenhardt et al., 2017). However, VIMP is

influenced by specific variable characteristics (Strobl et al., 2007)

and the correlation structure of the variables (Nicodemus et al.,

2010). As a result, conditional variable importance has been
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introduced which uses a modified permutation scheme that pre-

serves the correlation structure between predictor variables (Strobl

et al., 2008). The computational requirements, however, prohibits

an application to high-dimensional data. Because VIMP is rather dif-

ficult to study in detail (Ishwaran, 2007) we strive for an approach

that is independent of prediction errors. Ishwaran et al. (2010)

developed a method called minimal depth (MD) that simply deter-

mines variable importance by the position of the variables in the de-

cision trees and thus, is only based on the decision tree structures.

Since trees should be adequately deep to obtain reliable results, this

method is especially susceptible to the big p and small n problem.

Furthermore, the correlation structure of the variables is not consid-

ered in this approach. Hence, we propose a new variable selection

technique that is based on decision tree structures that includes vari-

able relations, and that is feasible for high-dimensional datasets

with low numbers of observations.

To compensate for missing values in the data, Breiman (Breiman

et al., 1984) developed the concept of surrogate variables. This

means that for every node in the tree additional splits of other varia-

bles are determined that are capable to replace the original splits as

good as possible when the primary variables are missing. In this art-

icle, we show that surrogate variables can also be used for other pur-

poses. First, we will demonstrate that the relationship between a

primary split variable and a surrogate variable are a proxy for the

relation between the variables. Since the relationship between pri-

mary and surrogate variable takes into account the association with

the outcome, it goes beyond the analysis of pairwise correlations

and will consequently be called relation in this article. Subsequently

we will introduce a new approach incorporating surrogate variables

into the concept of MD called surrogate minimal depth (SMD).

2 Materials and methods

2.1 RF variable selection
RF is a machine-learning approach that uses a large number of indi-

vidual binary decision trees based on different bootstrap samples of

the training data. At each node, the optimal split separating observa-

tions in below (daughter node 1) and above (daughter node 2) the

split point is identified from a set of randomly chosen candidate pre-

dictor variables. Hence, the split that is stored for each node consists

of a split variable and an optimized split point. To predict the out-

come variable a majority vote over all trees is taken. Besides provid-

ing accurate classification and regression of observations, RF

analyses are conducted to identify variables important for predic-

tion. In a recent comparison study of several variable selection meth-

ods, the Boruta (Kursa et al., 2010) and the Vita approach (Janitza

et al., 2018) demonstrated the best performance (Degenhardt et al.,

2017). Both methods are based on the permutation importance

(VIMP), which is calculated as the difference of prediction perform-

ance before and after permuting the values of the variable averaged

over all trees. The Boruta approach selects predictor variables whose

importance is significantly larger than those of permuted versions of

itself. The Vita method calculates P-values based on an empirical

null distribution using only non-positive importance scores.

2.2 Identification of surrogate variables
The concept of surrogate splits was developed by Breiman et al.

(1984) to compensate for missing values in datasets when RF is

applied. In addition to the best split of a specific node (called

primary split), several additional splits are stored. They are based on

other predictor variables than the one used in the primary split and

result in a similar assignment of observations to the child nodes as

the primary split. For a specific node surrogate variables and their

split points are determined by the two daughter nodes of the primary

split. For each predictor variable the agreement nsurr between surro-

gate split q and primary split p is calculated as the number of obser-

vations that are assigned to the same daughter nodes. The adjusted

agreement agree(p, q) (also see https://cran.r-project.org/web/pack

ages/rpart/vignettes/longintro.pdf) is then defined as

agree p; qð Þ ¼
nsurr � nmaj

ntotal � nmaj
; (1)

where ntotal denotes the total number of observations at the respect-

ive node and nmaj the number of observations that are assigned to

the same daughter nodes when the majority rule is applied, i.e. all

observations are assigned to the daughter node with the larger num-

ber of observations.

An adjusted agreement value of 1 means an exact agreement of

the surrogate split to the primary split, i.e. the same observations are

assigned to the right and left daughter nodes, respectively. A value

of 0 corresponds to the performance of the majority rule. A negative

value of adjusted agreement means that the surrogate split assigns

fewer observations in accordance with the primary split than the

majority rule. At each non-terminal node in the tree, adjusted agree-

ment between the primary split and the split of all other predictor

variables with optimized split points (according to similarity to the

primary split) is calculated. Subsequently the s surrogate splits with

the largest positive adjusted agreement are stored for each of these

nodes. Note that it may happen that less than s potential surrogate

splits outperform the majority rule. In this case less than s surrogate

splits are used for this node so that the average number of surrogate

variables in a specific level j of the trees, denoted as sj , or across the

whole forest, denoted as s, might be smaller than the predefined

value of s. In our simulation studies, we systematically vary the par-

ameter s to evaluate its influence on the selection of important varia-

bles and on the recovery of known correlation patterns between

predictor variables.

2.3 Exploiting surrogate variables to investigate

variable relations
One of the goals of this study is to assess whether surrogate variables

can be exploited to identify relationship patterns in the data. In

order to achieve this goal a new relation parameter that is deter-

mined from the decision trees of RFs will be introduced in this sec-

tion. To analyze the relation of predictor variable B to predictor

variable A, all nodes where the primary split variable is variable A

and variable B is included in the set of surrogate variable are consid-

ered. The set of these nodes will be called nodes(A, B). The total

adjusted agreement agreeA, B is then defined as the sum of the

adjusted agreements for all these nodes:

agreeA;B ¼
Xjnodes A;Bð Þj

i¼1
agree pA

i ; qB
i

� �
; (2)

where pA
i and qB

i denote the primary split based on variable A and

the surrogate split based on variable B for node i. The relation be-

tween the variables A and B is then defined as the mean adjusted

agreement mAB which is determined by dividing the total adjusted

agreement by nodes(A), the total number of nodes based on primary

variable A:
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mAB ¼
agreeA;B

jnodesðAÞj : (3)

Note that the mean adjusted agreement is not symmetric in con-

trast to a correlation coefficient or similarities based on distance

metrics. A relation between predictor variables A and B is consid-

ered relevant if the corresponding mean adjusted agreement is larger

than a threshold TS. The calculation of TS, takes into account the

average number of surrogate variables per split s the total number

of variables in the dataset p, and the average adjusted agreement

agreem and is weighted by a user defined factor t > 1:

Ts ¼
s

p
� agreem � t: (4)

The average adjusted agreement agreem is calculated as the aver-

age of the adjusted agreements between all primary splits and surro-

gate variables in each node of each tree in the forest (see

Supplementary Formula S1).

We used the values 1, 5, 10, 20 and 100 for t. Larger values can

be employed to focus on the strongest relations between predictor

variables while low values can be applied to also include weaker

relations.

2.4 SMD variable importance
MD of variable A is defined as the average level of the first split

based on variable A across all trees with at least one split based on

variable A (Ishwaran et al., 2010). In contrast to variable selection

methods that are based on VIMP, important variables have low MD

values. The threshold TMD to separate relevant from non-relevant

variables is determined by the average MD of non-relevant variables

in a setting where the outcome is independent of all predictor varia-

bles. It is calculated by the sum over all levels of the product of level

j, the probability that a variable is chosen by chance pj at level j and

the number of nodes nj that are present in level j:

TMD ¼
X

j

j pj nj: (5)

The idea of our new variable selection approach SMD is to apply

the importance measure of MD defined by the first appearance not

only to primary split variables but also to the occurrence of surro-

gate variables. Hence, the importance measure of variable B is

defined as the level of the first split where B is either the primary

split variable or a surrogate variable for any other variable. Since an

increasing number of surrogate variables will decrease SMD variable

importance values for all variables and particularly for causal, corre-

lated variables, the threshold TSMD to identify important variable

has to be adapted: The number of nodes nj on level j is increased by

the respective average number of surrogate variables of the respect-

ive layer sj :

TSMD ¼
X

j

j pj ðnj þ sj Þ: (6)

2.5 Implementation and analyses
We utilized the R package ranger (Wright and Ziegler, 2017) for our

investigation and implemented MD variable importance from the R

package randomForestSRC and the determination of surrogate vari-

ables from the R package rpart in the ranger environment. Our new

R package SurrogateMinimalDepth is available at https://github.

com/StephanSeifert/SurrogateMinimalDepth. For every RF we gen-

erated 10 000 trees. To investigate variable relations with surrogate

variables and the variable importance with MD and SMD we used

an mtry value of p(3/4) as recommended in (Ishwaran et al., 2011)

and a minimal node size of 1. The parameters s (see Section 2.2) for

SMD of simulated data and t (see Section 2.3) for experimental data

was varied with �0.5, 1, 2, 5 and 10% of the total number of pre-

dictor variables, and 1, 5, 10, 20 and 100, respectively. As default

parameters for Boruta and Vita variable importance we used the

same parameters as in (Degenhardt et al., 2017), namely mtry of
ffiffiffi
p
p

and a P-value of 0.01 and mtry of p/3 and p.t of 0, respectively. The

minimal node size was set to 1 for both methods. In order to exam-

ine the influence of the parameters mtry, and p.t and P-value on the

variable selection results of Vita and Boruta, additional analyses

were conducted. All combinations of mtry values of p(3/4) and

0.33*p, and p.t values of 0.01 and 0.05 for Vita, and mtry values of

p(3/4) and sqrt(p) and P-values of 0.001 and 0.02 for Boruta were

used for this comparison.

For the run time investigation, a computer with 2 � Intel(R)

Xeon(R) CPU E5-2620 v4 @ 2.10 GHz, 16 cores (32 threads) and

64 GB DDR4 RAM was used.

2.6 Data
2.6.1 Simulation study 1

The first simulation study was conducted to evaluate surrogate vari-

ables for the investigation of variable relations and to compare SMD

to MD for variable selection. A quantitative outcome was simulated

based on six so called relevant basic variables X1,. . ., X6 according

to the following linear model:

Y ¼ X1 þX2 þX3 þX4 þX5 þX6 þ e:

Each of the relevant basic variables was sampled independently

from a standard normal distribution Xi � N(0, 1), i ¼ 1, . . ., 6. The

noise followed a N(0, 0.2) distribution. We further simulated three

additional basic variables X7, X8, X9, which are independent of Y

and of X1 to X6 and hence will be called non-relevant. Furthermore,

variables correlated to the three relevant basic variables X1, X2, X3

and to the three non-relevant basic variables X7, X8 and X9 were

generated. For each of those 6 basic variables Xi, 10 correlated vari-

ables (denoted as cXi ¼ cXi
(1), . . ., cXi

(10)) were obtained by the

simulateModule function of the R package WGCNA (Langfelder

and Horvath, 2008) using strong correlation (correlation coefficient

of 0.9) for X1 and X7, moderate correlation (0.6) for X2 and X8,

and low correlation (0.3) for X3 and X9. Additional independent

predictor variables [non-correlated variables (ncV)] were simulated

using the standard normal distribution to reach a total number of

1000 variables. In the following, we will denote the predictor varia-

bles X1, X2, X3, X4, X5 and X6 as well as cX1–cX3 as relevant varia-

bles and the other variables as non-relevant variables. A graphical

summary of the simulation scenario is shown in Supplementary

Figure S1.

We simulated the outcome Y for a population of 100 independ-

ent individuals and generated 50 replicates for this population. For

the evaluation surrogate variables were analyzed as described in

Section 2.3 and variable selection using MD (see Ishwaran et al.,

2010) and SMD (see Section 2.4) was applied.

In order to investigate type I error rates of SMD in a binary set-

ting, as e.g. in a case-control scenario we also simulated a scenario

with 1000 independent N(0, 1) predictor variables and a binary out-

come which was simulated independently of any of the predictor

variables. A total of 50 replicates for 50 cases and 50 controls were

simulated and SMD was applied (see Section 2.4). Type I error rates

for the null scenario were estimated as the number of variables

selected by SMD divided by the total number of predictor variables.
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2.6.2 Simulation study 2

In order to compare SMD to state-of-the-art methods under realistic

correlation structures the second simulation study was conducted. A

similar classification model as in (Degenhardt et al., 2017) was used

and gene expression data were simulated using the R package

Umpire (Zhang et al., 2012). Gene expression values for cases and

controls were generated using a multivariate normal distribution for

a 12 592-dimensional random vector with a mean vector of zeroes.

The covariance matrix was obtained from an experimental RNA-

microarray dataset of breast cancer patients containing 12 592 genes

(see Section 2.6.3) similar as in (Janitza et al., 2018). The set of ef-

fect sizes was set to {�2, �1, �0.5, 0.5, 1, 2} and for each effect size

25 variables out of the 12 592 variables were randomly chosen

resulting in 150 causal variables. To associate these causal variables

with the outcome, the means of these causal variables were modified

according to the corresponding effect size in the case individuals.

The other non-chosen variables and the covariance matrix are the

same for cases and controls. For each set of 150 causal variables, we

simulated two datasets of 200 individuals (100 controls and 100

cases) and repeated this process 50 times including the random selec-

tion of the 150 causal variables.

We estimated the evaluation criteria stability, classification

error, empirical power, sensitivity and false positive rate (FPR) to

compare the different variable importance approaches SMD, MD,

Boruta and Vita.

Stability was determined using the Jaccard’s index (He and Yu,

2010) of the two sets of selected variables from the two respective

datasets. This index is defined as the ratio of the length of the inter-

section and the length of the union of the two sets of variables. It is

1 if the two sets are identical and 0 if they do not have any variable

in common. For the determination of the classification error, each of

the two datasets of each replicate was used to select variables, on

which a RF model (ntree ¼ 10 000, mtry ¼ 4197, nodesize ¼ 20)

was trained (training set) while the other dataset was used as valid-

ation set. Subsequently, the mean classification error for each pair

was calculated and reported. Empirical power of causal variables

was determined separately for each absolute effect size by the frac-

tion of correct selections among all replicates. Sensitivity was

obtained by dividing the number of correctly selected causal varia-

bles by the total number of causal variables. In order to determine

the FPR the set of null variables was defined for each replicate separ-

ately since different variables were simulated as causal. Because vari-

ables at least moderately correlated to causal variables are usually of

interest in association studies as well, only variables that were non-

causal and that were uncorrelated to each of the causal variables

(Pearson’s correlation coefficient < 0.2) were included in the set of

null variables used for the FPR. The FPR was calculated by dividing

the number of selected null variables by the total number of null

variables.

2.6.3 Experimental dataset

For the investigation of experimental data, we used two breast can-

cer gene expression datasets from two different technologies [next

generation sequencing (NGS)-based and microarray] for the predic-

tion of estrogen receptor status that were obtained from The Cancer

Genome Atlas (Network CGA, 2012). Please refer to (Degenhardt

et al., 2017) for details about the data and data pre-processing.

The variable selection methods SMD (with 100 surrogate varia-

bles), Boruta and Vita were compared using the parameters classifi-

cation error and stability. Similar as in simulation study 2 for each

of the variable selection approaches each of the two datasets was

used once to select variables and to train a RF (ntree ¼ 10 000, mtry

¼ 4197, nodesize ¼ 51) and once as validation set to estimate classi-

fication error. The mean error of both validation datasets is reported

in the following. Because of the technological differences of the

datasets a modified version of the Jaccard’s index using the min-

imum number of selected genes as denominator was utilized to

evaluate stability of the variable selection method (also see

Degenhardt et al., 2017). In addition, surrogate variables were used

to identify variables that are related to the gene ESR1 (estrogen

Receptor 1) and the results were compared with a list of correlated

genes that was obtained from a published study on estrogen receptor

status in breast cancer patients (Andres and Wittliff, 2012).

3 Results

3.1 Variable relations and first application of SMD

(simulation study 1)
In order to assess whether surrogate variables can be exploited to in-

vestigate variable relations, the mean adjusted agreement between

each basic variable and all other variables as well as between the

first variable of each group and all other variables was determined

(see Supplementary Figs S2 and S3). Based on the respective mean

adjusted agreement and the calculated threshold, related variables

for each basic variable as well as for the first variable of each group

of relevant and non-relevant, correlated predictor variables were

selected. Figure 1 shows the selection frequencies of the three varia-

bles that were most often selected for each of the considered predict-

or variables. For the relevant basic variables X1 to X3 (Fig. 1A) the

respective correlated variables (cX1 to cX3) are most commonly

selected. However, the frequency depends on the predefined correla-

tions: The variables featuring high and medium correlation values of

0.9 and 0.6 to the basic variables X1 and X2, respectively, are always

selected while the variables having a low correlation of 0.3 to vari-

able X3 are only selected in �30% of the replicates.

Interestingly, a similar result is achieved for the non-relevant cor-

related basic variables X7–X9: The variables of cX7 and cX8 featur-

ing high and medium correlations are always selected for the basic

variables X7 and X8, respectively. The variables of cX9, however,

are again selected as surrogate for variable X9 in only �30% of the

replicates. The relevant non-correlated basic variables X4–X6 show

very low selection frequencies for all variables and groups.

The selection frequencies for the respective first variable of the

correlated groups are also showing an equivalent behavior between

relevant correlated (cX1–cX3) and non-relevant correlated (cX7–

cX9) variables: For the variables with high correlations (cX1 and

cX7) the respective basic variables (X1 and X7) and groups (cX1 and

cX7) are always selected, while for the variables with medium corre-

lations (cX2 and cX8) only the respective basic variables (X2 and X8)

are always selected and the respective groups (cX2 and cX8) are

selected in only �60% of the replicates. For the variables featuring

low correlations (cX3 and cX9) only the respective basic variables

(X3 and X9) are selected in �40% of the cases.

In summary, surrogate variables can be exploited to identify

high, medium and to some degree even low correlations between

variables. As a matter of fact correlations between non-relevant vari-

ables can also be examined when a sufficient number of trees (in this

case 10 000) are built and the number of relevant variables is rela-

tively small.

Figure 2A and B shows the results for MD and SMD variable im-

portance using a predefined number of surrogates (s) of 100. The
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relevant basic variables X2–X6 show a MD variable importance that

is below the threshold for the vast majority of the replicates. Hence,

those variables are selected in most cases. X1, the relevant basic vari-

able of the group with the highest correlation of 0.9 (cX1) is only

selected in less than half of the replicates. This can be explained by

the fact that the variables from the group cX1 are likely to replace

X1 in the decision trees leading to higher MD values for X1 com-

pared with the values for relevant basic variables without correlated

groups (X4, X5 and X6). This fact is also supported by the lower

MD values of group cX1 compared with the non-relevant variables

(X7, X8, X9 and ncV). The other predictor variables and variable

groups mostly have MD values above the threshold and, thus, are

not selected by MD in most replicates. The reason for this rather

poor performance of MD can be attributed to the big p small n

problem, since using 1000 instead of 100 observations shows a

higher correspondence to the simulation setup (see Supplementary

Fig. S4)

The results of SMD variable importance, however, show values

below the threshold for the basic variables X1–X6 and the group

cX1 for almost all replicates and for the group cX2 for most of the

replicates. Hence, SMD has a higher chance of selecting the causal

basic variables and also variables that are highly correlated to these

variables than MD. With this method an opposite effect of the pres-

ence of correlated variables compared with MD can be observed:

Basic variable X1 features lower SMD values than the variables X4,

X5 and X6. Here, choosing correlated variables from the group cX1

instead of X1 in the tree building process doesn’t result in lower min-

imal depth values for X1, since X1 is always chosen as surrogate in

those cases (see Fig. 1). However, the probability that X1 or any

variable of the group cX1 is chosen as candidate split variable is sub-

stantially higher than the probability that an uncorrelated basic vari-

able X4, X5 or X6 is chosen.

In order to investigate the influence of the predefined number of

surrogate splits on SMD, variable selection based on SMD was con-

ducted with numbers ranging from zero to 100 (Supplementary Fig.

S5 shows the results for SMD with s ¼ 5, 10, 20 and 50). Figure 3

compares the selection frequency of the various types of predictor

variables across the different numbers. Using zero surrogates (red

dots) is equivalent to MD variable importance, resulting in relatively

low selection frequencies of 50–80% for the relevant basic variables

(X1–X6) and below 30 and 20% for the groups featuring high (cX1)

and medium (cX2) correlations to the respective basic variables.

When five surrogate variables are used for SMD, (green triangles in

Fig. 3) the relevant basic variables (X1–X6) and the relevant group

featuring high correlations (cX1) are selected for most of the repli-

cates. However, the non-relevant correlated basic variables X7 and

X8 show high selection frequencies and the non-relevant group with

high correlations (cX7) shows increased selection frequencies, as

well. Similar results are obtained for SMD using 10 surrogate

Fig. 1. Selection frequencies across the 50 replicates in simulation study 1 to

investigate variable relations based on surrogate variables for the basic varia-

bles (A) and the first variable of the groups of relevant as well as the non-rele-

vant, correlated predictor variables (B). The number of surrogate variables

was set to 100 and related variables were selected by comparison to a thresh-

old Ts with t¼ 5. For each variable, the three most often selected variables are

shown and the different groups were summarized in one plot. The bars of the

correlated variables are colored in gray

Fig. 2. MD (A) and SMD (B) using 100 surrogate variables. Boxplots of MD

and SMD for 50 replicates and the respective thresholds (dashed lines) to se-

lect important variables are shown. The six groups of correlated variables

(cX1–cX3 and cX7–cX9) as well as the ncVs are summarized in one boxplot
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variables (black squares in Fig. 3): All of the relevant basic variables

(X1–X6) and the group of highly correlated variables (cX1) are

selected in almost all cases, just like non-relevant basic variables (X7

and X8) and the group of non-relevant highly correlated variables

(cX7). Probably, non-relevant, correlated variables are selected,

since those variables are always used as surrogates when a correlated

variable is randomly chosen for the primary split in the tree building

process (see Fig. 1). This results in sufficiently low SMD values even

though these variables are not chosen more frequently for primary

splits than other non-relevant variables.

Interestingly, the selection of non-relevant basic variables with

high and medium correlation (X7 and X8) does not happen on a sig-

nificant scale when 20 surrogate variables are used for SMD (blue

triangles in Fig. 3). In this case the threshold, that is lower than in

the SMD investigation with less surrogate variables, is low enough

to exclude these variables. However, the non-relevant and non-

correlated variables (X4–X6) are selected in only 60–80% of the

replicates, and thus even more infrequently than in MD variable se-

lection (red dots). Thus, the threshold in this scenario is so low that

relevant non-correlated variables can be rejected, only because they

are rarely selected as surrogate variables for other relevant variables.

When the number of surrogates is increased to 50 all of the rele-

vant basic variables (X1–X6) and the highly correlated group cX1

are selected in >80% of the replicates and the medium correlated

group cX2 still is selected in �60% of the cases. In addition to this,

the non-relevant basic variables (X7–X9) and groups (cX7–cX9) are

usually rejected. Hence, using more surrogate variables than the

simulation scenario suggests, leads to more accurate results, since

correlated non-relevant variables are rejected more frequently and

relevant non-correlated variables are selected more often.

Using 100 surrogate variables instead of 50 slightly increases the

selection frequencies for almost all variables, including relevant vari-

ables (X1–X6) and groups (cX1–cX3), as well as non-relevant, corre-

lated variables (X7–X9) and groups (cX7–cX9).

The additionally conducted null scenario analysis also shows

that slightly more non-causal variables are selected when higher

numbers of surrogates for SMD are used. Although no variable is

selected in any replicate when SMD is applied with 5, 10 and 20 sur-

rogates, the type 1 error rate is 0.00004 and 0.00036 when SMD is

applied with 50 and 100 surrogates, respectively.

In summary, using relatively low numbers of surrogate variables

can result in decreased rejection of correlated non-relevant variables

and increased rejection of non-correlated relevant variables. When

sufficiently high numbers of surrogate variables are chosen; how-

ever, the true relevance of the variables can be reproduced adequate-

ly by SMD variable selection: The basic variables, as well as the

variables with high and partially even the variables with medium

correlation are frequently selected.

3.2 Comparison of SMD to state-of-the-art methods

(simulation study 2)
Figure 4 summarizes the results for the second simulation study that

was performed to compare SMD with different numbers of surro-

gate variables to state-of-the-art methods under realistic correlation

structures. Figure 4A displays the two evaluation criteria classifica-

tion error and stability. An optimal method would be located in the

upper left corner, i.e. would have a large stability and a small classi-

fication error. Figure 4B shows empirical power stratified by effect

size. Similar to the first simulation study, MD (red dots in Fig. 4)

performs weakly in this simulation scenario: The empirical power of

causal variables with all effect sizes is very low and the stability is

zero meaning that different small sets of variables are selected for

the two datasets that were simulated using the same causal varia-

bles. Hence, the classification error of this method is crucially bigger

than the errors of the other methods that achieve a perfect classifica-

tion. SMD with 50 surrogate variables (green triangle in Fig. 4)

shows high empirical power for causal variables with effects sizes of

j1j and j2j as well as a high stability of over 80%. Even though com-

paratively few surrogate variables are used, both empirical power

and stability are higher than the respective values that were obtained

by the Vita method (purple cross in Fig. 4).

The results using a larger number of 100 surrogate variables for

SMD show a substantially higher empirical power for low effect

sizes (j0.5j) of �40%, while the stability remains high at around

80%. Hence, the empirical power is substantially higher than for the

Boruta method (orange stars in Fig. 4).

Raising the number of surrogate variables to 200 (blue triangles

in Fig. 4) shows interesting differences to the application of SMD

Fig. 3. SMD selection frequencies using different numbers of surrogates. For

the basic variables each symbol denotes the frequency across all 50 repli-

cates whereas for the six groups of correlated variables (cX1–cX3 and cX7–

cX9) as well as the ncVs the average frequency across all variables in the

group is shown

Fig. 4. Comparison of the performance of SMD using different numbers of

surrogates with MD, Boruta and Vita in simulation study 2. Median, as well as

the interquartile range over all 50 replicates for stability and classification

error (A) and median frequencies of the empirical power for the different ef-

fect sizes (B) are shown
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with fewer surrogate variables: The empirical power of causal varia-

bles with low effect sizes rises to around 70%, but the stability

decreases to �40%. This trend continues when SMD with 500 and

1000 surrogates (green square crosses and blue diamonds in Fig. 4)

is applied with empirical power of around 90% for causal variables

with low effect sizes and stability values of <20%.

The average number of selected variables is 3.5 for MD, 85 for

Vita, 91 for SMD50, 108 for Boruta, 127 for SMD100, 240 for

SMD200, 779 for SMD500 and 1337 for SMD1000. It is obvious

that using higher numbers of surrogate variables results in the selec-

tion of higher numbers of variables. Among those variables, how-

ever, also increasing numbers of wrongly selected variables are

present, which is obvious from the FPR that is presented in

Supplementary Figure S6.

Supplementary Figure S7 shows the results of the analyses of

simulation study 2 applying Vita and Boruta with the same value for

mtry that was used for SMD and MD and various values for the

method specific parameters p.t (Vita) and P-value (Boruta). It is ob-

vious that similar results are obtained when mtry and P-value (for

Boruta) are changed, while higher values for p.t (for Vita) result in

higher sensitivities, but also much higher FPRs. Based on these

results it can be concluded that using the same parameter values

[mtry ¼ sqrt(p) and P-value ¼ 0.01 for Boruta and mtry ¼ 0.33 P

and p.t. ¼ 0 for Vita in Supplementary Fig. S7] as in (Degenhardt

et al., 2017) is appropriate for the comparison with SMD.

In summary, using low numbers of surrogate variables for SMD

leads to stable results that have a similar or even higher power than

state-of-the-art methods. When higher numbers are applied, the lists

of selected variables are more diverse, inter alia because different

variables that are not correlated to causal variables are chosen in

each of the two datasets in each replicate.

3.3 Application to experimental datasets
Figure 5 displays the analysis results of the experimental datasets.

Since the true causal variables are not known only classification

error and the stability of the variable selection were used for the

variable selection performance comparison (Fig. 5A). The classifica-

tion errors of the three methods are similar and range from 0.0737

for SMD to 0.708 for Boruta. As in (Degenhardt et al., 2017) a dif-

ferent definition of stability using the minimum number instead of

the union of selected variables was used to compensate for the dif-

ferent characteristics of the datasets. SMD variable selection features

a much higher stability of 80.9% than Boruta (48.5%) and Vita

(27%) (Supplementary Fig. S8 shows the stability values using the

original definition). SMD selected 393 and 1448 genes in the NGS

and microarray datasets. The numbers are 130 and 111 for Vita,

and 529 and 476 for Boruta.

The average run time for SMD was �1.5 h and thus faster than

the run time of Boruta (�2 h) and slower than the run time of Vita

(�5 min).

For the identification of related variables the selection process

explained in Section 2.3 was performed for the gene ESR1 that is

known to encode the estrogen receptor-alpha. In Figure 5B, the per-

formance comparison using different thresholds Ts based on differ-

ent values for the parameter t is displayed. Utilizing higher values

for the threshold and, thus, stricter requirements for the selection,

results in the consideration of lower numbers of variables related to

ESR1. Hence, only �84 related variables are identified when t ¼
100 is utilized (blue diamond in Fig. 5B), while �528 variables are

defined as related when a threshold with t ¼ 1 is used (green triangle

in Fig. 5B). The stability, however, is very similar at �60% when

different thresholds are applied. This indicates that the parameter t

can be adjusted to either focus on strongly related variables only or

to include also moderately related variables without increasing the

number of wrongly selected variables. Information about mean

adjusted agreement between ESR1 and genes identified as related

for each threshold value for the NGS and microarray datasets can be

found in the Supplementary Tables.

In order to assess these lists, we analyzed the presence and pos-

ition of 11 genes with Pearson correlation coefficients of >0.6 to

ESR1 that were taken from a study examining breast cancer patients

(Andres and Wittliff, 2012). Table 1 shows that all of these genes

are present in the list based on the microarray data and nine of the

eleven genes are in the list of the NGS data. Most of the variables

feature comparatively high values for mean adjusted agreement, so

that they are also selected when the respective highest threshold is

utilized (ranks labeled with a in Table 1). However, the relation that

is represented by the mean adjusted agreement goes beyond the ana-

lysis of pairwise correlations since it also includes information about

the causality of the variables. The correlation coefficient is, never-

theless, an important influence on the variable relation analyzed by

surrogate variables. Hence, selection of related variables shows

results that are in accordance to known variable correlations

(Table 1) and variables with high correlation coefficients also fea-

ture high mean adjusted agreement values (Supplementary Fig. S9).

4 Discussion and conclusion

In this study, we introduced new possibilities to exploit surrogate

variables in RFs besides the already established application to com-

pensate for missing values in the data (Breiman, 2001).

In the first approach, we showed that the mean adjusted agree-

ment of surrogate variables can serve as proxy to investigate variable

relations. We demonstrated this in a simulation study where correl-

ation patterns could be reproduced by the analysis of mean adjusted

agreement. The correlation coefficient, however, is only one influ-

ence on this relation that is also strongly affected by the mutual

causality of the respective variables. Hence, this new relation param-

eter is very promising to analyze variables in complex effect interac-

tions and to identify relevant pathways and networks underlying

complex diseases.

Fig. 5. Performance comparison based on experimental datasets for SMD

using 100 surrogate variables, Boruta and Vita (A) as well as performance

comparison to identify variables related to ESR1 utilizing different thresholds

(B). Stability and classification error for the two datasets are shown in (A). In

(B), the stability and the average number of variables related to ESR1 using

SMD with different thresholds Ts based on different values for the parameter

t (see Formula 2) is displayed. Note that a different definition of stability

defined relative to the minimum and not the union of the two sets of selected

variables is used
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In the second approach, we utilized surrogate variables to im-

prove MD variable importance and presented a new variable selec-

tion method, SMD. Since MD reveals a ‘ceiling effect’ meaning that

trees cannot be grown deep enough for reliable variable selection

this method is particularly affected by the big p and small n problem

(Ishwaran et al., 2010). Including surrogate variables to calculate

minimal depth values, however, strongly increases the number of

variables that are considered in every node. Hence, the big p and

small n problem is not as detrimental when SMD is applied and con-

siderably higher amounts of causal and relevant variables are

selected in the simulation studies. However, the optimal number of

surrogates for SMD strongly dependents on the variable relations

and the number of truly relevant variables. Hence, further applica-

tions to experimental and simulated data are needed for a compre-

hensive overview but we tentatively recommend using � 1% of the

total variables as utilized number of surrogate variables for future

applications.

In this article, we applied SMD to the classification and regression

of gene expression data. Since SMD is using the tree structures for the

evaluation, the application to survival data is also possible, as it has

been demonstrated by the application of MD (Ishwaran et al., 2010).

Furthermore, RFs do not make any assumptions about the predictor

variables or the outcome, which means that omics data with different

distributions, such as categorical data (genotypes) or proportional

data (methylation) could also be analyzed by SMD. However, in the

current version of the R package only the analysis of continuous data

is possible, which will be changed in a future update.

The focus of this study was on variable selection in high dimen-

sional omics data; however, RF analysis and variable selection is also

successfully applied on low-dimensional datasets with many more

observations than predictor variables. In this situation, it might not be

necessary to include surrogate variables in the variable selection step

since MD variable selection often leads to similar results (data not

shown). However, the SMD approach can be used to better under-

stand the relations between important predictor variables.

The comparison of SMD to state-of-the-art variable selection

methods showed that SMD displays a more complete picture of the

variables that are involved, since a much higher fraction of all rele-

vant variables are identified. The average run time of SMD is be-

tween the methods that were used for comparison making it a well

applicable method for variable selection.

SMD variable importance, just as Gini importance (Strobl et al.,

2007), is biased in favor of variables with many possible split points

such as categorical variables with a large number of categories or

quantitative variables (data not shown). Therefore, our study used

only quantitative predictor variables. Recently, a modified version

of the Gini importance called Actual Impurity Reduction has been

proposed which is unbiased regarding the number of categories and

minor allele frequency (Nembrini et al., 2018). This approach could

be combined with the concept of surrogate variables to allow the

analysis of variables of different types.

In conclusion, exploiting surrogate variables is very promising

for powerful variable selection and for investigating the complex

interplay of predictor variables and outcome variables in high-di-

mensional omics datasets.
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