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Abstract

Motivation: Diseases and traits are under dynamic tissue-specific regulation. However, heteroge-

neous tissues are often collected in biomedical studies, which reduce the power in the identification

of disease-associated variants and gene expression profiles.

Results: We present deTS, an R package, to conduct tissue-specific enrichment analysis with

two built-in reference panels. Statistical methods are developed and implemented for detecting

tissue-specific genes and for enrichment test of different forms of query data. Our applications

using multi-trait genome-wide association studies data and cancer expression data showed that

deTS could effectively identify the most relevant tissues for each query trait or sample, providing

insights for future studies.

Availability and implementation: https://github.com/bsml320/deTS and CRAN https://cran.r-project.

org/web/packages/deTS/

Contact: peilin.jia@uth.tmc.edu or zhongming.zhao@uth.tmc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWASs) and next-generation

sequencing technologies have identified hundreds of thousands

of disease-associated variants and genes. Interpretation of these var-

iants, however, remains an open challenge. Tissue-specific regula-

tion, which is affected by many genetic variants, is a critical factor

leading to diseases or traits. So far, many diseases or traits have not

been reported their causal tissues or cell types, or in particular with

its tissue-specific regulation. Recent success of the Genotype-Tissue

Expression (GTEx) project (GTEx Consortium, 2013) enables us to

systematically investigate tissue-specific gene (TSG) expression and

regulation. Leveraging these non-disease reference data could open

new avenues to infer causal tissues for diseases and to unveil under-

lying biological mechanisms.

Tissue transcriptome data are often heterogeneous. It includes

the genes that are ubiquitously expressed (e.g. housekeeping genes)

and other genes that are expressed in specific tissues. Several meth-

ods have been developed to identify TSGs from expression profiles.

For example, SpeCond fits a normal mixture model to each gene

using microarray data for 32 human tissues (Cavalli et al., 2011).

Zhao et al. (2015) used the Tukey test to identify TSGs from

RNA-sequencing (RNA-seq) data. Here, we present a convenient R

package, deTS, to identify the most relevant tissues for candidate

genes or gene expression profiles by tissue-specific enrichment

analysis. deTS builds on two pre-processed reference panels. We

developed a statistical method to identifying TSGs while controlling

potential confounding factors. We implemented different statistic

tests for different forms of query data. We validated the reference
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panels by comparing each other and demonstrated deTS using

multi-trait GWAS data and cancer RNA-seq data.

2 Materials and methods

2.1 Data collection
We prepared two reference panels: GTEx and the Encyclopedia of

DNA Elements project (ENCODE). The GTEx RNA-seq data included

14 725 protein-coding, non-housekeeping genes in 47 tissues

(Eisenberg and Levanon, 2013) (details in Supplementary Text S1 and

Table S1). The ENCODE panel included 14 031 protein-coding, non-

housekeeping genes for 44 tissues (accessed August 2018,

Supplementary Table S2). We downloaded and processed GWAS sum-

mary statistics for 26 traits (Supplementary Table S3). We defined trait-

associated genes by using the gene-based P-values (Supplementary Text

S1). In addition, we downloaded RNA-seq data for 635 normal sam-

ples matched to 14 cancers from The Cancer Genome Atlas (TCGA,

Supplementary Table S4) (Weinstein et al., 2013).

2.2 Measurement of tissue specificity
For GTEx data, we implemented a previous method (Finucane et al.,

2018) by fitting an ordinary regression model for each gene and

computed t-statistics to measure the tissue specificity. Notably, sev-

eral tissues in GTEx dataset were biologically related, such as some

brain sub-regions. Treating these naturally related tissues as inde-

pendent and including all of them in one regression model would

underestimate the tissue specificity. Finucane et al. (2018) defined a

new variable called ‘tissue group’ (Supplementary Table S1) and

used it as the explanatory variable. We followed their work and fit-

ted the regression model for each tissue as: Y � X þ age þ sex,

where Y was the log2-transformed gene expression, the nominal

variable X was the tissue group status, and age and sex were sample

covariates. We fitted the above model for each tissue, instead of fit-

ting one model including all tissues. Specifically, for a tissue in

examination, we defined X ¼ {xi}, i¼1,. . ., N, where N is the total

number of samples, xi ¼ 1 if the sample belonged to the tissue in

examination and xi ¼ 0 if the sample belonged to any tissues not in

the same group. Samples from other tissues of the same tissue group

as the examined tissue would not be included. Accordingly, N varies

by the tissues in examination. After fitting the model, we selected

the t-statistic for the explanatory variable X for the gene.

Considering that sample size per tissue is small in ENCODE

dataset, we employed z-score to measure tissue specificity. For each

gene, a z-score is calculated as zi ¼ (ei – mean(E))/sd(E), where ei is

the average expression of the gene in the ith tissue, E represents the

collection of its average expression in all tissues, and sd indicates the

standard deviation of E.

A higher t-statistic or z-score indicates that the gene is more spe-

cifically expressed in the corresponding tissue.

2.3 Tissue-specific enrichment analysis
For each tissue, TSGs are defined by high t-statistics or z-scores. We

allow the user to define the cutoff values, e.g. the top 5% genes as

TSGs. Depending on the query data, two tests are implemented.

Test 1: if the query is a list of genes, we implement Fisher’s Exact

Test to identify TSGs enriched in the tissue(s).

Test 2: if the query is an expression matrix, we use t-test to iden-

tify the most relevant tissue(s). Two methods are used to normalize

the query expression data so that the query data will be scaled

appropriately with the reference data. (i) The z-score strategy

that normalizes the query data using the tissue parameters as below:

en ¼ (eq�us)/sds, where eq and en are the query and normalized ex-

pression, and us and sds are the mean and sd of a reference tissue s.

(ii) The abundance correction approach (Skene et al., 2018) that

normalizes the query data by en ¼ log2(eqþ1)/(log2 (usþ1)þ1).

Finally, two-sample t-test is used to examine the difference between

en of TSGs and en of non-TSGs in each reference tissue

(Supplementary Fig. S1).

3 Applications

We provided two reference panels in deTS: the GTEx panel (47

tissues, t-statistic) and the ENCODE panel (44 tissues, z-score).

Validation across the two panels showed high concordance (91.5–

93.2%, Supplementary Text S1). We further compared the two

panels with a previously reported database of TSGs (TiGER)

(Liu et al., 2008). We found that the majority of the tissues on our

panels shared the highest TSGs with their matched tissues in

TiGER (Supplementary Text S1 and Fig. S7). deTS can be applied

in many scenarios, such as inferring the causal tissues for diseases

based on disease-associated genes, assessing bulk RNA-seq data

(e.g. finding the most related tissues, outliers, sample contamin-

ation/purity), and cross-validation of other genomics data (e.g. tis-

sue specificity of microRNAs or transcription factors by their

targets), among others. Below we demonstrate the utility of deTS

with two applications.

3.1 Application 1: multi-trait GWAS data
We tested trait-associated genes (gene-based P < 5 � 10�3)

identified from GWAS for 26 traits (Table 1) using deTS Test 1 for

candidate genes. In most traits, trait-associated genes were found

enriched in the trait-related tissues whereas instances of variation

implied novel insights into the disease origin(s). For example,

anthropometric trait genes were mainly enriched in artery tissues,

metabolic traits in liver, immune-related traits in blood and spleen,

and neurodegenerative/neuropsychiatric disease in brain (Fig. 1A) .

However, autism spectrum disorder, waist–hip ratio and fasting

insulin failed to be linked with any tissues, possibly due to weak

GWAS signals or the causal tissues not included in our panels.

3.2 Application 2: TCGA normal samples
The RNA-seq data for TCGA normal samples were organized as

an expression matrix and were analyzed using deTS Test 2. For dem-

onstration purpose, we pre-defined the biologically matched tissue

of each cancer type (Supplementary Text S1 and Table S4). We nor-

malized the original RNA-seq data using the abundance correction

strategy based on the GTEx panel. As a result, in nine cancer types

(denoted by triangle in Fig. 1B), the matched tissues were most

enriched in the samples. In four cancer types (circles in Fig. 1B), the

biological tissues were ranked within top 3 and the related tissues

could be implied. For example, stomach was the most enriched tis-

sue for esophagus cancer, providing insights into cancer origination

or tissue/organ relatedness. In breast cancer, only 50% samples were

most enriched in breast while others in minor salivary gland and ute-

rus. One possible reason is sample purity.

4 Conclusion

We present an R package, deTS, for tissue-specific enrichment ana-

lysis. deTS runs fast—it took only 15 s for a gene list matrix with
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26 GWAS traits, and 26 s for a RNA-seq matrix with 635 samples

on an i7-7700HQ desktop. deTS can not only identify novel rela-

tionships between gene expression and phenotypes, but also is

helpful to determine the tissue purity and composition in a gene

expression dataset. As expression data from cell types and single

cells has been rapidly generated recently, we will expand deTS

to detect cell types and cell origins from such data. deTS is useful

to study tissue features and underlying mechanisms for diseases or

traits.
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