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Numerous studies have investigated the spatial sensitivity of
cat auditory cortical neurons, but possible dynamic properties
of the spatial receptive fields have been largely ignored. Given
the considerable amount of evidence that implicates the pri-
mary auditory field in the neural pathways responsible for the
perception of sound source location, a logical extension to
earlier observations of spectrotemporal receptive fields, which
characterize the dynamics of frequency tuning, is a description
that uses sound source direction, rather than sound frequency,
to examine the evolution of spatial tuning over time. The object
of this study was to describe auditory space-time receptive
field dynamics using a new method based on cross-
correlational techniques and white-noise analysis in spherical

auditory space. This resulted in a characterization of auditory
receptive fields in two spherical dimensions of space (azimuth
and elevation) plus a third dimension of time. Further analysis
has revealed that spatial receptive fields of neurons in auditory
cortex, like those in the visual system, are not static but can
exhibit marked temporal dynamics. This might result, for exam-
ple, in a neuron becoming selective for the direction and speed
of moving auditory sound sources. Our results show that ;14%
of AI neurons evidence significant space-time interaction
(inseparability).
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The acoustic environment contains both static and dynamic sound
sources that must be localized for communication and survival. It
is well known that auditory cortex, including the primary auditory
(AI) field, plays a significant role in sound localization (Jenkins and
Merzenich, 1984; Masterton and Imig, 1984). Indeed, directional
sensitivity of cat auditory cortical neurons has been recognized for
many years (Eisenman, 1974; Middlebrooks and Pettigrew, 1981;
Imig et al., 1990; Rajan et al., 1990; Middlebrooks et al., 1994;
Brugge et al., 1996). Typically, this sensitivity is assessed by relat-
ing an average response metric (e.g., discharge rate) to the direc-
tion of the sound source. Space receptive fields mapped in this
static domain reveal systematic spatial patterns. In studies of the
visual system, techniques have been applied to derive dynamic
receptive fields that have been viewed as sensitivity for a stimulus
that evolves in space and time (Jones and Palmer, 1987; McLean et
al., 1994; DeAngelis et al., 1995). A consequence of this dynamic
structure is that response patterns evoked by stimuli moving
through a spatial receptive field will depend on the stimulus tra-
jectory in a manner that cannot be predicted by a “static” descrip-
tion of the receptive field alone. Here we show that a proportion of
AI neurons, as in primary visual cortex, require descriptions in
both space and time.

Auditory space-time receptive field dynamics are described
with a new investigative tool that is grounded in the theory of
white-noise analysis and reverse-correlation techniques. White-
noise analysis is a general approach for linear, as well as nonlin-

ear, system analysis in physiology (Marmarelis and Marmarelis,
1978; Aertsen and Johannesma, 1981; Eggermont, 1993).
Reverse-correlation, which was originally used to estimate filter
characteristics of auditory peripheral afferents (deBoer and
Kuyper, 1968), has been particularly fruitful in the investigation
of spatiotemporal selectivity in the visual (Jones and Palmer,
1987; McLean et al., 1994; DeAngelis et al., 1995) and somato-
sensory (DiCarlo et al., 1998) systems and in analyzing frequency–
time receptive fields in the auditory pathways (Epping and Egg-
ermont, 1986; Melssen and Epping, 1992; deCharms et al., 1998;
Depireux et al., 1998).

It is important to recognize that in the visual and somatosen-
sory systems a spatiotemporal receptive field maps the stimulus in
two dimensions with respect to both the receptor surface (i.e.,
retina or skin) and the external visual field or body surface. In the
auditory system, however, the frequency–time receptive field
maps the stimulus only on the receptor surface and provides no
explicit information about spatial sound location. Thus, a com-
mon view, expressed by deCharms and Zador (2000), is that a
two-dimensional spatial receptive field is undefined for auditory
neurons, because there is only a single dimension, i.e., a linear
array of inner hair cells, along the basilar membrane. However,
this view neglects the fact that the central auditory system must
compute sound source location. Our new spherical white-noise
method, in which multiple sound events from random directions
encapsulate all possible angular velocities, specifically estimates
auditory space-time receptive fields in two spherical spatial
dimensions.

MATERIALS AND METHODS
Physiology. Adult cats with no sign of external or middle ear infection
were premedicated with acepromazine (0.2 mg/kg, i.m.), ketamine (20
mg/kg, i.m.), atropine sulfate (0.1 mg/kg, s.c.), dexamethasone sodium
(0.2 mg/kg, i.v.), and procaine penicillin (300,000 U, i.m.). Anesthesia
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was maintained with halothane (0.8–1.8%) in a carrier gas mixture of
oxygen (33%) and nitrous oxide (66%). Pulse rate, O2, CO2, N2O, and
halothane levels in the inspired and expired air were monitored contin-
uously (Ohmeda 5250). A muscle relaxant was administered (pancuro-
nium bromide, 0.15 mg/kg, i.v.) if spontaneous respiration was irregular
or otherwise compromised. Paralysis could be maintained throughout
the experiment by supplemental doses of pancuronium. Experimental
protocols were approved by the University of Wisconsin Institutional
Animal Care and Use Committee.

Under surgical anesthesia, the pinnae were removed, and hollow
earpieces were sealed into the truncated ear canals and connected to
specially designed earphones. A probe-tube microphone was used to
calibrate the sound delivery system in situ near the tympanic membrane.
The left auditory cortex was exposed, and a sealed recording chamber
with Davies-type microdrive was cemented to the skull. Action potentials
were recorded extracellularly with tungsten-in-glass microelectrodes, dig-
itized at 25 kHz, and sorted on-line and off-line.

Normally, sound produced by a free-field source is transformed in a
direction-dependent manner by the pinna, head, and upper body struc-
tures en route to the tympanic membrane (Musicant et al., 1990; Rice et
al., 1992). To implement a virtual acoustic space (VAS), these transfor-
mations are replicated digitally. Interpolation between measured direc-
tions (Chen et al., 1995; Wu et al., 1997) was used to allow the generation
of arbitrary virtual sound source directions. Directional stimuli were 10
msec Gaussian-noise bursts that were positioned in VAS using a spher-
ical coordinate system (2180 to 1180° azimuth, 236 to 190° elevation)
centered on the midline of the cat’s interaural axis. All sound stimuli
were compensated for the transmission characteristics of the sound
delivery system. Tone burst stimuli delivered monaurally or binaurally
were used to estimate the characteristic frequency of a neuron and some
response area features related to binaural interactions as described
previously (Brugge et al., 1996). The tonotopic organization observed
over numerous electrode penetrations during the course of an experi-
ment further confirmed that the recordings were obtained from neurons
in AI. Stimulus presentation and data acquisition were accomplished
with a TDT System II (TDT, Gainesville, FL), and BrainWare software
(TDT) was used to sort action potentials (spikes) among single units.

Mathematical foundation. The formal mathematical foundation for our
methodology is based on work by Krausz (1975), who extended the
system identification techniques developed by Lee and Schetzen (1965)
and Wiener (1958) to the use of a random Poisson process as the input
set. Poisson acoustic click-trains have been used to characterize frequen-
cy–time kernels (Epping and Eggermont, 1986) and interaural time
difference (Melssen and Epping, 1992) in the midbrain of the grassfrog.
Wiener originally described mutually orthogonal kernels with respect to
a Gaussian white-noise signal. See Klein et al. (2000) and Eggermont
(1993) for details on the theoretical background.

To meet the requirement of “spatial” whiteness, sound source direc-
tions must be sampled uniformly. One solution for uniform spherical
sampling constructs a connected spiral of points on the surface of a
sphere (Rakhmanov et al., 1994). Accordingly, in our experiments, the
acoustic input is derived from a set of “virtual” sound sources (Brugge et
al., 1994, 1996; Reale et al., 1996) that are uniformly positioned along a
spiral of 208 points (Fig. 1). Formally, these different directions are
members of the point set:

s 5 $uk , fk%k51
K , (1)

where k serves as index into the K 5 208 directions comprising the
stimulus set. The mean angular distance between adjacent points was
12.7° with a negligible SD of 0.58°. The choice of point density was
determined by our previous experience estimating auditory space recep-
tive fields (Jenison et al., 1998), along with the practical constraint of
adequately sampling the responses of the neuron over space and time.
The stimulus can be regarded as turning individual sounds “on” for a
brief interval at random, discrete times. Time (t) is measured discretely
in 1 msec intervals, and the sound source is turned on with constant
amplitude over some number (a 5 10) of intervals to produce a noise
burst during time interval [t, t 1 a 2 1]. Each of the 208 virtual sound
sources produces such noise bursts randomly and independently. We can
formalize the space-time input signal as x(k,t). The probability for a noise
burst to start at sound source k and time t followed a Poisson distribution
with a fixed rate parameter l. A typical value for l collapsed across all
sound directions ranged between 10 and 20 noise events per second. The

Figure 1. Measuring the space-time receptive field with reverse-correlation in auditory space. The input stimulus domain consists of 208 virtual
free-field sound sources (speakers) positioned along a spiral path and numbered by their ordinal rank. Each source emits identical 10 msec noise bursts.
To simulate the spatial positions shown on the spiral, the stimuli are convolved with filters that mimic the acoustical properties of the head and pinnae.
The central panel plots on the abscissa the time of individual noise-bursts and on the ordinate, the rank number of the active sound source from the
unwrapped spiral of sound directions. The first-order space-time kernel h1(k, t) (shown on the right) is derived by averaging the stimulus episodes that
occurred between 100 msec before and 50 msec after each spike. This spike-triggered average effectively gives an estimate of the posterior probability
of the sound event in space-time, given that an action potential occurred. The 50 msec region following the spikes acts as a control and should not reveal
any significant pattern. Because the system is necessarily causal, the portion of the kernel after the spike must appear random and average to a flat
baseline. Color bar applies to this and all subsequent figures.
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Poisson process was generated without dead times to allow arbitrarily
short noise event intervals and even temporal overlap of noise events.
The sound stimulus generated in this manner is a type of sparse, “spatial
noise” similar to the sound of raindrops striking a tin dome over a
listener’s head from all directions.

A schematic for computing the first-order kernel by reverse correlating
the space-time signal with an evoked spike is shown in Figure 1. For-
mally, the Poisson impulse train approaches a Gaussian distribution
when the pulse train is smoothed for a large number of pulses, thus
meeting the assumptions of Wiener’s original theory (Krausz, 1975). The
output spike-train can also be defined in terms of time intervals of width
DT, such that at most one spike falls within the interval DT. The output
response can therefore be defined as y(t), where the amplitude is either
1 or 0 on the t th time interval.

A time invariant system can be characterized or identified with suc-
cessively higher-order orthogonal kernels, beginning with the zero th

order, which is simply the average over the output spike-train. The
first-order kernel models the “memory” of the neuron for the stimulus
history (the “transfer function” of the neuron) in terms of a linear filter,
and provides an optimal linear least-square approximation to the true
transfer function. Higher-order kernels can identify nonlinear character-
istics of the transfer function; however, they cannot generally be equated
specifically to the quadratic and cubic terms of the Volterra series
(Marmarelis and Marmarelis, 1978). In principle, arbitrary nonlinearities
can be captured by introducing kernels of sufficiently high order into the
system description of the neuron. However, estimating the parameters of
the higher-order kernels also requires orders of magnitude more data, so
in practice most studies, like the present one, only identify the linear part
of the input–output function of the neuron. Formally, the kernels are
given by:

h0 5 E@ y~t!#

h1~k, t! 5
1
l

E@ y~t! x~k, t 2 t!# (2)

hq~k1,t1zzz kq,tq! 5
1

q!lq E@ y~t! x~k1,t 2 t1! zzz x~kq,t 2 tq!#,

where q indicates the order of the kernel. The parameters of the kernels
correspond to elements of space k and time delay t relative to discrete
stimulus events. The subscripts in the higher-order kernels reflect cross-
term interactions in space and time. Although higher-order kernels are
necessary to evaluate sensitivities to higher-order correlations in space-
time, the first-order kernel can detect correlation of spatial features
evolving over time, but not uniquely. Certainly, the identification of the
second-order kernel would offer stronger constraints on the interpreta-
tion of the neuron’s detection of spatial features over time, so long as
sufficient data are available for reliable estimation.

In any case, the first-order kernel can subsequently be used to generate
“predictions” of the neural response to a given stimulus set using a
discrete convolution of the space-time kernel and stimulus:

ŷ~t! 5 h0 1 O
k,t

h1~k, t!x~k, t 2 t!. (3)

This operation results in a predicted instantaneous firing rate function
ŷ(t) that can then be compared with the empirically measured instanta-
neous firing rate function ȳ(t).

Using the spatial noise stimuli described above, we derived first-order
system kernels for 144 single units in field AI of five cats. The time it
takes to characterize a unit in this way depends on the mean discharge
rate of the unit, but for one stimulus level we typically required record-
ings of the responses to at least 25 min of spatial noise. The intensity level
was typically set to maximize the response rate of the neuron; occasion-
ally several intensity levels were tested. Future studies will examine in
detail the effects of sound source intensity on the structure of space-time
kernels. Electrode penetrations were restricted to regions of AI in which
the best frequencies were in the range of 14–22 kHz. All data reported
here were recorded at electrode depths ranging from 440 to 1800 mm with
respect to the surface of the cortex.

One interpretation of the system kernels is that they are estimates of
the posterior probability distributions for a sound having occurred at
particular space-time coordinates given that a spike was observed. To
obtain a continuous space-time probability density, which can be graph-
ically rendered and ultimately used more analytically (Jenison, 2000),

some form of approximation (modeling) of the space-time kernels was
necessary. We recently demonstrated a methodology for modeling audi-
tory space receptive fields (Jenison et al., 1998) that employs spherical
(von Mises) basis functions. The von Mises basis function appears as a
localized “bump” on the sphere. A set of von Mises basis functions,
centered on each point on the spiral set of virtual sound sources (Fig. 1),
affords global interpolation between response measurements at different
spherical coordinates. This approach was extended to interpolate the
receptive field dynamics in the time domain using Gaussian basis func-
tions (localized bumps on a line). Smoothing on joint spherical and
Euclidean coordinates is nontrivial, and this advancement may indeed
have applications in other fields, such as meteorology, that also study
spherical dynamics. This new approach incorporates basis functions in
both space (von Mises) and time (Gaussian) to least-squares fit the
observed system kernel, and the fit is regularized using a smoothness
constraint (Poggio and Girosi, 1990). This optimization procedure gen-
erates a continuous approximation of the system kernel of the neuron in
space-time. When visualized as a volume spanning the dimensions of
azimuth, elevation, and time, the kernel provides a description of the
space-time receptive field.

RESULTS
Space-time receptive fields
Figure 2 illustrates the modeled auditory space-time receptive
field derived from responses of the single AI unit shown in Figure
1. An isoprobability surface from the space-time receptive field
takes the form of a “skin” in Figure 2A, which represents a
surface contour of the underlying three-dimensional probability
distribution. This three-dimensional rendering shows a striking
evolution of the receptive field from a narrow region of spatial
selectivity at tens of milliseconds before spike generation to a
broadened region resembling a torus nearer in time to spike
discharge. The 10 msec noise bursts that constitute our stimulus
events set an artificial lower bound on the temporal resolution of
the kernels. This artifact is responsible for the fact that the kernel
shown in Figure 2A extends slightly into the noncausal region
beyond time 0.

To assess the reliability of the estimated space-time receptive
fields, we used a well known technique (Efron and Tibshirani,
1993) to bootstrap measured spike trains and obtain a sampling
distribution with an average and SE. Replicates from the origi-
nally measured spike-trains were used to estimate 100 space-time
receptive fields. In this analysis, cross-sectional renderings (Fig.
2B) are useful graphical displays, which can be generated for any
two-dimensional plane because the modeled receptive field is
continuous in both space and time. The bootstrapped average and
SE for each of these cross-sections are shown in Figure 2C. The
observed SE generally increases as the mean increases at each
position in space-time, as expected from a Poisson process. This
example illustrates that the shape of space-time receptive fields
can be estimated with good confidence. A minority of neurons
(23) was dropped from the database as a result of failing to
demonstrate statistically reliable estimates of space receptive
fields. This was typically because of insufficient spike counts.

Space-time inseparability
Space-time kernels can be classified as space-time separable or
inseparable depending on whether the kernel (considered as a
joint probability distribution) is equal to the outer product of its
marginal distributions. In the separable case, the spatial marginal
is equivalent to the static receptive field of the neuron, whereas
the temporal marginal is proportional to the poststimulus time
histogram. These distributions could be determined indepen-
dently, and together they would nevertheless provide a complete
description of the separable receptive field. In contrast, for an
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inseparable kernel, the outer product of the temporal and spatial
marginals fails to reconstitute the kernel (Fig. 3). Features that
run obliquely through a kernel are always lost when the kernel is
decomposed into marginals. Oblique (or diagonal) elements are
therefore a characteristic of nonseparable kernels. Such oblique
patterns can be observed in the kernel shown in the cross-
sectional displays of Figures 4A, 5A.

Issues pertaining to separability of receptive fields have been
recognized by auditory (Gerstein et al., 1968; Eggermont et al.,
1981) and visual neurophysiologists (DeAngelis et al., 1995).
However, formal inferential statistics were not used in these
studies to test the significance of the observed inseparability of
dimensions. We used the power-divergence (PD) statistic (Read
and Cressie, 1988) to test the difference between observed and
expected (product-of-marginals) distributions. The PD statistic is

asymptotically x2 distributed with the mean equal to the degrees
of freedom (df), and the variance is equal to twice the degrees of
freedom. The degrees of freedom for the PD statistic are roughly
equivalent to the number of space-time cells in the first-order
kernel space-time matrix. When the sampling density in space
and time is large, the PD statistic also asymptotically follows a
normal distribution (Osius and Rojek, 1992). For example, the
dimensions of space and time appear to be visually inseparable
based on inspection of Figure 3. The statistical test supports this
observation (PD 5 23,788; df 5 20,493; p , 0.01), which allows
rejection of the null hypothesis that the space and time dimen-
sions are separable. Approximately 14% (17 of 121) of AI units
recorded in this study evidence significant space-time insepara-
bility. The degree of separability of space-time receptive fields
does not appear to depend either on the best frequency of the
neuron or its depth within cortex, based on an examination of PD
as a function of best frequency (r 5 20.0579; p . 0.05) and
electrode depth (r 5 20.0187; p . 0.05). Additionally, in 12% of
41 positions in which two single units were recorded simulta-
neously on the same electrode (26 electrode penetrations), we
found one of the units in the pair to be separable and the other
inseparable. Figure 4 shows an example of such a discordant
receptive field pairing; the PD for the unit shown in Figure 4A
differs significantly from the unit in Figure 4B (z 5 10.76; p ,
0.01). Of the 36 concordant pairs, 6% were both inseparable, and
94% were both separable.

One interesting possibility is that the features of space-time
receptive fields may be indicative of a tuning to the angular
velocities of a moving stimulus. Figure 5 (same unit as shown in
spiral coordinates in Fig. 3) illustrates this by showing comple-
mentary simulated stimulus trajectories through a measured in-
separable (A) and separable (B) space-time receptive field. To
the right of each receptive field cross-section is shown the pre-
dicted instantaneous spike rate plotted as a function of time for
each trajectory. These predicted responses are shown for several
repeated passes through the receptive field with two different
angular speeds (dotted vs solid) for two opposing path directions
(black vs red). The steeper slope corresponds to the greater speed.
In the case of the inseparable space-time receptive field, the
predicted pattern of the response differs depending on the trajec-
tory and the speed of the sound source, specifically in the peak of
the response and the depth of discharge rate modulation. How-
ever, for the case of the separable space-time receptive field,
there is little difference between responses for opposing path
directions. Interestingly, the predicted spike rate shows less mod-
ulation for the higher speed relative to the lower speed, suggest-
ing that although separable space-time receptive fields lack tra-
jectory selectivity, they may nevertheless signal changes in speed.
Although these simulations illustrate a possible connection be-
tween the observed pattern of the space-time receptive field and
motion selectivity, it remains to be observed empirically whether
these predictions hold for real sound-source movements. To test
such predictions in vivo requires a quasi-real-time computation of
the space-time receptive field of a neuron, a procedure that we
are actively perfecting.

Evaluation of predicted responses
To demonstrate that the first-order kernel adequately estimates
the space-time receptive field, the measured response trials are
divided into two interleaved sets; one set is used to calculate the
kernel and the other set is used to “test” the predictions of the
kernel. Figure 6A shows an example of such a comparison be-

Figure 2. Auditory space-time receptive field estimated as a continuous
function in space and time. A, Surface through this volume corresponds
to an equal probability density contour. The Poisson rate l was 10 sound
events per second. This figure was derived by interpolating between
measurements from the space-time kernel shown in Figure 1 and recon-
structing from spiral position to spherical directions. B, Orthogonal cross-
sections (one at 20° elevation and the other at 224° azimuth) taken from
the receptive field of this unit. C, Bootstrapped average space-time
receptive fields based on 100 resampled estimates of the space-time
receptive field. Shown are the average of the 100 bootstraps and the
derived SE for each position in space-time.
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tween predicted and measured instantaneous spike rates. The
predictions are generated by convolution with the first-order
kernel, as described in Materials and Methods, and followed by a
leaky integrator that yields the expected instantaneous rate func-
tion. Given the stochastic nature of neural responses, one cannot
expect a perfect match but should nevertheless see a good degree
of correlation between the measured rate function and its corre-
sponding prediction. Indeed, the measured response is well approx-
imated by the predicted response (r 5 0.72 for the 7.5 sec response
segment shown in Fig. 6A). In contrast, Figure 6B shows a control
comparison between the same prediction and a different response
segment that had been drawn randomly from the measured set. As
expected, in this mismatched or shuffled pair, the prediction failed
to capture the peaks and troughs of the measured rate function and
yields a correlation coefficient near zero. Cross-correlation coeffi-
cients as a function of lag shifts are shown in Figure 6C to further
quantify the similarity of the predicted to measured rate functions
compared with the shuffled rate function. The cross-correlation
function ensures that small phase shifts that are introduced by
convolution/integration do not bias the correlation coefficient. The
correlation coefficient, of course, only summarizes a linear rela-
tionship, and perhaps the addition of higher-order kernels might
generate better predictions. Furthermore, the correlation coeffi-
cient as a measure of similarity is also quite sensitive to the
stochastic noise present in the estimate of the first-order kernel,
which will tend to deflate the correlation coefficient of the mea-
sured with the predicted response. Figure 6D provides summary
box-whisker plots of correlation coefficient distributions for a sub-
set of 12 units. Six inseparable units and six separable units were
selected on the basis of having comparable kernel signal-to-noise
ratios. The distribution of correlation coefficients for each unit

summarizes the range of response predictability using the first-
order kernel. Each correlation coefficient is based on a 7.5 sec
segment over, on average, 130 segments per unit. The rate func-
tions shown in Figure 6, A and B, were selected from unit 4.

Figure 4. A, Inseparable (PD 5 22,023; df 5 20,493; p , 0.01) and B,
separable (PD 5 18,968; df 5 20,493; p . 0.01) space-time receptive
fields from two single units recorded simultaneously on the same elec-
trode. The Poisson rate l was 10 sound events per second.

Figure 3. Statistical tests of space-time separability. The measured space-time receptive field is plotted using ordinal position along the spiral (see Fig.
1), instead of azimuth and elevation, so that space can be treated as a single dimension. The test statistic used in this study was that of the
power-divergence (PD) statistic, which unifies x2 and log-likelihood ratio. The PD statistic reflects the magnitude of the difference between the observed
joint-frequency distribution fs,t (shown on the lef t) and the frequency distribution fs ft expected under the assumption of independence (shown on the
right):

PD 5
2

,~, 1 1!O
s51

S O
t51

T

fs,tFS fs,t

fs ft
D,

2 1G. (4)

, specifies membership of the power-divergence family, and in our case , 5 2/3 was chosen to maximize the power of the statistical test (Read and
Cressie, 1988). N corresponds to the total number of observed output spikes. This neuron evidences a space-time inseparable kernel with a large PD
statistic (PD 5 23,788; df 5 20,493; p , 0.01), resulting from a large difference between fs,t and fs ft.
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DISCUSSION
White-noise methods have provided valuable tools for revealing
response properties that go beyond the level of description af-
forded by static receptive fields (McLean et al., 1994; DeAngelis
et al., 1995; Ringach et al., 1997; DiCarlo et al., 1998; Reich et al.,
2000). They can also provide a method to investigate nonlinear
interactions, so long as sufficient data can be collected while
maintaining reliable responses from a neuron (Marmarelis and
Marmarelis, 1978; Sakai, 1992; Eggermont, 1993). Of particular
interest to the processing of auditory information are studies that
examine spectral dynamics by constructing frequency–time (spec-
trotemporal) receptive fields. These used a variety of auditory
stimuli, including broadband complex sounds with sinusoidal
spectral profiles referred to as moving “spectral ripples” (Schre-
iner and Calhoun, 1994; Shamma and Versnel, 1995; Kowalski et
al., 1996a,b; Klein et al., 2000), two-tones (Brosch and Schreiner,
1997), and natural sounds (Theunissen et al., 2000). However,
given the evidence that implicates AI in the neural pathways
responsible for the perception of sound source location, an inter-
esting alternative to these frequency–time kernels is one that uses
sound source direction, rather than sound frequency, as the
independent variable in the stimulus parameter space. This was
the object of the present study, and we developed a technique to
estimate the shape of auditory receptive fields in two spatial
(azimuth and elevation) dimensions and one temporal dimension
from first-order linear kernels derived by white-noise analysis.
Bootstrapping demonstrated the reliability of the receptive field
estimates (Fig. 2C). Furthermore, the predictive power of the
first-order kernels (Fig. 6) supports the legitimacy of these kernels
in revealing the nature of the receptive field of the neuron and its
space-time dynamics. The first-order kernels from some units are
better than others at predicting the neural response to spherical
white-noise. This could be caused by different levels of noise
inherent in the kernel, although an attempt was made to select
kernels with comparable signal-to-noise ratios. Alternatively, the
differences in predictability may indicate differing demands for
inclusion of the higher-order kernels. Given the overlap of the

correlation distributions between separability conditions, there
doesn’t appear to be a clear distinction between the conditions in
terms of the strength of first-order kernel prediction. Where one
of the separable kernels (unit 7) does indeed do a remarkable job
of predicting the neural response, another separable kernel (unit
12) performs rather poorly.

Using conservative quantitative inferential criteria, we pro-
duced strong evidence for the existence of a distinct subpopula-
tion of neurons in AI showing space-time inseparability in the
first-order kernel. This subpopulation represented a fairly modest
proportion of neurons that we recorded in AI (;14%). In pri-
mary visual cortex, almost 50% of neurons were reported to show
space-time inseparability when the sample population was re-
stricted to simple cells (McLean et al., 1994). Various neural
mechanisms may account for the observed inseparability of di-
mensions, including direction-dependent adaptation and postex-
citatory or inhibitory rebounds (McAlpine et al., 2000). Our
method is sensitive to all of these effects, but it does not allow us
to distinguish between them. In a series of simulations, we have
illustrated that space-time inseparability may be indicative of the
sensitivity of a neuron to the direction of sound motion (Fig. 5).
Motion of a sound source is a ubiquitous feature of the acoustic
environment and has stimulated both psychophysical (Middle-
brooks and Green, 1991; Grantham, 1997; Perrott and Strybel,
1997; Saberi and Hafter, 1997) and neurophysiological (Altman,
1988) investigations into the neural mechanisms involved in mo-
tion processing. However, a precise definition of motion selectiv-
ity has been difficult to pin down in the auditory literature.
Nevertheless, these and subsequent studies have shown that sev-
eral simple aspects of sound motion are reflected in the auditory
neural code (Toronchuk et al., 1992; Wagner and Takahashi,
1992; Spitzer and Semple, 1998).

The present findings do not support a strong clustering or
segregation of space-time inseparable units within AI. Our sam-
ple represented only high best-frequencies (14–22 kHz) distrib-
uted unevenly among the cortical layers, and within this sample
we found no evidence that space-time separability might be

Figure 5. Simulated responses to motion
stimuli with sound-source trajectories of
constant angular velocity along an azi-
muthal slice through an inseparable (A)
(PD 5 23,788; df 5 20,493; p , 0.01), and
a separable (B) (PD 5 7,534; df 5 20,493;
p . 0.01) space-time receptive field. The
black and red lines represent opposing di-
rections (lef t-to-right vs right-to-lef t). The
solid lines represent slower speeds, and the
dotted lines represent higher speeds. The
predicted instantaneous spike rates to the
black and red sound trajectories are shown
in the right panels. The space-time insep-
arable receptive field (A) produces
greater peak responses to the black com-
pared with the red trajectory. The separa-
ble receptive field (B) responds nearly
identically to the two opposing trajecto-
ries. The receptive fields of both neurons
A and B were measured with a Poisson
rate l of 20 sound events per second. The
receptive field in A is the same unit also
shown unwrapped in Figure 3.
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distributed systematically as a function of best frequency or
recording depth. Furthermore, in cases in which pairs of single
units were simultaneously recorded at a single electrode site, both
separable and inseparable receptive fields were observed. Never-
theless, it is well known that under experimental conditions of
general anesthesia, responsive neurons are found predominantly
in the middle cortical layers. This was also the case in the present
study in which 65% of the neurons were recorded at depths
between 600 and 1200 mm. Thalamocortical projections from the
ventral division of the medial geniculate body appear to produce
their heaviest terminations at these depths (Huang and Winer,
2000). The strong input from this division to layers III and IV
may account for the proportion of separability reported; however,
the complexity of convergence to these layers may still provide
the opportunity for the emergence of space-time inseparability. It
is possible that inseparability is dependent on converging projec-
tions and that intrinsic projections among the other layers might
yield proportions different from those observed in the middle
layers. These are important considerations for further investiga-
tion, which would certainly include nonprimary auditory fields.

How successful our space-time receptive fields really are at
characterizing the sensitivity of a neuron to true motion stimuli
remains to be seen. If motion selectivity, as commonly defined in
the vision literature (DeAngelis et al., 1995), is indeed manifest in
the observed inseparability of the space and time dimensions,
then our data would point to the existence of a relatively small
subset of motion-sensitive neurons in AI. In any case it is well to
remember that the demonstration of a preferred sound source
trajectory, speed, or both does not necessarily imply that the
underlying neural circuitry was constructed, or is used, solely for
the purpose of auditory motion analysis. Our method does not
allow us to pinpoint the mechanisms underlying the observed
spatial receptive field dynamics, but it would seem most likely that
these are a manifestation of the sensitivity of a neuron to dynamic
changes in the binaural spectra that accompany the movement of
a sound source in space.
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