
Gene expression

DECO: decompose heterogeneous population

cohorts for patient stratification and discovery

of sample biomarkers using omic data profiling

F. J. Campos-Laborie1, A. Risue~no2, M. Ortiz-Estévez2, B. Rosón-Burgo1,
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Abstract

Motivation: Patient and sample diversity is one of the main challenges when dealing with clinical

cohorts in biomedical genomics studies. During last decade, several methods have been devel-

oped to identify biomarkers assigned to specific individuals or subtypes of samples. However,

current methods still fail to discover markers in complex scenarios where heterogeneity or hidden

phenotypical factors are present. Here, we propose a method to analyze and understand heteroge-

neous data avoiding classical normalization approaches of reducing or removing variation.

Results: DEcomposing heterogeneous Cohorts using Omic data profiling (DECO) is a method to

find significant association among biological features (biomarkers) and samples (individuals) ana-

lyzing large-scale omic data. The method identifies and categorizes biomarkers of specific pheno-

typic conditions based on a recurrent differential analysis integrated with a non-symmetrical cor-

respondence analysis. DECO integrates both omic data dispersion and predictor–response

relationship from non-symmetrical correspondence analysis in a unique statistic (called h-statistic),

allowing the identification of closely related sample categories within complex cohorts. The per-

formance is demonstrated using simulated data and five experimental transcriptomic datasets,

and comparing to seven other methods. We show DECO greatly enhances the discovery and subtle

identification of biomarkers, making it especially suited for deep and accurate patient stratification.

Availability and implementation: DECO is freely available as an R package (including a practical

vignette) at Bioconductor repository (http://bioconductor.org/packages/deco/).

Contact: jrivas@usal.esor jose@usal.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
The areas of precision medicine and big data analysis are growing

exponentially along this decade, driven by the hope to improve mo-

lecular characterization of diseases and patient diagnosis and treat-

ment based on the extensive use of omic data (i.e. data produced by

genomic, transcriptomic and proteomic techniques). Collecting in-

formation from large sample populations is also a main aim of many

biomedical projects to allow comprehensive studies that include

many patients with all types and subtypes of the studied disease

(Ashley, 2016). Most of the times, however, collecting a huge
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amount of data make analyses noisy, and bring the need to delve in-

side data, applying different filtering techniques or attempting to re-

move irrelevant information: trying to change from extensive big

data to informative smart data. Such accumulation of large-scale

data creates a complexity that combined with sample variability

gives rise to a difficult scenario, where it is easy to make mistakes

when searching for novel specific markers. In this sense, individual

variability is one of the most intricate issues to deal with in biomed-

ical studies of large patient cohorts (De Palma and Hanahan, 2012;

Rodriguez-Gonzalez et al., 2013).

Currently, omic techniques applied to clinical and biomedical

studies are generating large-scale molecular profiles from patients.

One of the omic techniques that has provided best and broader

results is genome-wide expression profiling. Changes in gene expres-

sion among disease subtypes are detectable using robust differential

expression (DE) methods, like T-test, Mann–Whitney–Wilcoxon,

SAM (Tusher et al., 2001) and LIMMA (Smyth, 2004), which have

been applied successfully in the last decade in group-versus-group

comparisons. However, while these approaches have been applied

expecting differences between two pre-defined categories of sam-

ples, the clinical data from patients exhibits considerable variability

unrelated to the aim of study. This problem is even larger if we

compare closely related pathological disease subtypes, where subtle

differences can mark dramatic changes in diagnosis and prognosis.

Besides this patient heterogeneity, cancer-related studies may also

show intra-tumour variability corresponding to the alteration of tu-

mour cells related to the microenvironment, evolving mutations or

longitudinal changes along the progression of the disease (Bedard

et al., 2013). Consequently, the big impact of individual heterogen-

eity on biomedical omic studies makes finding specific and reprodu-

cible gene markers highly challenging (Gillies et al., 2012).

Intra-tumour heterogeneity could result in abnormal gene ex-

pression of a subset of genes. This idea that genes are often deregu-

lated in only a subset of patients, especially in cancer studies, led to

the development of an interesting method called Cancer Outlier

Profile Analysis (COPA) (MacDonald and Ghosh, 2006). Outlier

genes are intended to show aberrant expression levels only in a sub-

set of tumour or case samples as a consequence of the genotype.

Indeed, the difference between an outlier and a typical differentially

expressed gene (DEg) is that the outlier has a modified expression

only in a minority of the studied samples, indicating a heterogeneous

behaviour in such sample subset (MacDonald and Ghosh, 2006). In

order to find outlier genes, several algorithms have been proposed in

the last two decades. These methods are based on different modifica-

tions of statistical tests, clustering or sampling techniques applied

to either original omic data or multidimensional transformed data

(de Ronde et al., 2013; Li et al., 2007; Lian, 2008; Nabavi et al.,

2016; Noto et al., 2015; Tibshirani and Hastie, 2007; Wang and

Rekaya, 2010; Wu, 2007; Yang and Yang, 2013).

Most of these methods proposed the discovery of up-regulation

events for a subset of samples when gene expression levels (mRNA)

of cancer samples are compared to control samples. In the original

publication of COPA, the authors attributed these differential events

(DEs) to genomic translocations of DNA, a very common incident

in tumour cells. Particularly, this study was focussed on prostate

cancer and the fusion of TMPRSS2 and ETS transcription factor

genes (Tomlins et al., 2005).

In the singular biological context of cancer, the genomic trans-

location is one of the many existing sources of biological heterogen-

eity of tumour cells (Hogenbirk et al., 2016). As mentioned before,

individual genotype and phenotypical circumstances, spatial and

temporal clonal evolution of tumour cells (even more pivotal if solid

tumour) and technical variability (from any high or low-throughput

technique) also contribute to a complex scenario where the identifi-

cation of any relevant source of heterogeneity makes crucial the de-

velopment of comprehensive approaches (Allott et al., 2016,

Rubben and Araujo, 2017). However, we mentioned before that

most of the current omic analyses focus on supervised comparisons

(reference samples against case samples) which do not take into con-

sideration these issues. For this reason, we hypothesized a four

model-type scheme of possible heterogeneous profiles when two cat-

egories of samples are compared (Fig. 1), which considers typical

major changes and also minor or outlier changes between classes.

Therefore, attending to a single omic feature profile, we could

categorize the differential profiles between two classes of samples

(cases versus controls) in four possible types or cases (schematic pre-

sented in Fig. 1). These possible situations are: (i) (Fig. 1A) when the

feature shows a clear and complete change in all sample cases versus

controls (therefore, using a standard differential test approach gives

a very significant P-value<0.01***); (ii) (Fig. 1B) when the feature

shows a change in the majority of the cases and, using a standard

differential test approach, it will give a significant P-value

(<0.05**); (iii) (Fig. 1C) when the feature shows a change only in a

minority of the cases and, so, using a standard differential test may

give a marginal P-value not significant (�0.05–0.15*); (iv) (Fig. 1D)

when the feature shows a significant intra-category change in both

the cases and controls (mixed change) but, in this situation, the com-

parison between cases and controls does not give any significant

change (P-value�1.0).

Noteworthy, the mixed changes cannot be detected by compari-

son of pre-determined classes. Although these mixed changes are not

directly related to the design of the comparison, the consideration of

them may be useful: (i) to improve the discovery of new subclasses

of samples within a whole dataset (improving intra-category stratifi-

cation); or (ii) to identify possible confounding phenotypic factors

which are not known a priori. Therefore, these mixed changes are

A B

C D

Fig. 1. Theoretical framework presenting several types of change that include

samples heterogeneity in different proportions and outliers. Four model-

types of change can be expected when comparing two pre-defined classes:

(A) complete change; (B) majority change; (C) minority change and (D) mixed

change. The changes are shown in each model-type for a measured variable

(i.e. for the specific signal of one measured omic feature, like the expression

of one gene). The plots represent in blue the signal of such feature for the

control samples and in red the signal of such feature for the case samples
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not directly related to pre-defined classes, since they contain the

same changes in these classes.

Motivated by these differential scenarios described in Figure 1,

we have developed in R a bioinformatic algorithm called

DEcomposing heterogeneous Cohorts by Omic data profiling

(DECO) to identify and categorize features that mark differences be-

tween closely related biological states. Our method includes first a

stratified combinatorial sampling without replacement [that we

called recurrent differential analysis (RDA)] to select multiple sam-

ple subsets in the following types of comparisons: (i) two pre-defined

categories (supervised binary analysis); (ii) more than two categories

of samples (multiclass analysis); (iii) and not pre-defined classes (un-

supervised analysis). Sampling approaches have demonstrated high

stability rates in the feature selection procedure (Baty et al., 2008;

Verma et al., 2014), also using empirical Bayesian methodologies

(Qiu et al., 2006). Thus, the proposed sampling enables an agnostic

exploration of differential signatures and allows analysis of complex

situations. For example, situations when the variability among indi-

viduals is not related to the main pre-defined phenotypic classes;

when there are possible errors in the class assigned to some individu-

als; or when there are some features which only change in a subset

of samples but in the same proportion in cases and controls.

After the differential analysis, the method applies non-symmetric

correspondence analysis (NSCA) (Lauro and D’Ambra, 1984) to

integrate a predictor-response directional information between sam-

ples and features. The details of the new algorithm are presented in

the following sections, including a full description of the method-

ology and an extensive comparison of the performance with seven

other methods designed to analyze differences and find heterogen-

eity and outliers in disease sample cohorts. The method is tested

using 2 simulated datasets and 5 different sets of omic data from

clinical cohorts, 2 of which include several 100 samples.

2 Materials and methods

2.1 DECO algorithm
The developed method includes six main steps that are essentially

described below point by point. The developed method includes six main

steps that are essentially described below point by point. For more tech-

nical purposes, a complete detailed description of the algorithm is

included in Supplementary Material S1. At the end of this Supplementary

Material, we also include a Supplementary Figure S1 that presents a sche-

matic view step by step of the workflow of the method.

2.1.1 Step 1

Starting from an omic data matrix (composed of m features and n sam-

ples), DECO is initiated by applying the subsampling procedure (called

RDA) to identify, select and rank all significant changes found for any

feature (e.g. any gene) between two subsets of samples. The size of the

subsets is indicated by the user (being by default a minimum of three

samples per subset) (Babu, 1992). The two subsets of samples are gener-

ated randomly by selecting all possible subsets of the fixed size (i.e.

3�2) from the whole sample set. In this way, the method produces

many iterative contrasts for each feature. The sample set can be grouped

according to the input information provided by the user (i.e. grouped

into classes of samples if it is a supervised analysis, or without pre-

defined categories if it is unsupervised). All the differential contrasts are

done using the eBayes method from LIMMA (Smyth, 2004). Once all

significant changes are obtained, they are saved in a big table including

all the P-values per sample subset per feature. Then, these P-values are

summarized in a unique score (Sf) per feature, using the Fisher’s method

for combined probability. In other words, to combine the probabilities

after all the significant iterations (R) that pass a pre-defined threshold

(by default: adjusted P-value <0.01), the method calculates the Sf score

applying the Fisher’s method and using the non-adjusted raw P-values

obtained for each feature (Fisher, 1925). This combination of P-values

follows a Chi-square distribution with 2 R degrees of freedom. The Sf

score provides a measure of differential consistency along the subsam-

pling procedure. Additionally, DECO generates a frequency table

counting the significant differences (i.e. the DEs) where each feature and

sample participates (using the threshold of significance indicated:

adjusted P-value <0.01). This frequency matrix or incidence matrix (A)

that adds up all the DEs (counting the number of times that each feature

was significant in a given sample) is a main output of this RDA step,

and it is used in the next steps of the algorithm.

2.1.2 Step 2

In the second step of the algorithm, DECO applies a non-symmetrical

correspondence analysis (NSCA) on the frequency matrix (A). NSCA

allows to establish an asymmetric association among features and sam-

ples in a common dimensional space transforming the frequency matrix

into a matrix of centred column profiles (where the columns are the

samples). We internally called this matrix Y, and it is only an intermedi-

ate element of the process. This Y matrix is used as input for an isomet-

ric factorization of the samples by Singular Value Decomposition,

which decomposes all inertia or variability of Y matrix, calculating the

row and column coordinates (i.e. feature and sample coordinates) from

the inertia decomposition based on the Goodman’s–Kruskal s (tau)

index (Goodman and Kruskal, 1959). This decomposition generates a

common n-dimensional space, where the association among features

and samples can be quantify by the inner product (p) between every

feature and sample coordinates (Light and Margolin, 1971; Beh and

Lombardo, 2014). Thereby, the final output of this NSCA step is both

the column and row profile coordinates for samples and features, that

is used in the next step to calculate the inner product matrix (P).

2.1.3 Step 3

In a third step, DECO integrates, in a unique statistic [called hetero-

geneity statistic (h-statistic)], both the predictor-response informa-

tion given by the inner product matrix (P), and the data dispersion

given by a raw omic dispersion matrix (D). The inner product

matrix (P) measures the strength of the asymmetric association,

indicating that the higher the inner product is, the more dependency

of a differential signal of a feature from the presence of certain sam-

ples is. Additionally, the omic dispersion matrix (D) measures the

difference of every sample to the mean signal per feature, and it is

calculated using the original omic data. The integration of D and P

is detailed in Supplementary Material S1 and leads to the calculation

of the newly proposed h-statistic. Given a feature and sample, this

h-statistic was intended to unify the measured difference from popu-

lation by the omic technique (provided by D) and the relevance of

this measure in a predictor-response context among samples and

features (provide by P) (Hartigan and Wong 1979). Consequently,

the agreement for high values of both D and P would drive to higher

values of the h-statistic. As a final result of this step, DECO would

generate a matrix H including the h-statistic per feature per sample.

For a better conceptual understanding of this Step 3, it is import-

ant to mention that the inner product (P) reflects the predictor-

response relationship between columns (samples) and rows profiles

(features) from NSCA coordinates, while the dispersion matrix (D)

provides a direct measure of the real dispersion of each sample from

the mean signal per feature. The h-statistic unites both parameters,
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providing higher absolute values (i.e. higher positive or negative

h values) when there is a concordance: (i) in the predictor-response

behaviour (P) of the sample-feature tandem; and (ii) in the change of

omic data (D) for the same sample and feature tandem. Throughout

this paper, we demonstrate the power and suitability of this h-statistic

as a replacement of raw simple omic data (such as genome-wide ex-

pression data) for classification and stratification of samples (improv-

ing the clustering properties), as well as, for the identification of new

features (i.e. genes) as clear biomarkers of specific states.

2.1.4 Step 4

Once the new h-statistic is calculated, DECO applies a hierarchical

bi-clustering on this H matrix instead of using the original omic data

matrix. Here, the method uses Pearson correlation as distance met-

ric and an iterative procedure based on Pearson version of Hubert’s

c coefficient to obtain the best number of different subgroups from

sample’s hierarchical clustering.

2.1.5 Step 5

To identify the different types of changes described in Figure 1 (and

considering the most frequent case when two categories of samples

are compared), DECO calculates the overlap of omic signal between

the sample’s categories, using each distribution of omic values per

category. This measure is called overlap (of) and allows to define

every feature belonging to each hypothesized four model-types of

change: change complete (Fig. 1A), change in a majority (Fig. 1B),

change in a minority (Fig. 1C) and mixed change (Fig. 1D).

2.1.6 Step 6

Finally, in the last step of the method, DECO ranks all features

obtained based on the three main statistics mentioned above:

(i) Sf score, which highlights the most significant changes from RDA;

(ii) h-statistic range per feature, which indicates how discriminant each

feature is, given the subclasses found by DECO; and (iii) of overlap plus

the standard deviation of raw omic signal in each differential feature.

The performance of DECO algorithm was evaluated in comparison

with seven other methods that analyze differences to find heterogeneity

and outliers: COPA (MacDonald and Ghosh, 2006), OS (Tibshirani

and Hastie, 2007), ORT (Wu, 2007), MOST (Lian, 2008), LSOSS

(Wang and Rekaya, 2010), DIDS (de Ronde et al., 2013) and the

standard t-Test (Table 1). The method is designed to support any type

of omic feature properly normalized. In this work, we use genome-

wide expression datasets; some obtained with high-density microarrays

and other with RNA sequencing (RNA-seq). Transcriptomic is the

most frequent omic data produced and present in many public reposi-

tories (e.g. GEO: https://www.ncbi.nlm.nih.gov/geo/).

2.2 Benchmark using simulated data
Simulated datasets were designed to have an expression matrix that

included signals for 1100 genes and 40 samples in two classes:

n1 ¼ 20 controls and n2 ¼ 20 cases (Khondoker et al., 2010). This

design followed a similar scenario to the LSOSS benchmark (Verma

et al., 2014), representing two different situations: (A) a dataset that

included 100 genes (10%) with DE within a subset of ‘case’ samples

(5 in 20) (Fig. 2A); (B) a dataset that included 100 DE genes (10%)

within a subset of both ‘case’ and ‘control’ samples (5 in 20), so that

there is not global DE between classes for these genes (Fig. 2B).

Table 1. Methods included in the benchmark

Method Strategy Down-regulated

features

Weights size

of outlier

Sample sub-group

finding

Reference

COPA Percentile—MAD No No No MacDonald and Ghosh (2006)

OS Quantile ordered & cut-off No No No Tibshirani and Hastie (2007)

ORT Robust t-statistic Yes No No Wu (2007)

MOST Maximum ordered Yes No No Lian (2008)

LSOSS Least sum of ordered subset square t-statistic Yes No No Wang and Rekaya (2010)

DIDS Maximum value from control group Yes Yes No de Ronde et al. (2013)

DECO RDA & NSCA Yes Yes Yes Present work (2019)

Note: Brief description of the characteristics of the computational methods to find outliers and heterogeneity that are compared in this work including their

references.

A B

C D

Fig. 2. Comparison of eight methods (t-Test, COPA, OS, ORT, MOST, LSOSS,

DID, and DECO) used to find significant changes that occur in a minority of sam-

ples (�25%) and in a small proportion of features (�10%). The analyses are

done in two simulated datasets that include: 20 ‘case’ samples versus 20 ‘con-

trol’ samples and a set of 1100 genes including 100 DEg. (A) and (B): boxplots of

the expression signal (in log2) along 40 samples of 50 genes that are UP-regu-

lated. (C) and (D): barplots with the values of the average AUCs obtained using

eight different methods applied to search for differential expressed genes. Each

panel (C and D) includes the eight methods compared in five conditions that

correspond to an increasing number of samples that had DEg: from only one

sample in 20 case samples (that means a 5% of the samples affected) to 9 in 20

(i.e. a 45% of the samples affected). Plots (A) and (C) correspond to the first

simulated dataset was the DEg only occur in the cases. Plots (B) and (D) corres-

pond to the second simulated dataset was the DEg occur both in the cases and

in the controls. In this way, the 100 DEg are distributed: 50 genes UP and 50

DOWN in 25% of the cases for plot (A) (that corresponds to AUCs marked with

*5/20¼25% in plot C); 50 genes UP and 50 DOWN in both 25% of the controls

and the cases for plot (B) (that corresponds to AUCs marked with *5/20¼25% in

plot D). The ROC curves were calculated as true positive rates versus false posi-

tive rates. Each AUC was calculated 10 times using different simulated data

matrices (error bars are included)
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These two scenarios correspond to balanced situations, where the

number of cases and controls is the same (n1 ¼ n2 ¼ 20).

The true positive rate and false positive rate were calculated for

each tested method using the dataset described above. The ROC

curves for each method were built and the area under the ROC

curves (AUCs) calculated. Each panel (Fig. 2C and D) includes the

eight methods compared in five conditions that correspond to an

increasing number of samples that had differential expression.

2.3 Benchmark using experimental data
To complement the results obtained with simulated data, five ex-

perimental sets of transcriptomic data corresponding to clinical

cohorts from different sources, platforms and cell types were used

(described in Table 2). To evaluate the results obtained from the dif-

ferent methods, three tests were used: GlobalTest; Principal

Component Analysis (PCA) (Mardia et al., 1979) and Support

Vector Machine (SVM). The details about these tests are included in

Supplementary Material S1 that also includes description of the

methods used (Risue~no et al., 2010; Law et al., 2014).

2.4 R package and vignette
The method DECO has been fully developed in R. To facilitate open

access and use, an R package called deco has been produced and it is

available on Bioconductor (https://bioconductor.org/packages/deco/)

(release 3.9). The package includes a detailed tutorial vignette with

all the information about how to use the method.

3 Results

3.1 DECO compared to seven methods to find changes

in minorities
Figure 2 shows the results of the comparisons of multiple simulated

transcriptomic datasets built in the following simulations: (i) the

first sets include changes that only occur in a ‘minority’ of the sam-

ple ‘cases’ but not in the ‘controls’ (Fig. 2A), with different percen-

tages of changed genes, from 5% (1 in 20) to 45% (9 in 20)

(Fig. 2C); (ii) second sets include ‘mixed’ changes occurring both in

‘cases’ and ‘controls’ (Fig. 2B), also with different percentages of

changed genes from 5% (1/20) to 45% (9/20) (Fig. 2D).

We compared the AUCs in comparison to other seven methods for

outlier profile detection, concluding that DECO provided the best per-

formance for both ‘minority’ and ‘mixed’ changes (Fig. 2C and D). As

shown, the increment in outlier samples from 5 to 45% leads to better

results for all the methods (Fig. 2C). It is clear that the most difficult

case for all the methods is the condition when only one outlier (i.e. 1

out of 20 samples) is present and also when the type of change is

‘mixed’. This scenario corresponds to first barplots in Figure 2D, in

condition 1/20, where AUCs are all close to 0.50 (similar to random).

The improvement provided by DECO is clear in these ‘mixed’ cases

when the number of outliers increases (Fig. 2D), showing that all the

other methods rely in the expectation that the control samples should

not suffer anomalous changes. Additionally, these figures reveal that

DECO achieves a very good performance (AUC > 0.90) with at least

three outlier samples. The results indicate the initial hypothesis of sta-

ble expression profile along the control category is essential for all the

other methods tested.

3.2 Detection of changes in different sample subsets in

a large-scale dataset
To gain insights in how DECO responds on a large omic dataset

with changes in a small proportion of genes, we built another T
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transcriptomic simulated set: 40 samples and 10 000 genes, includ-

ing only 250 genes presenting significant changes (2.5% DEg)

(Fig. 3A). These differential features followed five distinct profiles,

similar to the ones described in Figure 1, each containing 50 genes:

(i) two profiles (p1, p2) of 50 genes showing ‘complete’ change in all

cases versus controls (UP-regulated in controls, p1, or DOWN-

regulated in controls, p2); (ii) two profiles (p3, p4) of 50 genes

showing changes in a ‘minority’ (25%) of the samples, either in the

cases or the controls (UP-regulated in five controls, p3, or UP-

regulated in five cases, p4); (iii) one profile (p5) of 50 genes showing

a ‘mixed’ change in a 25% of the samples (5/20) in both categories:

controls and cases. The heatmap placed as Figure 3A presents these

profiles within the whole set of 10 000 genes, corresponding to the

expression data matrix.

We run SAM and LIMMA, two well-established and commonly-

used methods for differential expression analysis (Smyth, 2004;

Tusher et al., 2001), on the expression data matrix described above

(using adjusted P-value �0.05). These methods were expected to

find at least all features corresponding to ‘complete’ changes be-

tween categories (i.e. the 100 genes included in profiles p1 and p2).

SAM did it correctly, while LIMMA found 112 significant DEgs

(Fig. 3B). These genes were: 95 with ‘complete’ change profile

A B

C D

Fig. 3. Analysis of a large simulated dataset that includes 20 cases versus 20 controls measuring 10 000 genes, where 250 genes had a significant differential ex-

pression change in different subsets of the samples. (A): heatmap of the full expression matrix including the 40 samples and all the 10 000 genes. (B): heatmap of

the expression of the 40 samples and 112 genes (DEg) that LIMMA method found as differentially expressed. (C): heatmap of the expression of the 40 samples

and 249 DEg that RDA method found. (D): heatmap plotting the h-statistic of the 40 samples and 249 DEg that DECO method (RDAþNSCA) found. The dataset

includes six different sample subsets that were found by DECO and characterized according to their gene profiles in six ‘subclasses’ [c1, 2, 3, 4, 5, 6]. The specific

gene ‘profiles’ identified were: [p1] profile including 50 genes UP in all controls with respect to the cases; [p2] profile including 50 genes DOWN in all controls

with respect to the cases; [p3] profile including 50 UP only in 5 controls; [p4] profile including 50 UP only in 5 cases; [p5] profile including 50 UP in both 5 cases

and 5 controls (5/2¼25%)
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(84.8%), 11 with ‘minority’ change profile (9.8%) and 5 genes that

really did not have differential expression change (i.e. 4.4% false

positives) (Fig. 3B).

We also run DECO on the same data matrix and the results are

shown in two steps in Figure 3C and D. First, the RDA step selected

the most significant changes identifying 249/250 true positive fea-

tures. Figure 3C presents the result in a heatmap and a hierarchical

clustering using the raw expression signal of these 249 genes selected

by DECO. As it can be seen, the genes are arranged in five different

feature profiles (p1, 2, 3, 4, 5) and the samples are correctly classi-

fied in six subclasses (c1, 2, 3, 4, 5, 6) according to their correspond-

ing profiles (Fig. 3C). These subclasses could not have been found

through just applying LIMMA (Fig. 3B), the features selected by

LIMMA only separated the main known classes (cases and control),

and one case sample was misclassified (see clustering in Fig. 3B).

Despite the correct classification of the genes in five profiles and

the samples in six subclasses obtained using the raw expression sig-

nal with RDA, the sample’s dendrogram (Fig. 3C) indicated that one

of the subclasses (c6) did not have a distinct expression profile from

the global matrix (Fig. 3A). This subclass has values that represent

small variations from the mean expression signal of the whole data-

set. Thus, the samples within subclass c6 were poorly defined for a

future prediction. Alternatively, Figure 3D shows a heatmap built

with the h-statistic matrix, derived from running DECO, instead the

original omic matrix. The h-statistic improves subclasses separation,

giving more defined profiles to the selected features and the samples.

Thus, c6 subclass is now defined by an increment of p2 profile and a

decrease of p1 profile. Moreover, c1 and c4 subclasses show now a

differential signal that comes from the ‘complete’ profiles (p1 and

p2, respectively) plus another differential signal that comes from the

‘mixed’ profile (p5) (Fig. 3D). These sample profiles are not well

identified using the expression signal, showing that the h-statistic

provided by DECO is more accurate for the characterization and

stratification of samples.

3.3 Finding differences in absence of global changes:

tests on three clinical datasets
To compare the method with other approaches in a real scenario,

we selected three experimental datasets derived from clinical studies

done in collaboration with biomedical groups. After applying SAM

and LIMMA, each dataset did not show any significant difference in

the comparison of two subtypes of patients (adjusted P-value

<0.05) (Fig. 4A). The three datasets (see Table 2) and the group-

versus-group comparisons were: (i) an osteosarcoma dataset (OSC)

including samples of primary tumour biopsies from 21 patients that

were treated in the same way, where some of them (n ¼ 12) never

developed metastasis after treatment but others (n ¼ 9) suffered me-

tastasis from the primary tumour; (ii) a myelodysplastic syndrome

dataset (MDS-1) of CD34þ selected cells from bone marrow of 41

patients suffering two closely related MDS subtypes (RAEB1 n ¼ 21

and RAEB2 n ¼ 20); (iii) other MDS-2 of mononuclear cells from

bone marrow of donors that usually had anaemia but not dysplasia

(n ¼ 11) and patients with low-risk MDS (n ¼ 13). It is important to

mention that the stratification of MDS is challenging, especially,

when it is based on gene expression profiling (Zeidan et al., 2014).

As indicated above, the pairwise comparison to find differences,

using SAM and LIMMA, of the groups described in these three data-

sets did not identify any gene with a significant change (Fig. 4A).

Since these standard methods for differential expression analysis

applied to these clinical datasets did not reveal any differences, we

tried DECO and other methods better suited to discover subtle

differences. Based on previous studies that compared COPA, OS,

ORT, MOST and LSOSS methods for cancer outlier discovery

(Karrila et al., 2011), we considered MOST as the best of them for

different scenarios and used it for these comparisons. Additionally,

mCOPA (Wang et al., 2012) and DIDS (de Ronde et al., 2013) were

also included in this experimental benchmark because their capabil-

ity to find outlier genes had been well reported. As described in

Section 2, two independent tests (GlobalTest and PCA) were used to

assess the relevance of the set of significant genes found by each

method (Fig. 4A). The number of selected genes (e.g. OSC: 331

genes using mCOPA, 1586 DIDS and 161 DECO) was the number

found as significant (P-value �0.05) according to the respective

algorithm.

The results obtained for each clinical dataset are presented in an

illustrated table in Figure 4A. As mentioned, none of the well-

established methods were able to find differential genes between the

two categories of samples defined in each dataset. Furthermore, the

other methods applied (mCOPA, MOST, DIDS and DECO) showed

a great difference in the number of gene changes found. DIDS al-

ways provided by far the largest list, selecting 10 times more genes

than DECO in the case of the OSC. It is clear that it is not easy to

compare the value of the gene sets found by each method if they are

very different in size. For this reason, we run the tests using only the

top 100 genes with best P-values provided by each method (mCOPA

did not provide a gene rank). We observed that DECO gave best

results for the two datasets of myelodysplasia (MDS-1 and MDS-2,

Fig. 4A) and a close result to DIDS for the OSC. Globaltest is a

response-outcome test that allows determining how a given gene set

marks the difference between two sample categories compared (i.e.

the gene set provided by each method was used in Globaltest as a

priori input group of tested variables) (Goeman et al., 2004). Based

on the evaluation using Globaltest, the top 100 signature of DECO

gave the best P-values: better than MOST in all cases and better

than DIDS in the case of MDS-1 and MDS-2. Additionally, the PCA

results agree with Globaltest, indicating that the gene sets provided

by DECO assign better the samples to their expected category in the

MDS cases. Only in the case of osteosarcoma, DIDS seems to be

slightly better. To validate these results, we repeated the differential

expression analyses doing a random selection of samples in the two

categories and evaluating how many significant genes were found in

100 iterations by the algorithm DECO or by the other method that

sometimes performed better (i.e. DIDS). These random tests showed

that DIDS gave many false positives, selecting many more significant

genes that should not be found in a random model (Fig. 4B). The ro-

bustness of the Globaltest was also validated using a random selec-

tion of 100 genes in 5000 iterations for each dataset and showing

that the resulting P-values were never significant (always P-val-

ue>0.05) (Fig. 4C).

Alternatively, we tested the performance of the methods building

sample class predictors with a machine learning approach: a leave-

one-out SVM. This approach was only applied for the two methods

that gave best results in the previous comparisons (DIDS and

DECO). This analysis allowed the assessment of the stability of the

gene signatures found by each method and the independence of the

samples used. The procedure evaluates the performance of n classi-

fiers (one for each sample of each dataset) to determine its correct

category (control or case), “leaving-out” such sample and using the

rest (n-1) to build each classifier. Each predictor was built leaving

one sample out and using the top 25 genes selected by each method

with the rest of the samples (i.e. the 25 genes that gave best P-values

in the comparison of the n�1 samples, controls versus cases). Thus,

n predictors were constructed and the probability of assigning each
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A

B C

Fig. 4. Results of the comparison of six methods (SAM. LIMMA, mCOPA, MOST, DIDS and DECO) applied to find differential expression signal in three distinct ex-

perimental datasets derived from clinical studies: OSC including 21 samples from primary tumours, 12 that never had metastasis after treatment and 9 that suf-

fered metastasis (the comparison is done: metastatic tumours versus non-metastatic tumours); MDS-1 of CD34þ selected cells from bone marrow from 41

patients suffering two closely related MDS subtypes (RAEB1 n¼21 and RAEB2 n¼20); MDS-2, another MSD of mononuclear cells from bone marrow of donors

that did not have any kind of dysplasia or leukaemia (n¼11) and patients with that had a low-risk MDS subtype (n¼13). The number of DEg found by each method

is indicated below the name of the method for each dataset. Two statistical tests (GlobalTest and PCA, see Section 2) are run to evaluate the value of the genes

found by each method. Yellow boxes indicate the best results for the parameters measured with GlobalTest and PCA (A). Panel (B) shows the number of signifi-

cant genes found with DIDS or DECO methods in each of the three experimental datasets when samples in the two classes are assigned randomly. The compari-

son is done 100 times and all genes that are found in these 100 iters are indicated, as well as the number of iters that gave at least one significant gene (e.g. for

the OSC dataset: 100/100 in the case of DIDS and 3/100 in the case of DECO). Panel (C) shows the values of the parameters that GlobalTest gave with each dataset

when all the genes of the expression data matrix are selected as the input to the test or when 100 genes are selected randomly. This information provides a ran-

dom control for the value of GlobalTest parameters.VC
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sample to its correct class was determined. The results from these

analyses are shown in Figure 5, where we can observe that DECO

gave the highest probability of true class assignment for the samples

in the three experimental clinical datasets studied: median probabil-

ity value 0.86 for OSC; 0.84 for MDS-1 and 0.95 for MDS-2. These

trials were also compared against a ‘random’ selection of features as

reference. As expected, the random selection gave an approximate

average classification of 50% (probability �0.5) for the two possible

classes.

3.4 Finding hidden variables on a large cancer dataset
To prove that DECO not only outperforms with simulated data or

with relatively small datasets, we also tested the method using two

large experimental datasets (Table 2). The approach in these tests

was changed from group-versus-group comparisons to unsupervised

analysis, which did not assume a priori classes or categories. The

first dataset selected was a breast cancer (BCC) collection of 285

samples of newly diagnosed tumours divided in oestrogen receptor

positive and negative (ESR1þ/ESR1–), analyzed for global gene ex-

pression profiling with genome-wide RNA microarrays (GEO ID:

GSE25055). For this dataset, the unsupervised analysis was carried

out using the following input parameters: RDA r ¼ 5, combinations

¼200 000, adjusted P-value <0.01; NSCA variability explained

¼97%, feature threshold ¼3 DEs in at least five samples. The

method identified 255 genes with significant differential expression

changes (Fig. 6A). The output statistical parameters provided by

DECO for these 255 genes are included in Supplementary Material

S2. The complete data matrix corresponding to the h-statistic per

gene and sample (H, h-statistic matrix) is also provided as

Supplementary Material S3.

DECO found six major subclasses or categories, and indicated

that there was a high association between the sample source and a

significant subset of genes which marked two subclasses: 2 and 3 in

Figure 6A. The samples from primary BCC tumours used for this

study were obtained by two different groups: the M. D. Anderson

Cancer Center (MDACC, Houston) and the group Investigation of

Serial Studies to Predict Your Therapeutic Response (I-SPY) (Hatzis

et al., 2011). Each of these two research units used a different pro-

cedure to isolate the tumour biopsy samples: (i) 227 samples were

obtained by fine-needle aspiration (M. D. Anderson Cancer Center),

210 included in our study; and (ii) 83 samples were obtained by sur-

gical resection of the core biopsy (Investigation of Serial Studies to

Predict Your Therapeutic Response), 75 included in our study

(Hatzis et al., 2011). We observed in our results how a small group

of genes marked a clear difference between these two groups of sam-

ples isolated in a different way. This signal was not due to a random

selection or to a bad normalization of the data, since more that 95%

of the genes did not show any significant difference within these two

subclasses. We concluded that those genes were indicating a small

change in the expression signal due to differences in the isolation

protocols used. In fact, according to the h-statistic provided by

DECO, two of the most discriminating genes found for these sub-

classes were haemoglobin b-subunit and d-subunit, which have been

recently reported to be affected by the procedure of biopsy sampling

used in patients with BCC (Tanamai et al., 2009). Together with the

A CB

Fig. 5. Construction of sample class predictors using a leave-one-out SVM

applied to the top DE genes selected by DECO (orange boxplots), by DIDS

(blue boxplots) or RANDOM (grey boxplots). Each predictor is built leaving

one sample out and using the top 25 genes that are selected by each method

with the rest of the samples. In this way n predictors (n¼number of samples

in each dataset) are constructed. The probability of assigning each sample to

its correct class is plotted on the Y-axis. (A): results obtained with the OSC;

(B): first MDS-1 and (C): second MDS-2

A B

Fig. 6. Results of running DECO method to analyze two independent BCC large datasets using unsupervised clustering of patients (samples) and genes (features).

Both heatmaps were plotted using the h-statistic values (calculating the distance matrices using 1-Pearson correlation of the h values). (A): heatmap of the h-stat-

istic of 285 patients and 255 DEgs (the expression data for this cohort were obtained with microarrays, from Hatzis et al., 2011); (B): heatmap of the h-statistic of

596 patients and 3228 DEgs (the expression data for this cohort were obtained with RNA-seq, from Ciriello et al., 2015). The samples dendrogram identifies 6 and

5 main subclasses (marked in (A) and (B), respectively). The four standard well-known BCC subtypes (usually associated to the PAM50 signature) (Parker et al.,

2009) are labelled with a colour panel close to each heatmap, indicating in brackets the number of samples of each subtype. The newly discovered subclasses

identified by the method are marked in yellow. In each heatmap a black box is included to remark a subset of genes associated to the discovered subclasses
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signal coming from haemoglobin depletion, the same group of sam-

ples showed a strong up-regulation of collagens (COL1A1,

COL1A2, COL3A1, COL4A1, COL4A2, COL5A1, COL5A2 and

COL6A3), revealing changes in the extracellular matrix compo-

nents. This dysregulation may be related to different mechanical ma-

nipulation of tissue samples, and therefore, related to the isolation

procedure. This effect was not reported in the original publication

(Hatzis et al., 2011), probably because it affects a small number of

genes and does not affect to any critical BCC associated gene.

However, we discovered a clear gene change associated to a specific

sample phenotype, supporting the value of the DECO algorithm to

find confounding or hidden factors. Since these profiles are strongly

associated with the sample source, the comparison between two dif-

ferent BCC subtypes (i.e. basal and luminal samples) from different

biopsy procedures may have led to the wrong association of these

profiles (haemoglobin b-subunit and d-subunit) with these subtypes

of samples. Finally, it is also important to indicate that doing a

standard clustering analysis and a derived heatmap based on the

gene expression signal did not reveal these gene changes.

Regarding the standard well-known subtypes of BCC, the results

of our analysis showed that the h-statistic provided by DECO found

the expected division of samples according to the PAM50 subclasses

(Parker et al., 2009) (Fig. 6A). Thus, the method was able to find

not only the large differences between basal and luminal-like BCC

subtypes, but also gene subsets directly related to other subtypes of

BCC, more difficult to separate, i.e.: luminal A and luminal B

(Fig. 6A).

The method found specific genes associated to basal or luminal

PAM50 subtypes (like: GATA3, TBC1D9, EN1, CA12, NAT1,

PROM1 and AGR2) that have been previously linked to the ESR1

status in BCC (Wirapati et al., 2008). In fact, a functional enrich-

ment analysis on the genes associated to the basal subtype showed a

very significant enrichment in basal up-regulated or down-regulated

signatures from MSigDB database in comparison with luminal sam-

ples (as defined in the Molecular Signatures Database at the Broad

Institute, MSigDB, http://software.broadinstitute.org/gsea/msigdb/).

3.5 Finding disease subtypes using a non-supervised

approach on RNA-seq data
DECO was also applied to another large BCC dataset taken from

the Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Network,

2012), which includes genome-wide expression profiling using high-

throughput RNA-seq. In a recent study, Ciriello et al. (2015)

analyzed this dataset discovering a distinct disease inside the BCC

tumours corresponding to ‘invasive lobular’ (IL-BCC) subtype, that

was clinically and molecularly different to the more common and

frequent ‘invasive ductal’ (ID-BCC) subtype. This tumour stratifica-

tion was not previously investigated because the normal molecular

portraits of human breast tumours, even for the datasets of TCGA

(Cancer Genome Atlas Network, 2012), followed the most standard

classification of BCC in 4 subtypes: luminal A, luminal B, HER2-

enriched and basal-like (that is also the one defined by the PAM50

subclasses) (Parker et al., 2009). Under this scenario, we took 596

BCC samples studied by Ciriello et al. (2015) having cases from

each one of the 4 main BCC subtypes (n¼307 luminal A, 128 lu-

minal B, 53 HER2-enriched and 108 basal-like), but also including

information of the tumour cell type subtypes: IL-BCC and ID-BCC.

We analysed this dataset with DECO following an unsupervised

procedure, to test if our method was able to find genes as features

that distinguished and separated all the different disease subtypes

introduced before. For this analysis, we used the original expression

RPKM data matrix provided by TCGA, checking a correct normal-

ization and filtering-out 902 genes because they showed low expres-

sion in all samples (expression signal RPKM < 2). Consequently, an

unsupervised design without any pre-defined category of samples

was carried out, setting up the initial DECO parameters to: RDA

r ¼ 5; combinations ¼1 000 000; adjusted P-value <0.01; NSCA

variability explained ¼80%, feature threshold ¼3 DEs in at least 30

samples.

The results are presented in Figure 6B, and also provided as in

Supplementary Material. The heatmap shows the binary clustering

of samples and genes obtained using the h-statistic for each sample

and gene (Fig. 6B). The method selected 3228 genes that had differ-

ential expression changes (according to the threshold indicated

above). The values of all the statistical parameters provided by

DECO for these 3228 genes are included in Supplementary Material

S4. The complete data matrix corresponding to the h-statistic per

gene and sample is also provided as Supplementary Material S5. The

results showed that the method found four subclasses directly

related to the four BCC PAM50 subtypes: subclass 1 corresponding

to basal-like subtype (red in Fig. 6B); subclass 2 corresponding

mainly to HER2-enriched subtype (blue); subclass 3 to Luminal B

subtype (purple) and subclasses 4 and 5 corresponding mainly to

Luminal A subtype (marked in green). The method was also able to

distinguish a subtype inside Luminal A, assigned to subclass 5 and

showing a distinct gene profile. This subtype corresponded to the

‘invasive lobular’ breast cancer (IL-BCC) (marked in yellow in the

grey bar in Fig. 6B). Ciriello et al. published a comprehensive mo-

lecular portrait of the IL-BCC. Several genes found to differentiate

‘lobular’ from ‘ductal’ breast carcinomas (thrombospondin 4,

THBS4, thrombospondin receptor, CD36, multiple cadherins,

CDH5, CDH11, CDH17, CDH22, CDH23) (Korkola et al., 2003),

were found inside the gene signature that marked subclass 5 accord-

ing to DECO. By contrast, some genes that showed significant muta-

tions in IL-BCC, like FOXA1 and TBX3 (Ciriello et al. (2015)), but

are usually up-regulated in Luminal A samples, were not selected as

specific markers of the IL-BCC subtype. Finally, it is important to

know that previous studies on BCC indicated that unsupervised clus-

tering of lobular and ductal breast tumours based on expression

profiling failed to distinguish between these two subtypes of carcino-

mas (Korkola et al., 2003).

4 Conclusions

Currently the biomedical scientific community is trying to resolve

the problem of samples heterogeneity through different and varied

proposals: remove unwanted variation, better outlier detection, ro-

bust machine learning, single-cell analyses, etc. This problem is very

relevant in cancer studies due to highly intra- and inter-tumour het-

erogeneity (Gyanchandani et al., 2016; Rubio-Perez et al., 2015).

Interestingly, COPA method, after more than a decade from its pub-

lication, is still used to find outlier profiles due to its simplicity

(Gaykalova et al., 2017; Teng et al., 2016; Wu et al., 2017), despite

the fact that it is not the best method.

The new method proposed here, DECO, has been designed to

analyze the variability in complex omic-scale datasets including mul-

tiple sample subtypes and heterogeneous changes in specific fea-

tures. Under this framework, our method aims to detect any

relevant feature supporting the intrinsic heterogeneity through a

subsampling procedure without replacement (RDA). The feature se-

lection process is crucial for any posterior analysis (Singh and

Sivabalakrishnan, 2015) because it allows us not only select and
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rank significant features but also place in context which samples are

aiding this variability. Thus, the Standard Chi-Square score (Sf) was

implemented to facilitate the ranking of features found instead a

simple counter of DEs (or repeats). Noteworthy, subsampling and

other resampling techniques have been broadly used in many scien-

tific fields for statistic estimation, stability assessment or learning

processes. If they are carefully raised (involving previous knowledge,

computational cost or suitability of the problem to solve), these

techniques provide useful and reliable information (Gur-Dedeoglu

et al., 2008; Irizarry et al., 2003; Lee et al., 2014). Although big

data analyses are coming more frequent now, summarizing it into

smart data remains essential and requires of the development of new

exhaustive approaches.

Our method DECO, and particularly the RDA step, adds a new

scheme analysis on a very acknowledged differential analysis ap-

proach like LIMMA and its Bayesian (eBayes) method (Smyth,

2004), enlarging the suitable profiles from complete changes to all

our four model-types and ranking them accordingly. However, it is

important to mention that LIMMA is partially based on t-test statis-

tics, then the sample size of compared samples (subsampling size per

iteration) roughly affects to its statistical power (Dobbin and Simon,

2005; Stretch et al., 2013). We consider that approaching the feature

selection or differential analysis through a subsampling scheme, as

provided by RDA, release to gain insight into the significant vari-

ability present at any homo- or heterogeneous omic dataset.

We have shown that DECO improves well-established statistical

methods that analyze differential signal for the detection of outlier

features, and outperforms other procedures on the capability to

identify relevant subclasses within a cohort of samples. Thus, the

method is applicable both to find subtle differences among pre-

defined classes or subclasses of samples that present a differential be-

haviour marked by specific features. The search for molecular fea-

tures that define specific individuals is a key objective of

personalized medicine.

All the examples run in this publication were focussed on

genome-wide expression datasets. These types of data were selected

because they study complex disease scenarios on well-characterized

patient clinical cohorts. Currently, one of the most common scopes

in genomic profiling and genome-wide data analyses is to find better

biomarkers for specific pathological states that can define new dis-

eases and disease subtypes. However, since LIMMA has been broad-

ly applied to several different omic platforms (i.e. proteomic,

miRNA and DNA methylation data) and it is the functional core of

RDA step, DECO is greatly suitable to be applied on these plat-

forms. In fact, there are many publications in the last decade report-

ing its use for proteomics differential analysis due to its simplicity,

performance and dealing with variability of proteomic data (Basken

et al., 2018; Jeannin et al., 2018; Kuzniar et al., 2017; Margolin

et al., 2009; Pagel et al., 2015; Ting et al., 2009), for miRNA differ-

ential analysis (Mastriani et al., 2018; Thomou et al., 2017; Xue

et al., 2017), and there are also many successful publications where

LIMMA have been applied for differential analysis of CpG methyla-

tion levels in different biological scenarios (Johnson et al., 2017;

Martorell-Marugan et al., 2019; Saito et al., 2017; Stefan et al.,

2014; Wockner et al., 2014). For all these reasons, we think the

workflow followed by DECO can be of great help for better disease

stratification and biomarker identification.
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