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Abstract

Motivation: Recent advances in high dimensional phenotyping bring time as an extra dimension

into the phenotypes. This promotes the quantitative trait locus (QTL) studies of function-valued

traits such as those related to growth and development. Existing approaches for analyzing func-

tional traits utilize either parametric methods or semi-parametric approaches based on splines and

wavelets. However, very limited choices of software tools are currently available for practical im-

plementation of functional QTL mapping and variable selection.

Results: We propose a Bayesian Gaussian process (GP) approach for functional QTL mapping. We

use GPs to model the continuously varying coefficients which describe how the effects of molecu-

lar markers on the quantitative trait are changing over time. We use an efficient gradient based al-

gorithm to estimate the tuning parameters of GPs. Notably, the GP approach is directly applicable

to the incomplete datasets having even larger than 50% missing data rate (among phenotypes).

We further develop a stepwise algorithm to search through the model space in terms of genetic

variants, and use a minimal increase of Bayesian posterior probability as a stopping rule to focus

on only a small set of putative QTL. We also discuss the connection between GP and penalized

B-splines and wavelets. On two simulated and three real datasets, our GP approach demonstrates

great flexibility for modeling different types of phenotypic trajectories with low computational cost.

The proposed model selection approach finds the most likely QTL reliably in tested datasets.

Availability and implementation: Software and simulated data are available as a MATLAB package

‘GPQTLmapping’, and they can be downloaded from GitHub (https://github.com/jpvanhat/

GPQTLmapping). Real datasets used in case studies are publicly available at QTL Archive.
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1 Introduction

Many quantitative traits (such as growth and development) are

dynamically varying in time and characterized by the underlying

age-related genetic process. In collected datasets of such function-

valued traits, repeated measurements are available over multiple

time points. Modern high-throughput phenotyping approaches have

been increasingly applicable in the field of animal and plant genetics

to acquire a high resolution time course data, with hundreds of

individuals and hundreds of time points. This makes it possible to

combine information (‘borrow strength’) over time points and joint-

ly model the time-dependent measurements, which may increase the

statistical power to identify significant genetic variation associated

with the time-dependent traits. Such a principle is currently routine-

ly used in approaches developed for mapping quantitative trait loci

(QTLs) in function-valued traits (see e.g. Li and Sillanpää, 2015;

Wu and Lin, 2006).

Many different parametric and non-parametric techniques have

been applied in functional QTL mapping literature to fit a smooth

function or curve over time points. These include, e.g. parametric

maximum likelihood approaches (Ma et al., 2002), estimation equa-

tion (Xiong et al., 2011), two-stage methods (Li et al., 2014; Liu

et al., 2018), a simple regression based method (Kwak et al., 2014),

a functional principal component approach (Kwak et al., 2016),

random regression (Ning et al., 2017), penalized regression

(Li et al., 2015) and Bayesian methods (Sillanpää et al., 2012; Yang

and Xu, 2007). Li and Sillanpää (2013) used Bayesian p-splines with

(non-parametric) B-spline bases to model each marker’s effect on

phenotype over time. A unique property of the method was the

degree of smoothness of each QTL trajectory was determined auto-

matically. Their estimation was performed in a variational Bayes

framework and they used a multiple-marker model considering

marker contributions jointly and selecting model variables (QTL) in

a stepwise manner. Residual dependence between time points was

handled by assuming autoregressive AR(1) covariance structure.

The related spline-based models for function-valued traits were pre-

viously presented in a mixed model context (Fan et al., 2012; Yang

et al., 2009) and will be presented in a Gaussian process (GP,

Rasmussen and Williams, 2006) model context here.

A GP is a stochastic process that can be used to set probability

distribution over functions (Rasmussen and Williams, 2006). Hence,

it is especially attractive for longitudinal studies where the aim is to

estimate functional responses. In genomics, GP regression methods

have been proposed to analyze gene expression and transcription

data (Äijö et al., 2014; Honkela et al., 2011, 2015; Nguyen et al.,

2016), and detect gene-to-gene interactions (Zou et al., 2010). Use

of GP models for longitudinal traits have been proposed for herit-

ability estimation (Jaffrezic and Pletcher, 2000; Pletcher and Geyer,

1999). Here, we formulate a similar model to Li and Sillanpää

(2013) in a GP framework and show that it provides a competitive

and flexible alternative to it. The estimation of the model hyperpara-

meters is performed using maximum a posterior (MAP) with gradi-

ent based optimization after which the inference on functional traits

is done analytically. Another notable feature of the GP approach is

that it can efficiently marginalize out the missing data during the

estimation procedure. This avoids an extra step of imputation of the

missing data done ahead of QTL analysis (Kwak et al., 2014).

Simultaneous estimation of function-valued traits of either a vast

amount of markers and/or time points is statistically and computation-

ally challenging (Kwak et al., 2014). Variable selection can be used to

keep only the most important loci in the model (e.g. loci which are

most associated with the quantitative traits) and discard the irrelevant

ones. This can greatly reduce the dimension of the model speeding up

QTL mapping and making the results more interpretable. Similar to Li

and Sillanpää (2013), we adopted a (forward) stepwise approach for

variable selection. However, we propose a novel extension to their

method which allows for variable selection according to approximate

Bayesian posterior probabilities of alternative marker combinations.

We propose a novel prior that penalizes the complexity of the model in

terms of the number of time points.

The structure of the rest of the article is as follows. In the

Section 2, we introduce the GP regression model for analyzing

function-valued QTL data, the Bayesian forward selection ap-

proach to select the most important markers and the MAP estimate

for the hyperparameters. In the Section 3, we evaluate the perform-

ance of our novel method under five public datasets, including two

simulated datasets following the scheme of Li and Sillanpää

(2013), an Arabidopsis dataset (Moore et al., 2013), a mouse body

weight data (Gray et al., 2015) and a mouse behavior dataset

(Xiong et al., 2011). In the Section 5, we summarize the strength

of our GP approach, and also point out some future research

directions.

2 Materials and methods

2.1 GP model for functional QTL mapping
A multivariate Gaussian linear regression model for functional QTL

mapping for i ¼ 1; . . . ; n individuals and j ¼ 1; . . . ; p markers can be

specified as

yiðtÞ ¼ b0ðtÞ þ
Xp

j¼1

xijbjðtÞ þ �iðtÞ; (1)

where yi(t) is the measurement of the phenotypic value of individual

i at time t and b0(t) is the intercept term representing the non-genetic

additive effect at time point t. The genotype of individual i at marker

j is denoted by xij and coded as 1 for genotype AA, 0 for Aa and �1

for aa; bj(t) is the additive effect of marker j at time t and �i(t) is the

Gaussian residual error. Here, we assumed either independent resid-

uals or a first order continuous time autoregressive residual model

[AR(1)] (Hartmann et al., 2017). For k measurement time points,

the residual distribution is then �i ¼ ½eiðt1Þ; . . . ; eiðtkÞ� � Nð0;R�Þ.
With independent errors, the covariance matrix R� ¼ r2

� Ik where Ik

is a k � k identity matrix and r2
� is the residual variance. In the

AR(1) model ½R��i;j ¼ r2
� e
�jti�tj j=q� where q� is the autocorrelation

decay parameter. In model (1), the effects of multiple loci are

included in the same equation and we assume no dominance effects.

We model the dependency between the observations at multiple

time points with a GP prior for the regression coefficients represent-

ing the genetic additive effects

bj � GPð0;Cbj
ðt; t0ÞÞ; (2)

where Cbj
ðt; t0Þ ¼ CovðbjðtÞ;bjðt0ÞÞ denotes the covariance between

additive effects at any two time points (t; t0 2 <). A GP is fully

defined by its covariance and mean functions (here we fixed the

mean function at zero) which determine the properties of the pro-

cess, such as its smoothness and variability. This suggests that we

can introduce a certain degree of smoothness via the prior on addi-

tive effects straightforwardly by selecting a covariance function.

Here we use the Mátern covariance function (Fahrmeir and

Kneib, 2011).

Cvðt; t0Þ ¼ r2 21�v

Cð�Þ
ffiffiffiffiffiffi
2�
p jt � t0j

q

� ��
K�

ffiffiffiffiffiffi
2�
p jt � t0j

q

� �
; (3)
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where K�(�) represents a modified Bessel function, � is the degrees of

freedom, q is a non-negative decay parameter which governs how

fast the correlation between two function values drops and r2 is a

variance parameter governing the a priori variance of bj(t). The

Bessel function is available in closed form for � ¼ 1/2, 3/2, 5/2,. . .

leading to an analytical representation of the covariance. The � par-

ameter influences the level of smoothness in the additive effects. The

smoothness of the estimated effect increases as a function of �

(Supplementary Fig S1). At the limit � ! 1 we get the widely used

Gaussian covariance function (Rasmussen and Williams, 2006).

Other choices of the covariance function could also be used and

interestingly, the Bayesian penalized B-spline regression introduced

in Li and Sillanpää (2013) can also be considered as a special case of

the GP model (see the online Supplementary Material). In our

experiments � ¼ 5/2 performed well and it is used in all of our case

studies,

C5=2ðt; t0Þ ¼ r2 1þ
ffiffiffi
5
p
jt � t0j
q

þ 5jt � t0j2

3q2

 !
e �

ffiffi
5
p
jt�t0j
q

� �
: (4)

We denote the covariance function parameters by h and the re-

sidual covariance parameters by h� and refer to them jointly as

hyperparameters. With iid residuals h� ¼ r2
� and with AR(1) resid-

uals h� ¼ fr2
� ; q�g. All additive effects can have their own variance

and decay parameters, in which case h ¼ fr2
0; q0; . . . ; r2

p;qpg, or

share the same parameters, in which case h ¼ fr2;qg. We follow the

principles of weakly informative priors that penalize for model com-

plexity (Hartmann et al., 2017; Simpson et al., 2017) when setting

the hyperpriors. The inverse of decay parameters, 1/q, was assigned

with a half Student-t prior with scale 0.1 and 4 degrees of freedom,

which favors smoother functions, and the variance parameter, r2,

was given a half Student-t prior with scale 1 and 4 degrees of free-

dom. The residual variance was given an Inverse Gamma prior Inv-

Ga(a, b) with a ¼ b ¼ 10–4 and the residual length-scale q� was given

a half Student-t prior with scale 0.1 and 4 degrees of freedom, which

favors short correlation times.

2.2 Variable selection
2.2.1 Variable selection using posterior probabilities of alternative

models

One of the key questions in QTL mapping is variable selection; i.e.

which markers should be included into the model (1). Here, we con-

duct the variable selection using (approximate) Bayesian posterior

probabilities for alternative models. We denote by ~p the total num-

ber of markers and by M 2 fM1; . . . ;M2
~p g a model with a certain

subset of them. A model’s posterior probability,

PrðMjy;XÞ / pðyjX;MÞPrðMÞ; (5)

where pðyjX;MÞ is the marginal likelihood (ML) of a model and

PrðMÞ is model’s prior probability, which represents its credibility

among the alternatives after conditioning to the data (O’Hagan and

Forster, 2004; Piironen and Vehtari, 2017). First, we search for the

model with the MAP probability. After that we use this model to

map the marker specific function-valued traits as detailed in Section

2.3.

In practice, evaluating all a priori plausible 2
~p models becomes

infeasible when the number of markers ~p is large. Alternatively, a

(forward) stepwise approach was used here to only focus on a low

dimension of the model space. Briefly, the forward search algorithm

starts from a null model with only the intercept term, and at each

step it adds to the model a new variable (i.e. a marker), which may

improve the model by maximizing the model posterior. The model

search stops when either the model posterior cannot be improved

anymore, or the maximum number of iterations specified by the

user has been reached.

2.2.2 Marginal likelihood

A GP prior for the additive effects implies that we can analytically

marginalize over them. Moreover, the marginalization properties of

a GP allow for easy treatment of data where measurements are miss-

ing from some individuals and time points. For notational simplicity

we assume that all individuals are measured at the same time points

tr; r ¼ 1; . . . ; k and comment on missing data when needed. The con-

ditional distribution of observations given the hyperparameters is

yjX;M; h; h� � Nð0;XCbXT þ R�Þ; (6)

where y ¼ ½y1ðt1Þ; . . . ; y1ðtkÞ; y2ðt1Þ; . . . ; ynðtkÞ�T collects all meas-

ured phenotypic values arranged so that first we have all measure-

ments for individual 1, then for individual 2 and so on. The matrix

Cb ¼ diagðCb0
; . . . ;Cbp

Þ is a ðpþ 1Þk� ðpþ 1Þk block diagonal ma-

trix where the j’th block contains the covariance matrix of bj. The

matrix X is an nk� ðpþ 1Þk such that X ¼ x� Ik, where xði; jÞ ¼
xij: Equation (6) implies also the hyperparameters’ ML and can be

computed for any collection of observations. If observations for an

individual are missing for some time points, we just remove the cor-

responding rows from y and X and the corresponding rows and col-

umns of R�. Calculating (6) as written is inefficient since it involves

inversion of the nk � nk covariance matrix XCbXT þ R� which is

easily overwhelmingly large. We use the Woodbury–Sherman–

Morrison lemma (Harville, 1997) and sparse matrix routines

(Davis, 2006) for efficient implementation as described in detail in

the Supplementary Material. Given (6) a model’s ML is

pðyjX;MÞ ¼
ð

pðyjX;M; h; h�Þpðh; h�Þdhdh�: (7)

Calculating the likelihood requires computationally intensive nu-

merical integration over the hyperparameters (Hartmann et al.,

2017). Since the number of alternative models, 2
~p , is extremely

large, carrying this integration out for all compared models would

render the approach impractically slow. We propose to simplify the

ML calculations by fixing the covariance function parameters and

integrating numerically only over the residual covariance

parameters.

As the first option we fix the covariance function parameters to

their MAP estimates which can be found with gradient based opti-

mization as described in Section 2.3. This is justified since the ML

surface (6) is rather insensitive to small changes in covariance func-

tion parameters near their MAP estimate (Vanhatalo et al., 2010;

Zhang, 2004). To avoid time consuming optimization with very

large datasets, we tested also fixing the covariance function parame-

ters to a pre-defined constant. We set r2
j to a value that allows mod-

eling the variation in trait values; r2
j ¼ 1 for normalized trait values.

Analogously to non-longitudinal models the variable selection with

fixed r2
j values can be seen as an alternative to optimizing the vari-

ance parameters with shrinkage priors. When fixing the decay

parameters qj, we use prior understanding about the functional traits

to guide the choice. If the longitudinal traits are known to vary fast

(slow) we adjust the decay parameter to small (large) values so that

the prior predictive draws from GP look reasonable for the modeled

trait. As a general approach, we set q¼SD of the measurement times

(in practice q ¼ 1 and the observation times are standardized to

have mean zero and standard deviation one). This choice led to reli-

able variable selection in our experiments.
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After fixing h, we marginalize over h� using grid integration

(Monahan, 2011), such that in case of the iid residuals model

pðyjX;MÞ �
Ð

pðyjX;M; h; r2
� Þpðr2

� Þdr2
�

�
XM
l¼1

pðyjX;M; h; r2
�;lÞpðr2

�;lÞDr2
�

(8)

where r2
�;l are integration points and Dr2

�
is the width of the integra-

tion grid cell. This summation can be conducted efficiently by con-

structing the grid around MAP estimate of h� and parallelizing the

summation.

2.2.3 Priors for alternative models

A prior for alternative models is equivalent to giving non-zero prior

probability for an additive effect to be zero. A typical approach to

construct a model prior in non-dynamic QTL models is the follow-

ing. Let zj 2 f0;1g be a latent variable that defines whether marker j

has non-zero (zj ¼ 1) additive effect or not (zj ¼ 0). A model, M, can

then be indexed by a vector zðMÞ ¼ ½zðMÞ1; . . . ; zðMÞ~p �. We assume

that a priori the expected number of important markers is m and

each marker is equally likely to be important. Then, the prior prob-

ability for a marker to have non-zero additive effect is

Prðzj ¼ 1Þ ¼ p ¼ m=~p. Hence, the prior probability for a model M is

PrðMjpÞ ¼ PrðzðMÞÞ ¼ ppð1� pÞ~p�p where p ¼
P~p

j¼1 zðMÞj. This

prior over the model space has been used by, e.g. Benner et al.

(2016) in (non-dynamic) genome-wide association studies and is

equivalent to the spike-and-slab prior for additive effects (O’Hara

and Sillanpää, 2009).

In our work, additive effects are stochastic processes and, hence,

each marker has an infinite number of additive effects (one for every

possible point in time). To accommodate this, the latent variable zj

is extended to a latent function zj(t) and instead of giving prior prob-

ability for zj ¼ 0 we define a stochastic process for zj(t). This exten-

sion is similar to construction of spatially and spatio-temporally

structured spike-and-slab priors but instead of working with a finite

dimensional vector (Andersen et al., 2014, 2017), we define the

spike-and-slab prior for a stochastic process (see Supplementary

Material). To summarize, when constructing the prior process for

zjðtÞ we assume PrðzjðtÞ ¼ 1Þ ¼ p for all t and j and restrict the

model space to consider only models where zj(t) is either one or zero

for all t. When calculating a model’s posterior conditional on finite

data at k measurement times, the model prior PrðMÞ corresponds to

the marginal prior probability PrðzðMÞÞ where zðMÞ ¼ fzðMÞj;rg is a

matrix of latent variables for markers j ¼ 1; . . . ; ~p at times

r ¼ 1; . . . ; k. The resulting prior probability for a model with p non-

zero markers is

PrðMjpÞ ¼ ppkð1� pÞ~pk�pk; (9)

which is analogous to the spike-and-slab prior in non-dynamic stud-

ies with the difference that the total number of active and non-active

markers is multiplied by the number of time points in the data.

Intuitively this can be understood so that the model prior has to ac-

count for the fact that the number of parameters in model (1)

increases with the number of measurement time points.

By choosing the marker inclusion probability p to be small, the

model prior penalizes the number of markers included in the model

favoring a parsimonious model. This is in line with the oligogenic

assumption for genetic architecture which suggests that there should

only be a few markers that contribute significantly to (dynamic) trait

variation. Hence, m should be of the order of 10 or less. To avoid

explicitly determining a value of p, we could alternatively assign a

Beta prior to p, and calculate the marginal probability of model M

by integrating out p as pðMÞ ¼ Bðmkþa;pk�mkþbÞ
Bða;bÞ , where B represents

the Beta function. The hyperparameters a and b can be chosen in a

way that the prior mean of the Beta prior equals m but there is sig-

nificant variation around it.

2.3 Quantitative trait mapping: inference with selected

markers
After selecting the markers to be included in the model, we optimize

the hyperparameters to their (marginal) MAP estimate

ĥ; ĥ� ¼ arg max
h;h�

pðyjX;M; h; h�Þpðh; h�Þ; (10)

where pðh; h�Þ is the prior for the hyperparameters and

pðyjX;M; h; h�Þ is given in (6). We search for the MAP solution with

a scaled conjugate-gradient algorithm.

We use the multivariate Gaussian equations (O’Hagan and

Forster, 2004) to derive the (conditional) posterior predictive distri-

bution of the additive effects at any collection of time points

bjy;X; h; h� � Nðmb;RbÞ: (11)

Here, b ¼ ½b1ð~t1Þ; . . . ; b1ð~tk0 Þ; b2ð~t1Þ; . . . ; bpð~tk0 Þ�T collects all the

values of additive effects at times ~t1; . . . ; ~tk0 ; mb ¼
CbXTðXCbXT þ R�Þ�1y and Rb ¼ Cb �CbXTðXCbXTþ R�Þ�1XCb.

Hence, conditional on the hyperparameters we can analytically cal-

culate the mean and variance of the additive effects. Note also that

we have denoted the prediction times with ~tr in order to emphasize

that the predictive distribution can be calculated for any collection

of times, not only on measurement points. This allows

for prediction of additive effects at missing time points. A computa-

tionally demanding alternative approach would be to approximate

the marginal posterior distribution pðbjy;X;MÞ using Markov chain

Monte Carlo. In this case, we would first sample from the posterior

pðh; h�jy;XÞ, then marginalize over h, h� by sampling b from the

multivariate Gaussian (11) for each joint sample of h and h�.
The trait heritability or the proportion of phenotypic variation

explained by molecular markers can be estimated for multiple time

points analogously to the heritability estimation for a single time

point (Sillanpää, 2011). For each time point tr, we first estimate the

residual variance as r̂ðtrÞ ¼
Var½yiðtrÞ�b̂0ðtrÞ�

P
j2½QTL� xijb̂ jðtrÞ�

ðn�mÞ , where m is

the total number of markers included in the optimal model (see

Section 2.2). The heritability at the given time point is then defined

as ĥ2ðtrÞ ¼ Var½yiðtrÞ��r̂2ðtrÞ
Var½yiðtrÞ� .

3 Experiments

The GP analysis was conducted on two simulated and three real

datasets as previously described. In all the examples, the variable se-

lection was conducted first to determine an optimal subset of

markers to be included in the model based on model posterior prob-

abilities. The maximum number of iterations (i.e. markers) of the

variable selection is specified as 15 in the simulation studies, and 10

in all the real datasets. Selected markers were judged as putative

QTL and the quantitative trait mapping was done using these

markers. We ran the experiments with both iid and AR(1) residual

structures, but report the results for iid residuals only given lack of

significant differences between the two residual error models. For

variable selection, we tested both optimizing the hyperparameters to

their MAP estimate and fixing them to the pre-defined constants.

Since the putative QTL obtained with these two methods were iden-

tical, we report the results only for the latter. In the Bernoulli prior

A Gaussian process model for mapping functional traits 3687



for markers, we tested p ¼ 0.01 and p ¼ 0.2 as two default choices

of hyperparameters (a prior sensitivity analysis is illustrated in

Fig. 1), as well as a third option a Beta(1, 1) prior to p and integrat-

ing it out. We compared our method to the Bayesian p-splines

method of Li and Sillanpää (2013) and to the stability selection

method (Alexander and Lange, 2011, see Supplementary Material

for details; Meinshausen and Bühlmann, 2010) to measure the im-

portance of the markers and judge QTL.

3.1 Simulated analyses
The first, small simulated dataset includes 453 single nucleotide

polymorphism (SNP) markers distributed over 5 chromosomes of

1 Morgan each from 2025 individuals with a population structure

as in Coster et al. (2010). New phenotypic data were simulated in

the same way as in Li and Sillanpää (2013). Briefly, on the basis of

the genotypic data of a sub-sample of 500 individuals, we simulated

new phenotypic data with 9 additive QTL (for the markers at 40, 56

and 88 cM of Chr1, 4, 31 and 88 cM of Chr2, 25 cM of Chr3,

85 cM of Chr4 and 81 cM of Chr5) and an intercept term in the

simulation model. The coefficients were simulated to have various

shapes at different QTL. The functional forms of the varying coeffi-

cients of the nine QTL can be found in Li and Sillanpää (2013). The

simulation was replicated 50 times to measure the GP’s statistical

power to detect QTL and its ability to control false positives. To

evaluate the performance of the GP approach under incomplete

data, we repeated simulation study generating completely at random

5, 10, 15 and 20 missing data points for each of the 500 individuals.

The second, large simulated dataset was created on the basis of a

genome-wide marker dataset of a commercial outbred mouse popu-

lation (Parker et al., 2016). The original genotype set comprised

over 200 000 SNPs distributed over 1150 individuals. To reduce the

computational complexity of the analysis, we selected 10 015

markers at every 20 kb of the physical map to be included in the

study. To evaluate whether the GP approach is sensitive to the sam-

ple size, n ¼ 100, 200, 500 and 1000 individuals were randomly

selected to generate phenotypes. As in the previous simulated data-

set, we simulated time-dependent additive effects based on nine

QTL as well as an intercept term. The simulation was replicated 10

times to evaluate the average performance of the methods.

3.2 Mouse growth data
The intercross F2 mouse dataset was initially introduced by Gray

et al. (2015) in a study on genetic regulation of extreme phenotypes

in an island population. An F2 population comprising 1374 individ-

uals was generated by crossing Gough Island mice and mainland

mice (denoted as WSB). The body weights were measured from

1 week to 16 weeks age for all mice. Only 1212 mice with missing

phenotypes at <4 time points were used in the QTL study.

Genotyping was done using an llumina Infinium array, which

resulted in 11 833 markers. Since the nearby markers in the linkage

map were highly correlated with each other, they may represent the

same QTL. Hence, we applied a bin approach introduced in Xu

(2013) to divide the linkage map to many non-overlapping windows

with roughly 10 cM length. In each bin, we calculated the mean

genotypic value of the SNPs located within that bin, and used the

average genotypes to replace the original SNP data. Consequently,

the 11 833 markers were reduced to 116 bins. Sex was also included

in the analysis as an extra covariate.

3.3 Mouse behavior data
The dataset was introduced by Xiong et al. (2011). The phenotypic

data contains active state probabilities (y 2 ½0; 1�) with 222 repeated

measurements of 89 backcross mice at consecutive 6-min time inter-

vals in a 24-h period (from 1:48 pm–1: 54 pm to 11: 54 am–12: 00

am, with 7 pm–7 am as dark period and otherwise as light period).

The genotypic data consist of 233 informative polymorphic SNP

markers distributed over 19 chromosomes. Before the analysis, the

missing genotypes at a SNP were imputed by borrowing the known

genotypic information from the flanking markers (Haley and Knott,

1992). As in Li and Sillanpää (2013), a logit transformation was

applied to the active state probabilities to make the phenotypes

more normally distributed before the analysis.

3.4 Arabidopsis thaliana datasets
The dataset comes from a study (Moore et al., 2013) aimed at iden-

tifying QTL influencing the root gravitropism in Arabidopsis thali-

ana. In total 162 Arabidopsis recombinant inbred lines were

generated, with 8–20 replicate genotypes in each line. For simplicity,

only one replicate from each recombinant inbred line was used in

the analysis. The phenotypes were measured at 241 time points,

every 2 min for 8 h. There were 234 SNPs distributed over 5 chro-

mosomes. Missing genotypes were imputed in the same way as in

the mouse behavior data.

3.5 Data availability
The A.thaliana, mouse growth and mouse behavior data are avail-

able at QTL Archive http://qtlarchive.org/db/q? pg¼projdetails&

proj¼moore_2013b, http://phenome.jax.org/db/q? rtn¼projects/

projdet&reqprojid¼539, http://qtlarchive.org/db/q? pg¼projde

tails&proj¼xiong_2011. The simulated data are available as

Supplementary Material.

(a) (b)

(c) (d)

Fig. 1. The change of ML and posterior model probabilities in (a) small simu-

lated (b) A.thaliana (c) mouse growth and (d) mouse behavior datasets

[assuming a Bernoulli prior with marker inclusion probabilities p¼0.01, 0.05,

0.1, 0.2, 0.3, 0.5 as well as Beta(1, 1) prior for p and integrating it out] over the

number of markers included in the model under the forward selection pro-

cedure (in solid lines). The asterisks indicate the optimal number of included

markers corresponding to the maximum of the ML or posterior model proba-

bilities. (a) Simulated data, (b) A.thaliana data, (c) Mouse growth data and (d)

Mouse behavior data
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4 Results

4.1 Analysis of simulated replicates
The variable selection when setting p ¼ 0.01 had small false positive

and false negative rates correctly identifying seven out of nine true

significant markers in at least half of 50 replicates (Supplementary

Table S1, Fig. 2a). Applying a more liberal inclusion probability

(p ¼ 0.2) compared to the true 9/453¼ 0.02 QTL fraction, all the

nine simulated QTL were correctly detected (Fig. 2b), but the false

positive rate increased at the same time. Stability selection (con-

ducted only on a single replicate) also correctly identified the same

nine markers as significant loci (Fig. 2c). In the nine QTL model, the

estimated QTL effects over time were almost identical compared to

the true simulated effects (Fig. 2b), and they together explained

20–55% of the phenotypic variation over time based on the herit-

ability estimation (Fig. 3a). In the seven QTL model (Fig. 2a), the

estimated QTL effects were also quite accurate (Fig. 2b) except the

effect of intercept, which was slightly upwardly biased. On the data-

sets with missing measurements, the GP approach still had high

power to detect the true QTL. Furthermore, the additive genetic ef-

fect estimates were accurate on all the missing data scenarios even

when using a dataset with 67% missingness (Supplementary Fig S2).

The GP approach had equally good power to identify QTL in the

large dataset as in the small dataset when the number of individuals

was the same (Supplementary Table S2). This indicates that the GP

method was not sensitive to the total number of markers, and has po-

tential to be applied to high dimensional genomic datasets. The per-

formance of the variable selection depended more on the number of

individuals. With a sufficiently large number of individuals (i.e.

n ¼ 500, 1000), the variable selection correctly detected QTL and

controlled for false positives, regardless of different choices of hyper-

prior parameters p (Supplementary Table S3). However, when the

number of individuals was small (n¼ 100, 200), maximum likelihood

estimation (p ¼ 0.5) led to a high number of false positives while

stricter model selection criteria such as p ¼ 0.01, 0.2 led to low power

to detect QTL (Supplementary Table S3).

The Bayesian B-spline approach performed similarly to the GP

approach using an inclusion probability p ¼ 0.2 for variable selec-

tion (Supplementary Tables S1–S3). However, the GP method had

somewhat better ability to control false positives.

4.2 Analysis of mouse growth data
The GP variable selection (p ¼ 0.01) reported six loci including

markers on Chr6 (0–11 cM), Chr7 (42–53 cM), Chr8 (20–31 cM),

Chr10 (22–33 cM), Chr10 (56–67 cM) and Chr11 (33–44 cM) and

the sex as significant variables (Fig. 4a). In another search with a

more liberal prior (p ¼ 0.2) two extra markers on Chr1 (11–21 cM)

and Chr9 (31–42 cM) were detected (Fig. 4b). These eight putative

QTL were also reported in Gray et al. (2015) using the same simple

regression approach as Kwak et al. (2014). However, the stability

selection indicated only two of them (Chr6 (0–11 cM) and Chr10

(22–33 cM)) were significant loci (Fig. 4c). In general, the QTL and

sex effect on the growth of body weight constantly increased over

time (Fig. 4a and b). After the mice matured, the sex explained 35%

of the phenotypic variation, but the QTL only jointly explained

16% of the variation (Fig. 3c).

(a)

(b)

(c)

Fig. 2. In the simulation dataset: (a) and (b) the estimated dynamic effects of

model intercept and selected significant markers (solid lines), and their cred-

ible intervals (dashed lines) when the marker inclusion probability p in the

model prior was 0.01 (a) and 0.2 (b). (c) The stability probabilities of all the

markers estimated by the stability selection with the horizontal line represent-

ing the significance threshold obtained using a false discovery rate approach.

The results are from single replicate of simulated data but results for other

replicates are similar.

(a) (b)

(c) (d)

Fig. 3. The heritabilities estimated over time for (a) simulated, (b) A.thaliana,

(c) mouse growth and (d) mouse behavior datasets.
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4.3 Analysis of mouse behavior data
The variable selection with inclusion probability p ¼ 0.01 did not

identify any significant QTL (Supplementary Fig. S4a) nor did the

stability selection (Supplementary Fig. S4c). Using a more liberal

p ¼ 0.2, two significant QTL on Chr1 (96 cM), and Chr9 (21 cM)

were identified (Supplementary Fig. S4b). These two QTL were also

found in earlier reports (Xiong et al., 2011; Li and Sillanpää, 2013).

The two QTL had an effect on mouse activity probabilities during

the night jointly explaining 5–50% of the phenotypic variation over

7 pm–5 am (Fig. 3d). They did not have an effect during the daytime

(Supplementary Fig. S4c), indicating the underlying genes linked to

the two QTL may regulate the mouse activity differentiation be-

tween day and night.

4.4 Analysis of A.thaliana dataset
Three putative QTL including loci on Chr1 (62 cM), Chr4 (45 cM)

and at Chr5 (6 cM) were identified in the variable selection with a

stricter criterion (p ¼ 0.01) to be associated with the root

gravitropism trait (Supplementary Fig. S3a). On the basis of the

same dataset, Kwak et al. (2014) identified two QTL on

Chromosome 1 (at 60 cM) and Chromosome 4 (at 43 cM) using a

simple regression based method. In fact, their findings were prac-

tically identical to the results for first two QTL in this study (in

terms of QTL locations). The three putative QTL showed different

temporal patterns to regulate the development of root gravitrop-

ism. The QTL on Chr1 did not have an effect on the trait at the

starting time points (0–1 h), but increasingly influenced the trait

during 1–5 h with the effect gradually decreasing during 5–8 h.

While the QTL on Chr4 and Chr5 had a large effect on the trait in

the beginning (its effect slowly increased during 0–4 h) it slowly

decreased during 4–8 h. Kwak et al. (2014) (e.g. Fig. 4 in their art-

icle) reported similar temporal trends for the same QTL.

Compared to their estimates, our estimated QTL effect curves

tended to be smoother, indicating that our GP approaches were

better at reducing the noise in the data. The heritability (total per-

centage of variation explained by QTL) was only 0.1 at the begin-

ning, but increased to 0.45 at the midpoint, and decreases again in

the late stage (Fig. 3b).

With less stringent criterion (p ¼ 0.2) in the variable selection,

the GP approach identified six extra significant QTL on Chr4 (at

28 and 35 cM), Chr5 (at 52 and 65 cM) and Chr3 (at 3 and 76 cM)

(Supplementary Fig. S3b). On the other hand, the stability selection

only identified the locus on Chr1 as significant (Supplementary

Fig. S3c).

5 Discussion and conclusions

We propose a novel Bayesian GP regression model for analyzing

function-valued (i.e. longitudinal) quantitative traits. The method

utilizes approximate Bayesian model posteriors and a stepwise

variable selection procedure to efficiently search the model space

and find the best subset of molecular markers to be included in the

model. The method has been fully implemented in the MATLAB pack-

age ‘GPQTLmapping’ (https://github.com/jpvanhat/GPQTLmapping)

with the help of ‘GPstuff’ package of Vanhatalo et al. (2013).

A major advantage of the GP framework is its generalizability.

The covariance function which induces the smoothness in the curve

fitting can be chosen from various options and its parameters opti-

mized automatically. The Mátern covariance function (4) used in

this work has great flexibility in fitting curves with various shapes

and degree of smoothness. In our work we chose only one parameter

manually when setting v ¼ 2.5, which led to promising results in all

our case studies. As a comparison, in (penalized) B-splines (Li and

Sillanpää, 2013), one needs to choose not only the degree of freedom

of the splines, but also the number of knots and their locations,

which becomes a difficult task especially in a dataset of a vast

amount of non-equidistant time points. Nevertheless, the B-splines

approach can also be formulated as a GP covariance function as

illustrated in the Supplementary Material, and the B-spline regres-

sion can also be executed by using the same GP computational

framework and software package introduced here. In this case, the

benefit of fitting B-spline model under the GP formulation is that

the variable selection can be done in a fully Bayesian manner as

described in Section 2.2.

An extra benefit of GP formulation is the estimation and infer-

ence. The GP model has the nice property that the hyperparameters’

ML can be evaluated analytically by integrating out the regression

parameters b. This allows efficient approximation for the model

likelihood (at fixed covariance function hyperparameters) by

(a)

(b)

(c)

Fig. 4. In the mouse growth dataset: (a) and (b) the estimated dynamic effects

of model intercept and selected significant markers (solid lines), and their

credible intervals (dashed lines) when the inclusion probability p in the model

prior was 0.01 (a) and 0.2 (b). (c) The stability probabilities of all the markers

estimated by the stability selection with the horizontal line representing the

significance threshold.
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numerically integrating out the residual variance r2
� . This provides a

more accurate estimate of the ML than using other fast Bayesian ap-

proximation algorithms such as the Variational Bayes approach

(Blei et al., 2017; Nott et al., 2013) which is only able to give a

lower bound of the ML. The missing phenotypic data can also be

marginalized in the GP estimation procedure, which means we do

not need to use other sophisticated statistical approaches (Guo and

Nelson, 2008) to impute the phenotypic data before the QTL ana-

lysis. The simulation results imply that even with a high proportion

of missing items in the data, our GP approach can still provide ad-

equately precise estimates of the regression parameters, which are

comparable to the estimates using the complete data.

Similar to Li and Sillanpää (2013) and Kwak et al. (2014), a

stepwise method was used for variable selection. The stepwise vari-

able selection with an appropriate stopping rule only explores a low

dimension of the model space, and therefore greatly reduces the

computational complexity. The simplest approach is to use the ML

as the criterion for stopping the model search, which is equivalent to

setting the model prior to be uniform with p ¼ 0.5. However, the

ML criterion was overly liberal in all data analyses. To ensure the

model is parsimonious, it is advisable to use a Binomial prior for

the number of markers in the model as an extra penalty, which leads

to a posterior model probability. Based on the simulation studies,

this effectively controls against false positives especially with small

datasets. As the number of individuals increases, the false negative

rate becomes negligible. An open question is how much smaller p
should be than 0.5? In our simulation studies, values 	0.2 worked

well, but in general, its choice can be informed by preliminary simu-

lation tailored for a particular application or by prior knowledge on

number of putative QTL. The Beta distribution can also be used to

set a weakly informative prior for p that favors values <0.5.

However, a detailed study on the choice of p is beyond the scope of

this paper. Interestingly, the posterior model probability as a model

selection criterion has a strong connection to the frequentist model

selection approaches such as Bayesian information criterion (Neath

and Cavanaugh, 2012). In fact, Bayesian information criterion is a

consequence of a Laplace approximation to the posterior model

probabilities. As illustrated in the simulated and real data analyses,

the posterior model probability has equivalent or better power than

the earlier proposed FDR of stability selection (Alexander and

Lange, 2011) to identify QTL.

From the perspective of computational cost, the GP method is

feasible even for large datasets. For example, in sequential model

search, the GP method required roughly 8 h for the large simulated

dataset of 500 individuals, 10 015 markers and 30 time points com-

pared to 15 min for the A.thaliana data with 162 individuals, 234

markers and 241 time points. This indicates that the GP approach

has a computational advantage when the number of time points is

large and number of markers is small, but it becomes less efficient

when the number of markers is large. The computational perform-

ance of the methods can be substantially improved by computing

the MLs for different models in parallel. In addition, a sure inde-

pendence screening approach can also be applied to significantly

reduce the dimension of the genotypic data before the GP modeling

(Liu et al., 2014).

In conclusion, we have developed a novel GP-based varying coef-

ficient model and a Bayesian variable selection method for identify-

ing QTL associated with function-valued traits. Our method is non-

parametric, includes a minimal number of tuning parameters, and

can be applied efficiently to high resolution dynamic data with hun-

dreds of time points. A potential disadvantage is that the stepwise

variable selection may easily get stuck at local maxima. This

problem, however, is related to the search algorithm and not to the

GP model or posterior model comparison as such. Therefore, the de-

velopment of a more stable stochastic variable selection approach is

an important area for future research. Another possible research

direction is to develop GP functional QTL models for detecting

gene-to-gene and/or gene-environmental interactions. Note that GPs

have also been proposed to analyze high-order gene-to-gene interac-

tions (Zou et al., 2010). It may be possible to combine their

approach with ours for epistasis analysis on functional data.
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Sillanpää,M.J. et al. (2012) Simultaneous estimation of multiple quantitative

trait loci and growth curve parameters through hierarchical Bayesian model-

ing. Heredity, 108, 134–146.

Vanhatalo,J. et al. (2010) Approximate inference for disease mapping with

sparse Gaussian processes. Stat. Med., 2010, 1580–1607.

Vanhatalo,J. et al. (2013) GPstuff: Bayesian modeling with Gaussian proc-

esses. J. Mach. Learn. Res., 14, 1175–1179.

Wu,R. and Lin,M. (2006) Functional mapping—how to map and study the gen-

etic architecture of dynamical complex traits. Nat. Rev. Genet., 7, 229–237.

Xiong,H. et al. (2011) A flexible estimating equations approach for mapping

function valued traits. Genetics, 189, 305–316.

Xu,S. (2013) Genetic mapping and genomic selection using recombination

breakpoint data. Genetics, 195, 1103–1115.

Yang,J. et al. (2009) Nonparametric functional mapping of quantitative trait

loci. Biometrics, 65, 30–39.

Yang,R. and Xu,S. (2007) Bayesian shrinkage analysis of quantitative trait

loci for dynamic traits. Genetics, 176, 1169–1185.

Zhang,H. (2004) Inconsistent estimation and asymptotically equal interpola-

tions in model-Based geostatistics. J. Am. Stat. Assoc., 99, 250–261.

Zou,F. et al. (2010) Nonparametric Bayesian variable selection with applica-

tions to multiple quantitative trait loci mapping with epistasis and

gene-environment interaction. Genetics, 186, 385–394.

3692 J.Vanhatalo et al.


