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Interactions between Fibroblast Growth Factors and Notch

Regulate Neuronal Differentiation
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The differentiation of precursor cells into neurons has been
shown to be influenced by both the Notch signaling pathway
and growth factor stimulation. In this study, the regulation of
neuronal differentiation by these mechanisms was examined in
the embryonic day 10 neuroepithelial precursor (NEP) popula-
tion. By downregulating Notch1 expression and by the addition
of a Deltal fusion protein (Delta Fc), it was shown that signaling
via the Notch pathway inhibited neuron differentiation in the
NEP cells, in vitro. The expression of two of the Notch receptor
homologs, Notch1 and Notch3, and the ligand Deltal in these
NEP cells was found to be influenced by a number of different
growth factors, indicating a potential interaction between growth
factors and Notch signaling. Interestingly, none of the growth
factors examined promoted neuron differentiation; however, the

fibroblast growth factors (FGFs) 1 and 2 potently inhibited differ-
entiation. FGF1 and FGF2 upregulated the expression of Notch
and decreased expression of Deltal in the NEP cells. In addi-
tion, the inhibitory response of the cells to the FGFs could be
overcome by downregulating Notch1 expression and by dis-
rupting Notch cleavage and signaling by the ablation of the
Presenilin1 gene. These results indicate that FGF1 and FGF2
act via the Notch pathway, either directly or indirectly, to inhibit
differentiation. Thus, signaling through the Notch receptor may
be a common regulator of neuronal differentiation within the
developing forebrain.
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The complex array of neurons and glia within the nervous system
initially arise from the neuroepithelial precursor (NEP) cells
found within the neural tube. It now appears that cell interactions
are pivotal regulators of neuron differentiation, in addition to
allowing cell proliferation and the continual renewal of the pre-
cursor population. The Notch receptor, and its ligands Delta and
Serrate/Jagged, are membrane-bound proteins that provide an
essential mechanism of interaction between adjacent cells. Stud-
ies examining the role of Notch signaling during development
have found it to be associated with the inhibition of neurogenesis
(Austin et al., 1995; Chitnis et al., 1995; Dorsky et al., 1995,
Nakamura et al., 2000). However, the exact role of Notch and
Delta in mammalian CNS precursor cells remains to be
determined.

The Notch receptor is a 300 kDa protein with a single trans-
membrane domain. The extracellular domain of Notch consists of
epidermal growth factor (EGF)-like repeats, which are required
for ligand binding, and a second region, the Lin12/Notch repeat
region. The intracellular domain also contains highly conserved
domains, the RAM23 domain and the cdclO/ankyrin repeat
(Fleming 1998), which bind to intracellular proteins that regulate
Notch signaling. Delta also contains EGF-like repeats in the
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extracellular domain; however, receptor binding occurs via the
Delta/Serrate/Lag (DSL) domain, at the N terminus of the pro-
tein (Fleming 1998).

Analysis of Notch signaling has shown that the intracellular
domain is cleaved after ligand binding (Schroeter et al., 1998), a
process that appears to be mediated by Presenilin proteins (De
Strooper et al., 1999; Song et al., 1999; Steiner et al., 1999). The
intracellular domain of Notch is directed to the nucleus (Tamura
et al., 1995), where it initiates transcription of certain basic
helix-loop-helix (b HLH) genes (Jarriault et al., 1998), resulting in
the inhibitory cellular response and the downregulation of Delta
expression (Heitzler et al., 1996; Parks et al., 1997). Delta expres-
sion is also regulated by various bHLH transcription factors,
which are essential for neurogenesis (Ma et al., 1996, 1998; Fode
et al., 1998; Casarosa et al., 1999). Although many of the proteins
involved in Notch signaling have been discovered, extracellular
factors that regulate the pathway remain to be determined.

Various growth factors are also important for the development
of the nervous system, many of which inhibit neuronal differen-
tiation. These include fibroblast growth factor 1 (FGF1) and
FGF2 (Murphy et al., 1990; Drago et al., 1991), leukemia inhib-
itory factor (Bonni et al., 1997; Koblar et al., 1998), and bone
morphogenetic proteins (Shou et al., 1999). The inhibitory nature
of these factors prompted our examination of potential interac-
tions between growth factors and the Notch signaling pathway.

In the present study we have shown that FGF1, FGF2, or Notch
signaling in mouse N EP cells inhibited neuron differentiation and
that expression of Delta and Notch within these cells was regu-
lated by FGF1 and FGF2. The inhibition of neurogenesis with
FGF could be overcome by disrupting Notch signaling in vitro,
indicating that inhibition caused by FGF may be regulated by the
Notch pathway.
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MATERIALS AND METHODS

Reagents. Recombinant FGF2 was obtained from Boehringer Mannheim
(Roche, Germany). Recombinant FGF1, brain-derived neurotrophic fac-
tor (BDNF), and neurotrophin (NT)-3 were obtained from PeproTech
Inc. Recombinant FGFS, transforming growth factor (TGF) B5, and
oncostatin M (OSM) were obtained from R&D Systems. Recombinant
bone morphogenetic protein (BMP) 2 and BMP4 were obtained from
Genetics Institute. CNTF was obtained from Alomone labs (Jerusalem,
Israel). Recombinant leukemia inhibitory factor (LIF) was obtained
from AMRAD. Each of the growth factors was used at 50 ng/ml unless
stated otherwise, except recombinant LIF (specific activity 10 U/mg),
which was used at a concentration of 1000 U/ml in culture.

Isolation of embryonic day 10 neuroepithelial precursor cells. Embryonic
day 10 (E10) NEP cells were isolated from CBA mice as described
previously (Murphy et al., 1990). Cells were dissociated into a single-cell
suspension, washed, and resuspended in serum-free media before plating
onto tissue culture plates coated with poly-DL-ornithine (Sigma, St.
Louis, MO) and laminin (Life Technologies, Gaithersburg, MD). Cells
were plated at high cell density, in either 24-well or 96-well plates
(Falcon) or Terasaki plates (Bio-Rad, Burlingame, CA) at 200,000,
15,000 and 2,000 cells per well, respectively. The serum-free media was
the media hormone mix described previously by Reynolds and Weiss
(1992) and Gritti et al. (1996). When cultured in the presence of serum,
cells were grown in Monomed (Life Technologies) with part A supple-
ment (CSL).

E10 NEP cells were isolated from Presenilinl null mutant mice (Wong
et al., 1997) obtained from Dr. Hui Zheng (Baylor College of Medicine).
The genotypes of individual mice were determined by PCR using prim-
ers to Presenilinl, 5" primer, AGCCAAGAACGGCAGCAGCAGCAT-
GACAGGCAGAG, and 3’ primer, CTTCCATGAGCCATTTGCTA-
AGTGC, and the neo gene CCATTGCTCAGCGGTGCTGTCCAT as
described by Qian et al. (1998).

RT-PCR analysis. RNA was purified from tissue and cultured cells
using the RNeasy minikit (Qiagen, Hilden, Germany). RNA was reverse
transcribed using Superscript II (Life Technologies) with 10 pmol
oligo-dT (Promega, Madison, WI) as primer and 1 ug of total RNA. The
RNA and oligo-dT were denatured by heating to 70°C before rapidly
chilling on ice. The reverse transcription reaction was performed in a
volume of 20 ul containing 1X Superscript II buffer, 0.1 mm DTT, and 10
uM each of dATP, dTTP, dCTP, and dGTP for 1 hr at 42°C. For PCR
amplification, specific oligonucleotide primer pairs were incubated with 2
ul cDNA and 2.5 U/ul pfu polymerase (Stratagene, La Jolla, CA) in a
100 wl reaction mix that included 1X buffer and 200 uM each of dATP,
dTTP, dCTP, and dGTP. Typical cycle conditions were 1 min at 94°C, 1
min at 55°C, and 2 min at 72°C for 35 cycles. Ten microliters of the
reaction were then separated on a 1% agarose gel and visualized by
ethidium bromide staining.

The primers for RT-PCR analysis were as follows: mouse Notchl 5'
primer, TTACAGCCACCATCACAGCCACACC and 3’ primer, ATGC-
CCTCGGACCAATCAGA; mouse Notch2 5" primer, GAGGCGCTCT-
TCTGCTGTTGAAGA and 3’ primer, ATAGAGTCACTGAGCTCT-
CGGACAG; mouse Notch3 5" primer, ACACTGGGAGTTCTCTGT and
3’ primer, GTCTGCTGGCATGGGATA; mouse Deltal, 5’ primer TGT-
GACGAGCACTACTACGGAGAAG and 3’ primer, AGTAGTTCAG-
GTCTTGGTTGCAGAA; and mouse B-actin 5’ primer RT-PCR B-actin
5" primer, CTGAAGTACCCATTGAACATGGC and 3’ primer
CAGAGCAGTAATCTCCTTCTGCAT.

Northern blot analysis. RNA was isolated from cells cultured in 24-well
plates for 24 hr in the presence of various growth factors and serum using
the RNeasy minikit (Qiagen). After electrophoresis through a 0.8%
agarose—formaldehyde gel, RNA was capillary transferred to Hybond
nylon membrane (Amersham, Arlington Heights, IL) overnight using
20X SSC buffer and then fixed to the filter by exposure to UV light using
a Stratalinker (Stratagene). The filter was prehybridized for 2 hr at 68°C
in a solution containing 4X SSC, 5X Denhardt’s solution (0.1% Ficoll,
0.1% polyvinylpyrrolidine, 0.1% BSA), 2.5% SDS, and 100 pg/ml
salmon sperm DNA. *?P-labeled probes (with a specific activity of at
least 10 cpm/ml) were made using random primer DNA synthesis with
the NEBIot Kit (New England Biolabs, Beverly, MA) using double-
stranded DNA fragments of Notchl (base pairs 1-889), Notch3 (base
pairs 3340-4250), and Deltal (base pairs 1850-1648). Probes were
boiled for 5 min before addition to the hybridization solution and
hybridized overnight at 68°C. Unbound probe was removed by washing
twice in 2X SSC, 0.1%SDS and then twice in 0.2X SSC, 0.1%SDS for 15
min each wash. Filters were exposed to phosphorimager screens (Molec-
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ular Dynamics, Sunnyvale, CA) and scanned by a Molecular Dynamics
Phosphorimager. The RNA level of Notchl, Notch3, or Deltal was
quantified using ImageQuant 5.0 (Molecular Dynamics) and by compar-
ison with the total amount of RNA loaded using a glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) probe. Filters were stripped of
probes for reprobing by boiling in 0.1% SDS.

Treatment with the Deltal immunoglobulin Fc fusion protein (Delta Fc).
The extracellular domain of mouse Deltal, not including the transmem-
brane domain, was cloned into a derivative of the vector pEF-BOS
(Mizushima and Nagata, 1990) containing the Fc region (hinge, CH2,
and CH3 domains) of the genomic human IgG1 gene. The resultant
plasmid, encoding Delta Fc, was transiently transfected into 293T cells by
calcium phosphate transfection. The pEF-BOS vector expressing the Fc
region alone was used as a control (control Fc). The transfected cells
were lysed in a lysis buffer containing (in mm): 10 HEPES, pH 7.3, 10
NaCl, 1 KH,PO,, 1 CaCl,, 0.5 MgCl,, and 5 NaHCO;, by dounce
homogenization on ice. The lysate was centrifuged at 11,000 X g for 10
min to pellet the nuclei and unbroken cells. Production of the Delta Fc
protein and the control Fc protein was detected in the supernatant by
Western blot analysis with a peroxidase-conjugated polyclonal antibody
to human IgG (Dako, Glostrup, Denmark).

E10 NEP cells were cultured in 96-well plates in the media specified
for 16 hr before treating with the supernatant obtained from the above
cell lysate. The supernatant was added to the cells at a 1:4 dilution in the
culture media. The cells were cultured for a further 24 or 48 hr before
fixing in 2% paraformaldehyde, staining for microtubule-associated pro-
tein 2 (MAP2) and DAPI, and performing cell counts as described
below.

Treatment with antisense oligonucleotide. Antisense oligonucleotides
were used to downregulate the expression of Notchl in the E10 NEP
cells. The antisense oligonucleotides were designed against the EGF
repeat region of the Notchl gene (Austin et al., 1995) and had an
adamentane group attached to the 5’ end via a carbon linker. Nonsense
oligonucleotides were used as a control and contained the same ratio of
base pairs found in the antisense oligonucleotides but in a random order.
The sequence for the antisense oligonucleotide was 5'-GAAGT-
CATTAACACGCTGCACAC, and for the nonsense oligonucleotide it
was 5-TACATCAGCAGACTACACGAGTC. The oligonucleotides
were purified by HPLC and resuspended in a 1% cyclodextrin solution.
The adamentane and cyclodextrin enhance the entry of the oligonucle-
otide into the cell (Epa et al., 2001). Freshly dissected E10 NEP cells
were mixed with the oligonucleotides at 5 uM immediately before plating.
Cells were plated in 96-well plates and cultured for 48 hr before they
were fixed with 2% paraformaldehyde and M AP2-positive cells were
counted.

Immunohistochemistry and cell counts. After fixing in 2% paraformal-
dehyde for 20 min at room temperature, cells were incubated in 100%
cold methanol at —20°C for a further 20 min to permeabilize the cells.
The cells were washed three times in PBS and blocked by incubating the
cells in PBS containing 1% fetal calf serum and 1% normal horse serum
for 20 min at room temperature. To stain the M AP2-positive neurons,
cells were incubated with a monoclonal anti-MAP2 antibody (Sigma)
diluted 1:400 in PBS, 1% FCS for 30 min. After a second wash step, a
biotin-conjugated horse anti-mouse Ig secondary antibody (Vector Lab-
oratories, Burlingame, CA) was added to the cells (1:200) for 20 min,
followed by a third wash step and incubation with an avidin-horse radish
peroxidase complex (Vectorstain Kit, Vector). The MAP2-positive cells
were then visualized by the reaction of hydrogen peroxide and 3.3’-
diaminobenzidine tetrahydrochloride (DAB) to form a colored product.
Cells were washed and stored in PBS containing 0.1% sodium azide. To
visualize all cells present in the cultures, the fluorescent DNA binding
dye DAPI (Molecular Probes) was added with secondary antibody at a
1:1000 dilution. The cells were then visualized by fluorescence
microscopy.

When experiments were performed in 96-well plates, five randomly
selected fields of view at 20 magnification were counted. When experi-
ments were performed in Terasaki plates, the entire well was counted.
The results were expressed as the number of M AP2-positive neurons
produced per 100 DAPI-positive cells counted, with a minimum of 200
cells counted per well. Cell viability was assessed by the nuclear mor-
phology after DAPI staining. In each experiment four wells of each
condition were counted, and each experiment was repeated at least three
times. All values are expressed as the mean = SEM.
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Figure 1. The expression of Notch and Delta in the neuroepithelial
precursor cells of the developing mouse nervous system. RT-PCR analysis
showing expression of Notchl, Notch2, Notch3, Deltal, and the B-actin
control gene in E10 mouse embryos, in E10 NEP cells, and in E10 NEP
cells cultured in the presence of serum for 24 and 72 hr.

RESULTS

Delta1 and Notch1, -2, and -3 are expressed in mouse
neuroepithelial precursor cells

Previous reports indicated that Deltal expression was first detect-
able in the mouse CNS at E8 and continued to be expressed in the
ventricular zone until approximately E14 (Bettenhausen et al.,
1995; Dunwoodie et al., 1997). The various Notch homologs were
also reported to be expressed from embryonic day 8 in the mouse
nervous system: Notch3 expressed first, followed by Notch2 and
Notchl (Lardelli et al., 1994; Williams et al., 1995; Lindsell et al.,
1996; Sestan et al., 1999; Redmond et al., 2000). To determine
whether the precursor population from the developing forebrain
expressed the various forms of Notch and Delta at the onset of
neuronal differentiation, the stage at which they were to be
assayed in vitro, RT-PCR analysis was performed on NEP cells
isolated from E10 forebrains. mRNA for Notchl, -2, and -3 and
Deltal were all found to be present in the freshly isolated E10
NEP cells and in cells that had been cultured at high cell density
in vitro in the presence of serum for 24 and 72 hr (Fig. 1).

Delta1 inhibits the differentiation of E10 neuroepithelial
precursor cells

To determine the effect of signaling through Notch on E10 NEP
cells in vitro, a fusion protein containing the extracellular domain
of Deltal joined to human IgG1Fc (Delta Fc) was constructed
(Fig. 2A4). The Delta Fc protein was expressed in transiently
transfected 293T cells and detected by Western blot analysis (Fig.
2B). The Delta Fc cell lysate, or a lysate from cells transiently
transfected with a control IgG1 vector (Fig. 2B, control Fc), were
added to E10 NEP cells cultured in the absence of serum, and the
number of M AP2-positive neurons generated was analyzed. No
difference in the number of neurons generated was observed 24 hr
after the addition of Delta Fc compared with controls. After 48
hr, however, Delta Fc was able to significantly inhibit neuron
differentiation, compared with the controls, to the extent that no
new neurons were generated between 24 and 48 hr in the pres-

J. Neurosci., August 1, 2001, 27(15):5587-5596 5589

A. B- @Qﬂ- Q“
l‘b
§ N
I Deltal ¢ o
-] Delta Fc
86 kDa - s—
1 control Fe
44 kDa -
[ psL 1 T™ Domain 27—
[l EGF-Like [ human IgG1 Fe
Repeats
C. D.
12 18
W Delta Fe 16 M Delta Fc‘
5 10| control Fe = 3 control Fe
2 2 14
£ s £ 12
£ .
i3 * £310
=<6 e o *
EE g 8
o ™ P~
£ 4 3%
E = 4
= =
zZ 2 2
2
0 0 L
= 48 ++ +/- 73
Time (h) Presenilin 1

Figure 2. The extracellular domain of Deltal inhibits the differentiation
of E10 neuroepithelial precursor cells but is unable to inhibit the differ-
entiation of NEP cells with a mutation in Presenilinl. A, Schematic
diagram of full-length Deltal, the Delta Fc fusion protein, showing the
extracellular domain of Deltal fused to the human IgGl Fc, and the
control human Fc proteins. The various sequence motifs are defined by
shaded boxes and depicted at the bottom of the figure. DSL, Delta/Serrate/
Lag domain; TM Domain, transmembrane domain. B, Western blot anal-
ysis showing expression of the Delta Fc protein and the control Fc in the
cell lysate of transiently transfected 293T cells. The protein was detected
using an antibody to human IgGl. C, Assessment of the number of
MAP2-positive neurons produced by E10 NEP cells in vitro, after the
addition of Delta Fc or control Fc cell lysates. Cells were cultured in the
absence of serum in 96-well plates. No difference in neuron production
was observed after 24 hr, whereas after 48 hr Delta Fc significantly
inhibited neuron differentiation (*p < 0.05; mean = SEM). D, Delta Fc or
control Fc cell lysate was added to wild-type NEP cells (+/+) or NEP
cells containing a heterozygous (+/—) or homozygous (—/—) deletion in
the Presenilinl gene. Cells were cultured in the absence of serum in
96-well plates for 48 hr (*p < 0.05; mean = SEM).

ence of Delta Fc (Fig. 2C). To ensure that the inhibition of
differentiation was caused by the Delta Fc protein and not other
factors expressed by the 293T cells, the Delta Fc and Fc proteins
were purified by size separation chromatography and added to
the NEP cells for 48 hr (data not shown). Compared with the
neuron number after the addition of Fc cell lysate, the number of
neurons produced with the purified Fc protein (21.5 * 0.2%) and
Delta Fc protein (14.5 = 0.75%) was increased. However, the
purified Delta Fc protein inhibited neuron differentiation to the
same degree as that observed with the Delta Fc cell lysate. To
determine whether Delta Fc was signaling via Notch, Delta Fc
was added to cells from Presenilinl knock-out animals. Preseni-
linl is required for the cleavage of the intracellular domain of
Notch after ligand binding (Song et al., 1999; Struhl and Green-
wald, 1999) and therefore Notch signaling is disrupted in the
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Presenilin1-deficient cells. The Delta Fc cell lysate was added to
NEP cells from wild-type animals (+/+) and animals with a
heterozygous (+/—) or homozygous (—/—) deletion in Preseni-
linl, and the production of neurons after 48 hr in culture was
assessed (Fig. 2D). The inhibition of neuronal differentiation
observed in the wild-type cells in response to Delta Fc was
consistent with that seen in Figure 2C after 48 hr. In contrast,
Delta Fc was unable to inhibit the differentiation of NEP from
Presenilinl knock-out animals (Fig. 2D). In addition, although a
low level of inhibition was observed by Delta Fc in the Presenilinl
heterozygous cells, this inhibition was not significantly different
from the control. These data suggest that Delta Fc signals via
Notch to inhibit neuronal differentiation in the neuroepithelial
precursor cell population.

Growth factors can influence the expression of Notch
and Delta by E10 NEP cells in vitro

Little is known about the upstream factors that may regulate the
Notch—-Delta inhibitory pathway. It is possible that various
growth factors act to inhibit neurogenesis, at least in part, by
regulating the level of Delta or Notch expression. To examine this
question more closely, we initially sought to determine which
growth factors influenced the neuronal differentiation of the E10
NEP cells. Northern blot analysis then was used to quantify
changes in the expression of Notch and Delta induced by these
factors.

It was found that the presence of serum in the medium signif-
icantly inhibited the differentiation of precursor cells into neurons
(Fig. 34) and increased the overall number of cells present in the
culture (Fig. 3B). Because of the response observed with serum,
we examined the effect of various growth factors on cells cultured
in either the presence or absence of serum. Each dose of growth
factor that was added to the cells ensured that the cells were
maximally stimulated by that growth factor. Members of the
fibroblast growth factor family, FGF1, FGF2, and FGFS, were all
found to inhibit the neuronal differentiation of the E10 NEP cells
and caused a significant increase in cell number in both the
presence and absence of FCS (Fig. 34,B). LIF caused a slight
increase, although not significant, in cell number and inhibited
neuronal differentiation. However, both of these effects were
observed only when serum was present in the cultures, suggesting
that certain factors present in FCS are able to alter the response
of the cells to LIF. In contrast, OSM, another member of the
neurocytokine family, caused a decrease in cell number but had
no effect on neuron differentiation. A decrease in cell number
occurred when members of the TGFB superfamily, BMP2,
BMP4, TGFB3, and TGFBS5 were added to the cultures alone.
However, with serum present, only TGFB5 affected cell number.
TGEFpS also caused a slight decrease in the percentage of neurons
produced, whereas BMP2, BMP4, and TGFB3 did not alter
neurogenesis. NT-3 decreased the number of cells present in the
cultures, whereas BDNF had no effect on either cell number or
differentiation (Fig. 3).

Overall, none of the growth factors examined caused a signifi-
cant increase in the percentage of neurons generated in culture, but
several, including serum, inhibited the generation of neurons. To
determine whether the inhibitory response observed with several of
the growth factors was associated with a change in the expression
levels of Notch and Delta, Northern blot analysis was undertaken.

Serum increased the expression of Notchl and decreased ex-
pression of Deltal in cultured E10 NEP cells but had no effect on
Notch3 expression (Fig. 4). The increase in Notchl expression
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Figure 3. Serum and growth factors affect the neuronal differentiation

(A) and overall number of cells (B) generated by E10 NEP cells in vitro.
E10 NEP cells were cultured in Terasaki plates for 48 hr in the presence
or absence of serum with growth factors. 4, The effect on neurogenesis
was analyzed by examining the number of M AP2-positive neurons pro-
duced per 100 cells. B, The total number of DAPI-positive cells per well.
The production of neurons and the number of cells present in cultures
without growth factor were compared with those with growth factor
added (* denotes significant differences when serum is present; # denotes
significant differences when serum is absent; p < 0.05; mean = SEM).
FGF, Fibroblast growth factor; BMP, bone morphogenetic protein; 7TGFp,
transforming growth factor B; LIF, leukemia inhibitory factor; OSM,
oncostatin M; BDNF, brain-derived neurotrophic factor; N7-3, neurotro-
phin 3.

observed with serum was further enhanced by the presence of
FGF1, FGF2, FGFS8, TGFpS, and LIF (Fig. 54). Interestingly, in
the absence of serum, FGF1 significantly decreased Notchl ex-
pression (Fig. 5B). BMP2 also decreased Notchl expression in
the absence of serum, whereas it increased the expression of
Notch3 (Fig. 5C,D). Notch3 expression was also significantly in-
creased in the absence of serum by TGFBS, LIF, NT-3, and FGF2
(Fig. 5C,D). In contrast, with serum present FGF2 did not in-
crease Notch3 expression (Fig. 5C). Expression of Deltal was
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Figure 4. Serum alters the expression of Notchl and Deltal but does not
affect Notch3 expression in E10 neuroepithelial cells. Cells were cultured
in the presence or absence of serum for 24 hr before the RNA was
extracted. Northern blot analysis was used to examine gene expression,
and the relative level of mRNA expressed was quantified by phosphorim-
ager analysis and comparison with GAPDH expression. Shown is a
representative of three independent experiments.

increased only by TGFB-5, in both the presence and absence of
serum (Fig. 5E,F). FGF2 and BMP2 decreased expression of
Deltal in the absence of serum. This decrease was found to be
even greater when serum was present and was also observed with
the addition of FGF1 and serum. None of the other growth
factors examined altered Deltal expression.

FGF1 and FGF2 inhibit neurogenesis via the
Notch-Delta pathway

To determine whether the upregulation of Notch expression with
FGF1, FGF2, or serum was related to the low neuronal number,
an antisense oligonucleotide, designed to downregulate Notchl
expression, was used in the assay. The antisense oligonucleotide,
designed against the EGF repeat coding region of the mouse
Notchl gene, has previously been shown to reduce Notchl ex-
pression in neural cells in vitro (Austin et al., 1995). To confirm
the specificity and efficacy of the oligonucleotide for Notchl, the
antisense oligonucleotide was shown to effectively downregulate
Notchl expression in 293T cells transiently transfected with a
Notchl plasmid, when compared with nonsense controls (Fig.
6A). Addition of the antisense oligonucleotide to NEP cells
grown in serum alone resulted in a significant increase in the
production of M AP2-positive neurons, compared with the non-
sense control cultures. FGF1 still exerted some inhibitory effects
in the presence of antisense oligonucleotide, in that it did not
completely restore the number of neurons generated in the no-
factor control. However, when compared with the FGF1 nonsense
control, a significant increase in neurons was observed (Fig. 6B)
with antisense. In contrast, the antisense oligonucleotides were
unable to alter neuron number when cells were cultured in 50
ng/ml FGF2 (Fig. 6 B). However, when the FGF-2 concentration
was lowered to 10 or 5 ng/ml, a significant increase in neuron
production was observed with the antisense oligonucleotide com-
pared with nonsense controls (Fig. 6C).
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To further establish the role of Notch during FGF signaling,
E10 NEP cells from animals with a deletion in the Presenilinl
gene were examined after stimulation with either FGF1 or FGF2.
Cells from wild-type animals (+/4) or animals heterozygous
(+/—) or homozygous (—/—) for the Presenilinl deleted allele,
were cultured in either the presence or absence of serum and with
50 ng/ml FGF2 or FGF1 for 24 hr (Fig. 7). Both FGF2 and FGF1
significantly inhibited the neuron differentiation of the wild-type
(+/+) cells. In contrast, however, FGF2 and FGF1 were unable to
inhibit the differentiation of cells from Presenilinl homozygous
knock-out animals, in either the presence (Fig. 74,B) or absence
(Fig. 7C,D) of serum. In addition, the neuronal differentiation of
the Presenilinl heterozygous cells was not inhibited by FGF1
(Fig. 74,C) or FGF2 when serum was present (Fig. 74). However,
in the absence of serum, FGF2 continued to inhibit the differen-
tiation of the heterozygous cells (Fig. 7D). Interestingly, com-
pared with the wild-type controls, a significant increase in the
production of M AP2-positive neurons was also observed by the
Presenilinl homozygous knock-out cells. An increase in neuron
production by the Presenilinl homozygous knock-out cells also
occurred in the presence of FGF1 and FGF2. These results
suggest that FGF1 and FGF2 require Notch signaling to inhibit
the neuronal differentiation of the E10 NEP cells.

Delta1 inhibits neuron differentiation in the presence of
FGF1, but not in the presence of FGF2

In the absence of serum, there is significant neuronal production in
the presence of inhibitory growth factors, especially FGF1 (Fig.
3A4). Because these conditions are associated with lowered levels of
Notch expression and therefore lowered Notch signaling (Fig. 5B),
we examined whether this component of neuronal production
could be inhibited if Notch signaling was further activated by
adding exogenous Delta Fc to these cultures. Similar to the results
obtained in serum-free cultures without any growth factors added
(Fig. 2C), the addition of Delta Fc to NEP cells stimulated with
FGF1 had no effect on neuron production within the first 24 hr but
showed significantly lower numbers of neurons compared with
controls at 48 hr (Fig. 84). In contrast, Delta Fc was unable to alter
the inhibitory activity of FGF2 at 24 or 48 hr (Fig. 84). In the
presence of FCS, no significant effect of the exogenous Delta on
neuron production was observed under any condition (Fig. 8 B).

To examine whether the inhibitory effect of exogenous Delta on
FGF1-stimulated neuronal production was associated with
changes to overall growth of the precursor population, the total
number of cells present in the culture was examined. No differ-
ence in the number of cells was observed between Delta Fc-
treated cultures and controls at 48 hr (Fig. 8C), when the cells
were cultured either in serum-free media without growth factors
or in the presence of FGF1 or FGF2 (50 ng/ml).

The effect of exogenous Delta was next examined under con-
ditions in which precursor cells were first prevented from differ-
entiating by culturing them in FGF-2 and serum for 24 hr, then
allowing neuronal differentiation to occur by removing the
growth factor and serum (Fig. 9). Significant inhibition of the
number of neurons generated was observed 48 hr after serum and
growth factor removal compared with controls (Fig. 9). Similarly,
if cells were placed in FGF1 after the removal of FGF2 and
serum, exogenous Delta was able to significantly decrease the
number of neurons generated at 48 hr. If placed back into FGF-2,
however, there was no effect of Delta Fc on neuronal production,
which remained at very low levels at 48 hr.
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DISCUSSION

The present study shows that at high cell density, which allows for
the intimate cell interactions that occur in vivo, the differentiation
of neural precursors into neurons is largely regulated by inhibi-
tory signals. Two ligand-activated signaling systems significantly
influenced the neuronal differentiation of neuroepithelial precur-
sors: the FGF receptor pathway and the Notch receptor pathway.
Furthermore, the evidence suggests that these two systems inter-

act, and the inhibitory action of growth factors, such as FGF1 and
2, on the precursor cells may be mediated via the Notch pathway.

Notch was shown to be directly involved in regulating the step
from precursor to neuron, because addition of Deltal almost
totally abrogated the generation of neurons from E10 NEP cells
during the 24-48 hr culture period. The action of Notch was
confirmed by the increase in neuron production observed when
Notch signaling was inhibited, either by downregulating Notch
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Figure 6. The production of neurons by E10 NEP cells is increased after
the downregulation of Notchl expression by antisense oligonucleotides.
A, Northern blot analysis was used to assess the downregulation of Notchl
expression in 293T cells transiently transfected with a Notchl plasmid.
Antisense or nonsense oligonucleotides (5 um) were added to the cells 24
hr after transfection, and RNA was extracted 48 hr later. B, E10 NEP cells
were cultured with 5 uM antisense or nonsense oligonucleotide in the
presence of serum alone (No factor) or with serum plus FGF1 or FGF2
(50 ng/ml) for 48 hr. An increase in neuron production was observed after
antisense treatment in serum and serum plus FGF1, but not in FGF2. C,
E10 NEP cells were cultured with 5 uM antisense or nonsense oligonu-
cleotide in serum plus FGF2 at varying concentrations (50, 10, and 5
ng/ml). An increase in neuron production was observed after antisense
treatment at lower concentrations of FGF2 (*p < 0.05; mean = SEM).

levels with antisense or when examining Presenilinl-deficient
NEP cells. Presenilinl mediates the intracellular cleavage of
Notch, and without cleavage Notch signaling is markedly reduced
(De Strooper et al., 1999; Song et al., 1999; Struhl and Greenwald
1999). The requirement for Presenilinl in Notch cleavage re-
mains controversial, given that Presenilin2 may partially compen-
sate for the loss of Presenilinl (Berechid et al., 1999; Steiner et al.,
1999). However, in the developing mouse brain, Presenilinl is
expressed at significantly higher levels than Presenilin2 (Lee et
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al., 1996), indicating that in NEP cells, Presenilin] is of primary
importance. The inability of Delta Fc to inhibit the differentiation
of the Presenilinl null NEP cells indicates that Notch signaling is
disrupted. Furthermore, the increase in neuron production ob-
served by the Presenilinl null NEP cells suggests that Presenilinl
is required to inhibit neuron differentiation. This is consistent
with the premature differentiation of progenitor cells observed by
Presenilinl knock-out mice in vivo (Handler et al., 2000). A role
for Notch signaling in the regulation of NEP cell differentiation
has been suggested previously, after the examination of animals
with a deletion of HESI, a bHLH factor that operates down-
stream of Notch activation (Jarriault et al., 1995), where an
increase in neuron number was observed (Nakamura et al., 2000).
Precursor cell differentiation in Xenopus and in chick retina is also
regulated by Notch (Austin et al., 1995; Chitnis et al., 1995;
Dorsky et al., 1997), because downregulation of Notch expression
or activity increased neuron number, whereas the overexpression
of Delta inhibited neuron differentiation.

During early CNS development, the inhibition of neuron dif-
ferentiation after Notch signaling potentially allows the precursor
population to be maintained. This is consistent with findings that
the overexpression of Notch3 during CNS development results in
an expansion of the progenitor pool (Lardelli et al., 1996). How-
ever, in addition to decreasing neuron number, Notch activation
in the developing forebrain in vivo has been shown to promote the
differentiation of radial glial cells (Gaiano et al., 2000). Thus,
Notch signaling may actively direct the differentiation of precur-
sor cells into alternative cell types. Further experimentation with
the NEP cells in vitro may clarify the role of Notch signaling in
promoting precursor differentiation.

The identity of the specific Notch receptor activated by the
Deltal Fc protein is uncertain because the NEP cells expressed
three of the Notch receptors. The preference of individual ligands
for receptors remains unclear, although Jagged1 may preferentially
activate Notch2 (Shimizu et al., 1999), whereas Deltal appears to
preferentially activate Notchl (Weinmaster 1998). The present
studies also suggest that Notchl is of primary importance, because
the downregulation of Notch1 with antisense was not compensated
by the presence of Notch2 and -3. Furthermore, in situ hybridiza-
tion analysis has shown that Notchl1 is the primary Notch receptor
expressed by forebrain NEP cells, whereas here Notch2 and -3 are
expressed only weakly (Lardelli et al., 1994; Williams et al., 1995).

The first indication that growth factors may regulate precursor
differentiation through regulating Notch activity was the finding
that different growth factors altered Notch and Delta expression.
With the exception of FGFS8, each growth factor that was examined
increased the expression of one or two of the Notch homologs,
whereas Deltal expression was decreased in response to FGF1,
FGF2, and BMP2 and increased by TGFpS5. Previously, indirect
associations between Notch signaling and growth factors have been
made by examining the bHLH transcription factors that are in-
volved in Notch signaling. NGF inhibited the DNA binding ability
of HES], thereby allowing the differentiation of PC12 cells (Strom
et al., 1997), whereas BMP2, BMP4, and EGF decreased expres-
sion of MASH 1 (Ahmad et al., 1998; Shou et al., 1999), which has
been implicated in the regulation of Delta expression and is essen-
tial for neurogenesis (Chitnis and Kintner, 1996; Casarosa et al.,
1999).

The finding that FGF1 and FGF2 stimulated precursor cell
proliferation and inhibited neuron differentiation was consistent
with previous reports from in vitro culture (Murphy et al., 1990;
Kilpatrick and Bartlett, 1993; Ghosh and Greenberg, 1995; Vac-
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carino et al., 1999) and with the role of FGF2 in vivo as the
primary stimulator of precursor cell division in the developing
forebrain (Vaccarino et al., 1999). Although an increase in the
absolute number of neurons was observed after FGF2 infusion in
vivo (Vaccarino et al., 1999), this response was interpreted as
being caused by increased number of cell cycles of the precursors,
which ultimately generated more neurons. Thus, it appears that
precursor proliferation and inhibition of differentiation are inex-
tricably mixed, and this study cannot choose between these as the
primary physiological effects of the FGFs. Nevertheless, it ap-
pears that Notch signaling is involved in maintaining this state.
FGF1 and FGF?2 significantly upregulated Notchl expression in
the NEP cells. Furthermore, Deltal expression was downregu-
lated by these factors, which is consistent with enhanced Notch
signaling (Kunisch et al., 1994; Heitzler et al., 1996). It remains
uncertain how Notch signaling is maintained after the downregu-
lation of Delta expression. Other Notch ligands, however, are also
expressed at this stage of development (Dunwoodie et al., 1997).
In addition, it has been suggested that Delta is cleaved at the cell
surface releasing a soluble form of Delta, which may continue to
activate Notch (Qi et al., 1999). The link between Notch expres-
sion levels and FGF-induced neuronal inhibition was shown by

Presenilin 1

Presenilin 1

the increased neuronal numbers when Notch signaling was re-
duced, either by inhibiting the Presenilinl-mediated cleavage of
Notch or by downregulating Notch1 expression. These data indi-
cate that the inhibition of differentiation observed in response to
FGF1 and FGF2 is mediated, at least in part, via the Notch
signaling pathway.

The difference between the biological functions of FGF1 and
FGF2 has been difficult to determine. These factors may have
distinct roles given that FGF2 is expressed at E9, whereas FGF1
is expressed at E11(Nurcombe et al., 1993). Although the effect of
FGF1 and FGF2 on the NEP cells was similar, FGF2 was a more
potent inhibitor of neuronal differentiation, and unlike FGF1,
Delta Fc was unable to enhance this FGF2 inhibitory response,
indicating that FGF2 may stimulate the Notch signaling pathway
to a greater extent than FGF1. The differences between FGF1
and FGF2 may be explained by their differential activation of one
of the FGF receptors expressed on the NEP cells (Kalyani et al.,
1999). A possible mechanism of differential FGF receptor activa-
tion involves the binding of heparan sulfate proteoglycans
(HSPGs), which regulate ligand-receptor binding and differ in
their specificity for the FGFs. At E10 the HSPGs that are pro-
duced preferentially bind FGF2, whereas at E12 the binding
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Figure 8. Delta Fc inhibits the differentiation of E10 NEP cells cultured
in the presence of FGF1, but not in the presence of FGF2 or serum. A4,
E10 NEP cells were cultured in serum-free media (No factor) and with
either FGF1 (50 ng/ml) or FGF2 (50 ng/ml) for 24 and 48 hr after the
addition of the Delta Fc or control Fc cell lysate. No difference in neuron
production was observed after 24 hr in culture, but after 48 hr Delta Fc
decreased the number of neurons produced in the presence of FGF1, but
not FGF2 (*p < 0.05; mean = SEM) B, E10 NEP cells were cultured in
the presence of serum alone (No factor) or serum plus FGF1 or FGF2 (50
ng/ml) for 48 hr after the addition of Delta Fc or control Fc cell lysate. No
difference in the number of neurons produced was observed. C, The
overall number of cells cultured in the absence of serum (No factor) or
with FGF1 or FGF2 was unaltered by the Delta Fc cell lysate. Note the
increase in cell number with both FGF1 and FGF2.

affinity switches to FGF1 (Nurcombe et al., 1993). Therefore, in
the NEP population, FGF2 may be binding with higher affinity,
causing the complete activation of the Notch pathway, whereas
without the specific HSPGs, FGF1 may not be able to elicit its full
effect and therefore Notch signaling is limited.

The inhibitory effect of serum on neuronal differentiation may
also be caused by Notch signaling. Serum upregulated Notchl
levels and downregulated Deltal levels in the NEP cells. In
addition, the inhibition observed in response to serum was over-
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Figure 9. Delta Fc inhibition of neuron differentiation after removal of
serum and FGF2. E10 neuroepithelial cells were cultured for 24 hr in the
presence of serum and FGF2 (50 ng/ml). The serum and growth factors
were then removed to allow the cells to differentiate, and the Delta Fc or
control Fc cell lysate was added. No difference in the number of MAP2-
positive neurons produced was observed 24 hr after the addition of Delta
Fc compared with controls. Neuron production was decreased 48 hr after
replacing the media with serum-free media or FGF1 (50 ng/ml) and
adding Delta Fc, but not when the media was replaced with FGF2 and
Delta Fc (*p < 0.05; mean = SEM).

come by downregulating Notch expression and activity (Figs. 6,
7). Interestingly, although serum increased Notchl expression,
Notch3 expression was unaltered. In contrast, BM P2 caused the
opposite effect by increasing the expression of Notch3 but not
Notchl. Factors such as BMP2 or those present in serum there-
fore may elicit their effects via specific Notch receptors.

Our data suggest that the primary function of signaling through
the Notch receptor is the inhibition of precursor cell differentia-
tion. The growth factors FGF1 and FGF2 appear to act via the
Notch pathway to inhibit neuron differentiation. Given the ability
of other growth factors to regulate Notch and Delta expression, it
is likely that many growth factors regulate neuronal differentia-
tion in a similar manner. Other cellular responses to growth
factors, such as proliferation, differentiation, and survival, are
probably mediated via separate and distinct pathways. To eluci-
date this, however, a more detailed analysis of the relationships
between the growth factor signaling pathways and Notch signal-
ing is required.
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