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Nerve Growth Factor Rapidly Induces Prolonged Acetylcholine
Release from Cultured Basal Forebrain Neurons: Differentiation
between Neuromodulatory and Neurotrophic Influences

Daniel S. Auld,'2 Francoise Mennicken,’ and Rémi Quirion'2:3

1Douglas Hospital Research Center, Montréal, Québec, Canada H4H 1R3, and Departments of 2Neurology and
Neurosurgery and 3Psychiatry, McGill University, Montréal, Québec, Canada H3C 3J7

Long-term exposure to nerve growth factor (NGF) is well es-
tablished to have neurotrophic effects on basal forebrain cho-
linergic neurons, but its potential actions as a fast-acting neu-
romodulator are not as well understood. We report that NGF
(0.1-100 ng/ml) rapidly (<60 min) and robustly enhanced con-
stitutive acetylcholine (ACh) release (148-384% of control) from
basal forebrain cultures without immediate persistent increases
in choline acetyltransferase activity. More ACh was released in
response to NGF when exposure was coupled with a higher
depolarization level, suggesting activity dependence. In a long-
term potentiation-like manner, brief NGF exposure (10 ng/ml;
60 min) induced robust and prolonged increases in ACh re-
lease, a capacity that was shared with the other neurotrophins.
K252a (10-100 nm), BAPTA-AM (25 um), and Cd2" (200 um)
prevented NGF enhancement of ACh release, suggesting the
involvement of TrkA receptors, Ca®™", and voltage-gated Ca®*

channels, respectively. Forskolin (10 um), a cAMP generator,
enhanced constitutive ACh release but did not interact syner-
gistically with NGF. Tetrodotoxin (1 um) and cycloheximide (2
mm) did not prevent NGF-induced ACh release, indicative of
action at the level of the cholinergic nerve terminal and that new
protein synthesis is not required for this neurotransmitter-like
effect, respectively. In contrast, after a 24 hr NGF treatment,
distinct protein synthesis-dependent and independent effects
on choline acetyltransferase activity and ACh release were ob-
served. These results indicate that neuromodulator/neurotrans-
mitter-like (protein synthesis-independent) and neurotrophic
(translation-dependent) actions likely make distinct contribu-
tions to the enhancement of cholinergic activity by NGF.
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Basal forebrain cholinergic neurons (BFCNs) innervate cortical
and associated structures (Fibiger, 1982), are important for atten-
tion (Baxter and Chiba, 1999), and degenerate in Alzheimer’s
disease (Bartus, 2000). Rapid modulation of acetylcholine (ACh)
release by physiological and pathological factors [e.g., neurotrans-
mitters (Raiteri et al., 1984; Hersi et al., 1995), certain growth
factors (Kar et al., 1997), B-amyloid (Auld et al., 1998), and
interleukins (Hanisch et al., 1993)] is likely critical for the con-
sequences of innervation.

Neurotrophins, including nerve growth factor (NGF), are cru-
cial for the survival and function of certain neuronal populations
(Levi-Montalcini, 1987). Regions of BFCN innervation (e.g.,
hippocampus, cortex) are enriched in NGF (Korsching et al.,
1985; Large et al., 1986), and NGF is retrogradely transported by
BFCNs (DiStefano et al., 1992), with these neurons expressing
TrkA and p75N TR receptors (Koh and Loy, 1989; Holtzman et
al., 1992). NGF and TrkA are important for BFCN development,

Received Dec. 5, 2000; revised March 8, 2001; accepted March 9, 2001.

This work was supported by the Medical Research Council of Canada (MRCC)/
Canadian Institutes of Health Research (CIHR). D.S.A. holds a Doctoral Award
from MRCC/CIHR. We thank Dr. Brian Collier and Dr. Freda Miller for critically
reading this manuscript, and Dr. Joseph Rochford for advice concerning statistical
analyses.

Correspondence should be addressed to Dr. Rémi Quirion, Scientific Director,
Douglas Hospital Research Center, 6875 Boulevard Lasalle, Montréal, Québec,
Canada H4H 1R3. E-mail: quirem@douglas.mcgill.ca.

D. S. Auld’s present address: Centre de Recherche en Sciences Neurolo-
giques, Département de Physiologie, Université de Montréal, P.O. Box 6128, Station
Centre-ville, Montreal, Québec, Canada H3C 3J7.

Copyright © 2001 Society for Neuroscience 0270-6474/01/213375-08$15.00/0

maintenance, and function in vivo (Vantini et al., 1989; Li et al.,
1995; Chen et al., 1997; Fagan et al., 1997; Molnar et al., 1998;
Debeir et al., 1999; Ruberti et al., 2000), and NGF exposure (days
to weeks) enhances cholinergic markers in BF cultures (Hartikka
and Hefti, 1988; Takei et al., 1988, 1989; Svendsen et al., 1994;
Nonner et al., 1996; Pongrac and Rylett, 1998; Oosawa et al., 1999;
Auld et al., 2001). The neurotrophins brain-derived neurotrophic
factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4
(N'T-4) also enhance cholinergic markers (Nonomura et al., 1995;
Nonner et al., 1996; Auld et al., 2001). Interestingly, even a 30 min
exposure to NGF, BDNF, NT-3, or NT-4 increases choline acetyl-
transferase (ChAT) activity 24 hr later (Nonner et al., 2000).
Neurotrophins rapidly increase intracellular Ca®* in several
neuronal phenotypes, including BFCNs (Wildering et al., 1995;
Stoop and Poo, 1996; Jiang and Guroff, 1997; Li et al., 1998; Jia
et al., 1999; Nonner et al., 2000), and acutely modulate neuro-
transmission (Lu and Chow, 1999; Schinder and Poo, 2000).
BDNF and NT-3 rapidly and Ca**-dependently enhance neuro-
transmitter release from Xenopus motor neurons (Lohof et al.,
1993; Stoop and Poo, 1996; He et al., 2000). BDNF can enhance
hippocampal neurotransmission (Lessmann et al., 1994; Kang
and Schuman, 1995; Li et al., 1998), inhibit high-frequency
stimulation-associated fatigue (Gottschalk et al., 1998; Pozzo-
Miller et al., 1999), and facilitate long-term potentiation (LTP)
induction (Korte et al., 1995; Figurov et al., 1996; Patterson et al.,
1996; Chen et al., 1999; Xu et al., 2000), with presynaptic TrkB
typically being involved. Also, NGF rapidly modulates stimulated
ACh release from hippocampal (Knipper et al., 1994) and visual-
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cortex (Sala et al., 1998) synaptosomes and likely influences
visual-cortex LTP by modulating ACh release (Pesavento et al.,
2000).

Using embryonic BF cultures, we report that NGF rapidly and
potently enhanced ACh release in activity- and Ca**-dependent
manners and that increases persisted after NGF removal. Dichot-
omous actions consisting of protein synthesis-dependent “neuro-
trophic” effects on ChAT activity and protein synthesis-
independent “neuromodulator” increases of ACh release were
identified. These distinct capacities may make complementary
contributions to NGF enhancement of BFCN function.

MATERIALS AND METHODS

Culture. All experiments followed guidelines of the Canadian Council on
Animal Care and McGill University policies. Cultures were prepared as
described previously (Auld et al., 2000a). BF regions (septum, diagonal
band of Broca, and substantia innominata) of day 17 rat embryos
(Charles River, St. Constant, QC, Canada) were dissected in HBSS (Life
Technologies, Burlington, ON, Canada) containing 0.65% D(+)-glucose
(Sigma, St. Louis, MO), 15 mm HEPES, 10 U/ml penicillin, and 10
mg/ml streptomycin (Life Technologies). These were dissociated at 37°C
with 0.08% trypsin (Life Technologies) and 0.1% DNase I (Sigma) for 18
min [terminated with 10% fetal bovine serum (FBS; Immunocorp, Mon-
tréal, QC, Canada)]. The dissociation was completed mechanically with
a fire-polished Pasteur pipette. Cultures were plated at 700,000-750,000
cells per well [precoated with poly-L-ornithine (0.3 pg/ml); Life Tech-
nologies] in 500 ul of growth medium in four-well tissue culture plates
(Nunc, Naperville, IL), and cultures were maintained at 37°C and 5%
CO,. The medium consisted of DMEM (#11965; Life Technologies)
supplemented with KC1[20 mm; total, 25 mMm; similar high-K* conditions
are associated with improved viability in BF cultures (Nakamura et al.,
1994)], sodium pyruvate (1 mm), p(+)-glucose (35 mm), HEPES (15
mM™m), and FBS (10%). Under similar culture conditions, which were
optimized for the study of ACh release, both release and ChAT activity
steadily increased between plating and 10 day in vitro (DIV 10) (Auld et
al., 2000a).

Acetylcholine release. In most experiments, on DIV 7, the medium was
removed, and cells were rinsed with Krebs’ buffer [125 mm NaCl, 4.8 mm
KCl, 1.2 mm KH,PO,, 25 mm HEPES, 1.2 mm MgSO,, 2.2 mm CaCl,, 10
mM glucose, 10 uM choline, and 200 nm neostigmine (all from Sigma), pH
adjusted to 7.4] containing 6 mm K*. Unless described otherwise in
Results, after a 60 min equilibration period at 37°C and 5% CO,, this
buffer was discarded and replaced for a 45 min period with fresh buffer
containing thBNGF (R & D Systems, Minneapolis, MN; lots HS178041
or HS189011) or vehicle, from which ACh release was measured. Other
compounds were delivered during the 60 min equilibration period as well
as simultaneously with NGF during the ACh release period [BAPTA-
AM (RBI, Natick, MA), CdCl, (Sigma), cycloheximide (Sigma), fors-
kolin (Sigma), K252a (Calbiochem, La Jolla, CA) Rp-cAMPS (RBI),
tetrodotoxin (TTX; Tocris, Ballwin, MO)]. For the thBNGF, rhNT-3,
rhN'T-4, or hBDNF (R & D Systems; lots NG059091, OU02805, and
ODO048111) pretreatments (see Figs. 6, 7), medium with FBS was re-
placed with medium supplemented with B27 (2%; Life Technologies)
containing the neurotrophin. After the indicated exposure period, cul-
ture wells were washed four times with NGF/neurotrophin-free buffer,
and constitutive ACh release was then collected for 60 min periods in the
buffer described above. In some experiments, p7SNTR-IgG fusion pro-
tein (R & D Systems) was administered either concurrently with NGF or
after NGF removal. All samples were kept at —80°C until ACh or ChAT
activity quantification (<2 weeks).

The percentage of cholinergic neurons in BF cultures maintained
under similar conditions is low (~1%) (Hartikka and Hefti, 1988; Svend-
sen et al., 1994). However, their unique ability to synthesize ACh makes
quantification of supernatant ACh a reliable measure of their neuro-
transmitter release. To our knowledge, no report concerning an effect of
NGF in BF cultures has indicated an indirect mechanism. BFCNs, but
not GABAergic neurons, selectively express TrkA and p7SNTR (Har-
tikka and Hefti, 1988; Koh and Loy, 1989; Holtzman et al., 1992;
Svendsen et al., 1994). At a functional level, BECNs, but not GABAergic
neurons, respond to NGF and BDNF (Koliatsos et al., 1994). TrkB also
appears to be selectively expressed on ChAT-immunoreactive somas in
the BF (Molnar et al., 1998). Given that BFCNs selectively release ACh
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and respond to NGF, these cultures are an excellent model for studying
their interactions.

Acetylcholine quantification. ACh was assayed by HPLC with electro-
chemical detection in conjunction with an enzyme reactor. Samples (100
ul) were injected manually via a 100 ul loop on a two-position valve
(Valco, Houston, TX). ACh and choline, separated on a reverse-phase
column (75 X 2.1 mm) pretreated with lauryl sulfate, passed through an
enzyme reactor (10 X 2.1 mm) containing acetylcholinesterase (EC
3.1.1.7; Sigma, type VI-S) and choline oxidase (1.1.3.17; Sigma) co-
valently bound to glutaraldehyde-activated Lichrosorb NH, (10 um;
Merck, Darmstadt, Germany). All column hardware and packing mate-
rials were from Chrompack (Raritan, NJ). The resultant hydrogen per-
oxide was electrochemically detected at a platinum electrode at a poten-
tial of +500 mV versus an Ag/AgCl reference electrode (Antec VT-03/
Decade, Leiden, The Netherlands). The mobile phase, 0.2 M aqueous
potassium phosphate buffer, pH 8.0, with 1 mm tetramethylammonium
hydroxide (Sigma), was delivered at 0.4-0.45 ml/min by a dual piston
pump (ESA 580, Chelmsford, MA) connected to a degasser (CMA 260,
Stockholm, Sweden). ACh eluted at ~4 min.

Choline acetyltransferase activity. Cultures were homogenized in 200 ul
ice-cold buffer (40 mm sodium phosphate buffer, pH 7.4, 200 mm NacCl,
and 0.5% Triton X-100). Aliquots in duplicate were assayed for ChAT
activity using ['*C]-acetyl-CoA (New England Nuclear/DuPont,
Markham, ON, Canada) and choline (Sigma) as substrate. After 60 min
at 37°C, the reaction was stopped with ice-cold 10 mM sodium phosphate
buffer, pH 7.4, containing 0.2 mM acetylcholine chloride (Sigma). Radio-
active ACh was extracted using butyronitrile (Sigma) containing 15
mg/ml sodium tetraphenylborate (Sigma).

Statistical analysis. Data were statistically analyzed using either Stu-
dent’s ¢ test (unpaired) or one- or two-way ANOVAs with Tukey’s post
hoc test, where appropriate. In all cases, p < 0.05 was considered
statistically significant. The n represents individual culture wells evalu-
ated in a given experiment, and unless indicated otherwise, data are
expressed as mean * SEM representing percentage of control wells
receiving appropriate vehicle treatments.

RESULTS

NGF enhancement of ACh release is influenced by
depolarization level

Exposure to NGF (100 ng/ml for 60 min in buffer with 6 mm K ™)
resulted in increased ACh release (~192% of control) during an
immediately subsequent 10 min period of K™ (25 mm) depolar-
ization (control, 168 * 22 fmol per well per minute; NGF, 322 =+
16; n = 4; p < 0.001). Because some aspects of synaptic plasticity
are influenced by the level of neuronal electrical activity, includ-
ing neurotrophin modulation of neurotransmission (Gottschalk et
al., 1998; Boulanger and Poo, 1999a), we examined whether
NGF-associated increased ACh release could be modified by
activity level. An identical NGF treatment in sister culture wells
was associated with a greater increase in the amount of ACh
released when subsequently paired with increased depolarization.
Indeed, the same NGF treatment resulted in a ~2.4-fold greater
increase of ACh release (femtomoles per well per minute) when
followed by exposure to 25 mm K™ compared with 6 mm K™
(the increase in each K" condition was calculated vs ACh
release from the same depolarization conditions in the absence
of NGF) (Fig. 1).

We chose to further examine NGF enhancement of ACh
release under conditions of constitutive ACh release associated
with endogenous activity levels (in 6 mm K™ buffer) because
interpretation of mechanistic aspects of the NGF-associated in-
creases would be complicated by the facts that K* (25 mwm)
depolarization was associated with a large Ca*"-dependent in-
duction of ACh release by itself, as well as the synergistic inter-
action between increased activity level and NGF action on ACh
release. That most of the constitutive release was not sensitive to
intracellular Ca?" chelation (see below) enabled us to focus
subsequent mechanistic studies directly on NGF-induced ACh
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Figure 1. Activity-dependent enhancement of ACh release by NGF.
Cultures were preexposed to NGF (10 ng/ml) for 60 min in low K* (6
mM) buffer. ACh release was then evaluated from low-activity (6 mm K ™)
or high-depolarization (25 mM K ™) conditions for a 15 min period.
Columns represent increased ACh (femtomoles per well per minute *
SEM; n = 8) associated with NGF preexposure versus the same depolar-
izing conditions without NGF preexposure. Significance was determined
using Student’s ¢ test (*p < 0.001 vs 6 mm K™).
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Figure 2. NGF acutely enhances constitutive ACh release from embry-
onic basal forebrain neurons in a concentration-dependent manner during
a short-term exposure but does not induce persistent ChAT activity
changes. Data are expressed as a percentage of release or ChAT activity
in the absence of NGF [mean = SEM; 0 ng/ml (n = 59), 0.1 ng/ml (14),
0.5 ng/ml (14), 1 ng/ml (37), 10 ng/ml (27), and 100 ng/ml (19); control
ACh release was ~630 fmol/well for the 45 min exposure period, repre-
senting ~14 fmol per well per minute]. Significance was determined using
a one-way ANOVA with Tukey’s post-test (*p < 0.001 vs control).

release. It should be pointed out that although there was a large
relative effect of NGF compared with this spontaneous release
(possibly representing nonspecific leakage), NGF actually in-
duced more ACh release when coupled with a depolarizing
stimulation (see above).

NGF enhances constitutive ACh release: contribution
of TrkA and calcium

NGF (0.1-100 ng/ml) robustly enhanced constitutive ACh release
from embryonic BF cultures during a 45 min exposure period
without inducing an immediate, persistent increase in ChAT
activity (Fig. 2). Furthermore, under these conditions, neither
culture protein levels (control, 100 = 1%, n = 21; NGF, 100
ng/ml, 103 = 2%, n = 8) nor metabolic activity, indicated by
MTT reduction (control, 100 = 2%, n = 7; NGF 100 ng/ml, 99 *
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Figure 3. K252a (10-100 nm) prevents NGF (10 ng/ml) enhancement of
ACh release during a short-term exposure. Data are expressed as a
percentage of release in the absence of NGF and K252a (mean + SEM,;
n = 6-8). Statistical analysis was performed using a two-way ANOVA
with Tukey’s post-test (*p < 0.001 vs K252a only, at the same concentra-
tion; Tp = 0.0627 vs cultures receiving neither K252a nor NGF).
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Figure 4. Forskolin (10 uMm) alone increases ACh release but does not
synergistically enhance NGF (1 ng/ml)-induced ACh release during a
short-term exposure in low K™ (6 mMm) conditions. Data are expressed as
a percentage of release in the absence of forskolin and NGF (mean *
SEM; n = 6). Significance was determined using a one-way ANOVA with
Tukey’s post-test (*p < 0.001 vs control; Tp < 0.001 vs both NGF and
forskolin).

5%, n = 4), were altered; given the low percentage of cholinergic
neurons in BF cultures, this was not unexpected (Hartikka and
Hefti, 1988; Svendsen et al., 1994). The relative magnitude of
NGF enhancement of ACh release was time dependent and
during 15, 30, and 60 min exposure/release periods, NGF (1
ng/ml) enhanced constitutive ACh release to 127 £ 9% (n = 4;
p < 0.05 vs control), 182 = 11% (n = 6; p < 0.001), and 238 =+
25% (n = 6; p < 0.001) of control level, respectively. In the
presence of TTX (1 um), a 45 min exposure to NGF (1 ng/ml) still
elicited robust ACh release (control, 100 * 2%; TTX, 80 * 6%;
NGF, 287 = 17%; NGF/TTX, 258 * 27%; n = 6), suggesting an
action at the level of the cholinergic nerve terminal.

The tyrosine kinase inhibitor K252a blocked NGF (10 ng/ml)-
induced increases in constitutive ACh release, suggesting the
involvement of TrkA receptor signaling (Fig. 3). In the presence
of 100 nm K252a, NGF did not increase ACh release beyond the
control treated with K252a alone. Because cAMP signaling has
been shown to enhance the effects of neurotrophins (Meyer-
Franke et al., 1998; Boulanger and Poo, 1999b), we examined its
actions on NGF-induced ACh release (Fig. 4). Forskolin, at a
much higher concentration (10 um), increased ACh release to a
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Figure 5. NGF (1 ng/ml)-enhanced ACh release involves Ca®". 4, The
intracellular Ca** chelator BAPTA-AM (25 uM) inhibits NGF-induced
ACh release during a short-term exposure. Data are expressed as a
percentage of release in the absence of BAPTA-AM and NGF (mean *
SEM). Significance was determined using a one-way ANOVA with
Tukey’s post-test (*p < 0.001 vs control; ¥p < 0.001 vs NGF/BAPTA-
AM). B, NGF-induced ACh release is inhibited by the voltage-gated
Ca?" channel antagonist Cd®" (200 wm). Data are expressed as a per-
centage of release in the absence of Cd?* and NGF (mean *= SEM; n =
6). Significance was determined using a one-way ANOVA with Tukey’s
post-test (*p < 0.001 vs control; Tp < 0.001 vs NGF/Cd?").

magnitude similar to NGF (1 ng/ml). The coapplication of NGF
and forskolin, at these same concentrations, had only an additive
effect without evidence of synergistic interaction. Furthermore,
Rp-cAMPS (100 uMm), a protein kinase A (PKA) antagonist, did
not significantly decrease NGF (1 ng/ml)-induced increases in
constitutive ACh release associated with a 45 min exposure
(control, 100 = 4%; Rp-cAMPS, 104 = 1%; NGF, 329 = 12%;
NGF/Rp-cAMPS, 312 = 12%; n = 4-9). Thus, the NGF increase
of ACh release appears to not involve cAMP or PKA, at least
under these low-K™ conditions.

To determine whether Ca®* was involved in the NGF-induced
increases in constitutive ACh release, intracellular Ca>* was
chelated using BAPTA-AM (25 uM), and under these conditions
NGF (1 ng/ml)-associated ACh release was prevented (Fig. 54).
We next investigated the involvement of voltage-gated Ca?*"
channels (VGCC) using Cd?*, a nonspecific antagonist. Cd**
(200 um) blocked NGF (1 ng/ml)-induced increases in ACh
release, suggesting that voltage-gated Ca®* channels were in-
volved (Fig. 5B). Together with inhibiting ACh release increases
caused by K* stimulation (25 mm; 10 min), Cd** blocked NGF
enhancement of release under these conditions as well (data not
shown).
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Figure 6. Brief exposure to NGF induces prolonged increase in ACh
release. A, NGF (10 ng/ml for 60 min) treatment is associated with
increased ACh release for at least 4 hr. Data are normalized according to
release from control wells at the same hour and are expressed as mean *=
SEM (n = 17-23). Statistical analysis was performed using repeated
measure one-way ANOVA with Tukey’s post-test; *p < 0.001 vs control.
B, Treatment with NGF (10 ng/ml for 60 min) was associated with
enhanced ACh release during the subsequent 60 min and was specific to
availability during the defined exposure period, because a p7SNTR-IgG
fusion protein (5 ug/ml) only blocked the effect when coadministered
with NGF. Data are normalized according to control wells and are
expressed as mean = SEM (n = 4-8). Statistical analysis was performed
using a one-way ANOVA with Tukey’s post-test: *p < 0.001 vs control,
p < 0.001 vs NGF/co-p7SNTR-IgG fusion protein.

Brief exposure to neurotrophins induces prolonged
ACh release

Treatment with NGF (10 ng/ml) for 60 min (followed by four
rinses of culture plates) resulted in a robust increase of constitu-
tive ACh release for at least the next 4 hr (Fig. 64). Interestingly,
comparable to the 60 min treatment, a 5 min exposure to NGF
(10 ng/ml) also resulted in increased ACh release during the
hour-long period subsequent to NGF removal (289 + 31% of
control; n = 2; p < 0.05). Thus, it is likely that increased time
after initial NGF exposure, rather than the duration of NGF
exposure, was important for the time-dependent effect noted
previously. The specificity of the prolonged influence of NGF on
ACh release for the defined exposure period, as opposed to a
possible influence of potential residual NGF left after rinse with
NGF-free buffer, was indicated by the capacity of a p75SNTR-IgG
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Figure 7. Evidence for protein synthesis-dependent and -independent
effects of NGF on ChAT activity and ACh release, respectively. ChAT
activity (A) and constitutive ACh release (B) were compared after 6, 12,
and 24 hr exposures to NGF (100 ng/ml) and/or cycloheximide (CY; 2
uMm). Data are normalized according to controls and are expressed as
mean = SEM (6 hr, n = 4; 12 hr, n = 4-8; 24 hr, n = 20-24). Statistical
analysis was performed using two-way ANOVAs with Tukey’s post-test:
*p <0.05 vs vehicle-treated control and Tp <0.05 vs NGF/CY (within
ChAT and ACh, same hour); *p < 0.05 vs NGF at 6 and 12 hr (within
ChAT and ACh); *p < 0.05 vs NGF/CY at 6 and 12 hr (within ACh).
Furthermore, at 6, 12, and 24 hr, the percentage changes in ACh re-
lease and ChAT activity were different within NGF and NGF/CY groups
(p < 0.05).

(5 wg/ml) fusion protein to block increases when coadministered
with NGF (10 ng/ml), but not if given during the period of release
determination immediately after NGF washout (Fig. 6B).

Considering that these neurons respond to NT-3, NT-4, and
BDNF with increased ChAT activity (Nonomura et al., 1995;
Nonner et al., 1996, 2000), as well as retrogradely transport them
from target regions (DiStefano et al., 1992), we sought to deter-
mine whether they acutely induced a persistent increase in ACh
release. Under the same conditions as with NGF, a 60 min
pretreatment with the other neurotrophins (10 ng/ml) also en-
hanced ACh release in the hour subsequent to their removal:
NT-3, 153 = 6% of control (n = 4; p < 0.001 vs control); NT-4,
161 = 16% (n = 4; p < 0.01); and BDNF, 177 = 19% (n = 4;p <
0.001). Furthermore, NGF was also associated with increased
K *-stimulated ACh release that persisted after its removal (data
not shown).

Differentiation between neurotrophic and
neuromodulatory effects of NGF

Exposure to the protein synthesis inhibitor cycloheximide (2 um)
did not reduce NGF (1 ng/ml) enhancement of ACh release
during a 45 min exposure period (control, 100 = 3%; cyclohexi-
mide, 97 = 5%; NGF, 329 = 35%; NGF/cycloheximide, 362 *+
57%; n = 6-8), suggesting that new protein synthesis was not
required for the rapid effect of NGF on ACh release. We next
examined changes in ChAT activity and ACh release after 6-24
hr NGF (100 ng/ml) exposure and the contribution of protein
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synthesis to these effects (Fig. 7). After 6 and 12 hr of NGF
exposure, ChAT activity was not significantly increased versus
vehicle-treated control. Regardless of treatment with cyclohexi-
mide (2 uM), there was increased release of ACh from NGF-
treated groups. After 24 hr, ChAT activity was significantly in-
creased in the NGF condition but was not increased in the
NGF/cycloheximide-exposed condition. Remarkably, the en-
hancement of ACh release associated with NGF/cycloheximide
treatment was slightly larger than that associated with the NGF-
alone condition, despite the markedly lower level of ChAT activ-
ity in the NGF/cycloheximide-treated cultures after 24 hr expo-
sures (Fig. 7). Our preliminary data suggest that after a 24-hr
treatment, enhanced ACh release associated with the NGF/cy-
cloheximide treatment decays faster on removal of NGF com-
pared with conditions in which protein synthesis is not prevented,
which are associated with increased ChAT activity (Auld et al.,
2000D).

DISCUSSION

We report that NGF influences BFCNs in a manner encompass-
ing acute enhancement of ACh release in a neurotransmitter/
neuromodulator-like manner. The concentrations of NGF en-
hancing ACh release indicate that it as one of the most potent
ACh secretagogues ever recognized. More NGF-enhanced ACh
release was associated with a greater depolarization, suggesting
that this interaction could underlie some aspects of activity-
dependent sculpting of BFCN synapses. Even brief exposures to
NGF potentiated release for several hours after its removal, and
this capacity was shared with BDNF, NT-4, and NT-3. After a 24
hr NGF treatment, distinct protein synthesis-dependent and
-independent effects on ChAT activity and ACh release were
observed. These findings imply that acute neurotransmitter-like
as well as classical neurotrophic influences contribute to the
effects of NGF on BFCN. These capabilities may make comple-
mentary contributions to the formation, maintenance, and activ-
ity of BFCN synapses.

The effective concentrations of NGF on ACh release suggest
the involvement of TrkA receptors, which autophosphorylate at
similarly low ligand concentrations (Kaplan et al., 1991). Inhibi-
tion of TrkA signaling with K252a prevented NGF-enhanced
ACh release, consistent with K252a prevention of BDNF-
enhanced neurotransmission in hippocampal cultures (Li et al.,
1998). Considering that K252a (100 nm) increased ACh release to
some extent in our model, it was not possible to reduce NGF-
associated ACh release to vehicle-treated levels. Accordingly, a
direct or modulatory role for p7SNTR remains possible.

Although the steps linking TrkA to ACh release remain to be
fully established, in our model, TTX-sensitive Na* channels
were not critical. However, NGF-enhanced ACh release was
prevented by BAPTA-AM and Cd?*, suggesting that Ca?"
action after entry via VGCC was critical. In accord with these
findings, NGF rapidly increases voltage-sensitive Ca®" currents
in molluscan neurons and PC12 cells (Wildering et al., 1995; Jia
et al., 1999), as well as increasing intracellular Ca** in primary
BF cultures (Nonner et al., 2000).

Depolarization augmented the quantity of ACh release asso-
ciated with NGF exposure, implying a mechanism for preferen-
tially maintaining more release at active synapses. This is in
agreement with other reports of activity-dependent neurotrophin
action on synaptic efficacy (Gottschalk et al., 1998; Boulanger and
Poo, 1999a). Considering that synaptic fatigue may contribute to
establishing ACh release levels during the high-K™* exposure
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period, it is interesting that fatigue accompanying high-frequency
stimulation is prevented by BDNF (Gottschalk et al., 1998).

Our protocol involved a brief period of low activity (during and
immediately before NGF exposure; 6 mm K™) after sustained
high-activity levels (growth conditions; 25 mm K ™). It is possible
that depolarization during the maturation of BF cultures influ-
enced NGF-associated signal transduction pathways and/or inter-
acted with other BFCN characteristics to alter or facilitate NGF-
induced ACh release. Indeed, short-term or multi-day K™
depolarization has been shown to modulate features of neurotro-
phin signaling pathways in central (Meyer-Franke et al., 1998) or
peripheral neurons (Vaillant et al., 1999), respectively. Moreover,
in Xenopus motor neurons, K" depolarization rapidly increases
the sensitivity of neurotransmission to enhancement by BDNF
(Boulanger and Poo, 1999a). Nevertheless, our preliminary ob-
servations suggest that BF cultures grown under low-K ™" condi-
tions also respond acutely to NGF (10 ng/ml) with increased ACh
release (data not shown). Thus, NGF-induced ACh release is not
unique to cultures grown under high-K™ conditions, although
more subtle differences could exist.

Activity upregulates synthesis and release of neurotrophins
(Thoenen, 1995), with hippocampal expression and secretion of
NGF being elevated by muscarinic and nicotinic receptor signal-
ing (da Penha Berzaghi et al., 1993; Knipper et al., 1994; Blochl
and Thoenen, 1995; French et al., 1999). The capacity of NGF to
enhance ACh release and of ACh to increase NGF has been
hypothesized to contribute to synaptic efficiency (Knipper et al.,
1994). These characteristics suggest potential mechanisms for
immediate (i.e., translation-independent secretagogue effects at
the terminal level) and long-term (i.e., transcription/translation-
dependent neurotrophic effects) strengthening of synaptic con-
nectivity resulting from increased NGF availability. Moreover,
the activity-dependent nature of NGF-enhanced ACh release
implies that this feedback could be amplified at more active
synapses.

TTX exposure did not prevent NGF-enhanced ACh release,
and this is consistent with the selective expression of NGF re-
ceptors on BFCNs (Hartikka and Hefti, 1988; Koh and Loy,
1989; Holtzman et al., 1992; Svendsen et al., 1994). Because NGF
is highly expressed in regions of BF innervation (Korsching et al.,
1985; Large et al., 1986), action at the terminal agrees with the
potential physiological modulation of ACh release by target-
derived NGF. The TTX data also suggest that although increased
depolarization is associated with greater NGF enhancement of
ACh release, high levels of concurrent activity are not required.
This may be significant for developing BFCNss first encountering
target-derived NGF, which may increase ACh release from in-
nervating fibers with low intrinsic activity, resulting in feedback
between ACh release and NGF secretion and thereby increasing
NGF available for retrograde transport. The translation-
dependent actions of NGF likely include direct and indirect
enhancement of action-potential generation probability. In an
indirect neurotrophic manner, NGF increases BFCN excitability
by altering properties of Ca®" currents at the soma level (Levine
et al., 1995) and increases excitability in other developing neurons
by inducing expression of Na*, K*, and Ca*" channels (Lesser
and Lo, 1995; Toledo-Aral et al., 1995; Hilborn et al., 1998). At
the soma level, NGF increases BFCN firing under some condi-
tions, indicating that it can directly induce action potentials
(Palmer et al., 1993; Albeck et al., 1999). Thus, target-derived,
retrogradely transported NGF is likely to facilitate generation of
action potentials, and this would be amplified by the synapse-
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strengthening feedback between ACh release and NGF secretion
at the terminal level. This could subsequently interact with the
activity-dependent nature of the NGF secretagogue action to
further promote synapse consolidation.

A 60 min NGF exposure increased ACh release for at least 4 hr
after its removal. This was not observed when ACh release was
stimulated with high K* (without NGF), despite the ~10-fold
increase (Auld et al., 2000a). The long-term enhancement of ACh
release was dependent on NGF availability only during the expo-
sure period, suggesting that critical signal transduction/effector
processes were initiated quickly and remained activated for sev-
eral hours. Even a 5 min exposure was associated with prolonged
enhancement of release. These time frames are similar to NGF-
induced increases in Ca?", TrkA phosphorylation, and down-
stream pathways in primary BF cultures (Knusel et al., 1992;
Downen et al., 1993; Nonner et al., 2000). Thus, transitory target-
derived NGF secretion may subsequently augment ACh release
for several hours, greatly strengthening the synapse, although
potential in vivo interactions with established circuitry could
modify this response. Considering that NT-3, NT-4, and BDNF
also induced prolonged ACh release, they could play a similar
role during synaptic development and maintenance.

Complementary to our observations, a 30 min neurotrophin
exposure increased ChAT activity measured 24 hr later in BF-
CNs (Nonner et al., 2000), and a 1 min exposure to NGF induced
Na™ channel expression in PC12 cells (Toledo-Aral et al., 1995).
Thus, even short exposures to neurotrophins can cause lasting
effects via both neurotrophic and secretagogue mechanisms. Re-
garding prolonged responses of BFCNs to brief neurotrophin
exposures, it seems likely that increases in ChAT activity (Nonner
et al., 2000) and translation-independent ACh release (this re-
port) depend on common (e.g., TrkA, Ca?*) and disparate (e.g.,
translation) mechanisms. Because Ca®* is involved in NGF-
induced ACh release, the mechanism(s) sustaining prolonged
release likely involves Ca?*-dependent elements. Ca®" activates
kinases that regulate neurotransmission and vesicle trafficking,
such as Ca**/calmodulin-dependent kinase II (Llinas et al., 1985;
Greengard et al., 1993). Interestingly, this kinase has been impli-
cated in NT-3-induced neurotransmitter release from Xenopus
motor neurons (He et al., 2000).

Rapid NGF enhancement of ACh release was not reduced by
cycloheximide, suggesting that protein translation is not involved.
In agreement with previous observations (Pongrac and Rylett,
1998), increased ChAT activity after 24 hr NGF exposure was
dependent on new protein synthesis. Interestingly, even after 24
hr, and regardless of the lack of increase in ChAT activity, there
was a large protein synthesis-independent enhancement of ACh
release associated with the NGF/cycloheximide condition. Thus,
NGF can enhance ACh release in a secretagogue manner after
prolonged exposure, and this may have relevance for mainte-
nance of ACh release levels at BFCN synapses that are exposed
to target-derived NGF. It is also apparent that under some
conditions, increased ChAT activity is not associated with—or
required for—enhancement of ACh release after prolonged NGF
exposure. Together, these data suggest that the translation-
independent secretagogue action of NGF may contribute to a
portion of increased ACh release, even after prolonged NGF
exposures sufficient to induce transcription and translation-
dependent increases in ACh synthesis capacity.

In summary, NGF rapidly enhanced ACh release from embry-
onic BF cultures. The NGF-associated increase was activity de-
pendent and, unlike classical neurotransmitter modulation, per-



Auld et al. « NGF Rapidly Induces Prolonged ACh Release

sisted for several hours after NGF removal in a manner akin to
LTP. The NGF-induced increase was dependent on TrkA signal-
ing, Ca®*, and VGCCs, but not dependent on new protein
synthesis. After a 24 hr treatment with NGF, distinct protein
synthesis-dependent and -independent effects on ChAT activity
and ACh release, respectively, were observed. Together, these
data suggest that in addition to translation-dependent neurotro-
phic actions, NGF has strong influences on BFCN function via
both rapid and prolonged modulation of ACh release in a
neurotransmitter/neuromodulator-like manner.
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