Skip to main content
. 2019 Jul 8;26(4):669–681. doi: 10.1080/13218719.2019.1618750

Table 6.

Logistic regression models for the association between attractiveness and the odds of arrest for males and females.

  Males
(N = 3960)
Males
(N = 3770)
Females
(N = 4832)
Females
(N = 4714)
Coeff OR Coeff OR Coeff OR Coeff OR
Predictor variables                
 Attractiveness −.103 0.902 −.072 0.930 −.214 0.807* −.162 0.850*
(.061) (.066) (.060) (.066)
 Criminal involvement .383 1.465* .450 1.569*
    (.040)     (.056)
Controls                
 Age .039 1.041* .074 1.077* −.055 0.946* −.025 0.975
(.021) (.023) (.023) (.025)
 Race .125 1.133 .166 1.181* .200 1.221* .114 1.120
(.080) (.089) (.100) (.096)
 SES .467 1.596* .536 1.709* .456 1.578* .457 1.579*
(.193) (.219) (.187) (.198)

Note. OR = odds ratio; coeff = coefficient; SES = socioeconomic status.

Standard errors in parentheses.

*p < .05.