
Correlated Firing in Macaque Visual Area MT: Time Scales and
Relationship to Behavior

Wyeth Bair,1,2 Ehud Zohary,3 and William T. Newsome1,4

1Howard Hughes Medical Institute (HHMI), 2Center for Neural Science, New York University, New York, New York 10003,
3Department of Neurobiology, Institute of Life Science, Hebrew University, Jerusalem, 91904, Israel, and 4Department of
Neurobiology, Stanford University School of Medicine, Stanford, California 94305

We studied the simultaneous activity of pairs of neurons re-
corded with a single electrode in visual cortical area MT while
monkeys performed a direction discrimination task. Previously,
we reported the strength of interneuronal correlation of spike
count on the time scale of the behavioral epoch (2 sec) and
noted its potential impact on signal pooling (Zohary et al.,
1994). We have now examined correlation at longer and shorter
time scales and found that pair-wise cross-correlation was
predominantly short term (10–100 msec). Narrow, central peaks
in the spike train cross-correlograms were largely responsible
for correlated spike counts on the time scale of the behavioral
epoch. Longer-term (many seconds to minutes) changes in the
responsiveness of single neurons were observed in auto-cor-
relations; however, these slow changes in time were on average
uncorrelated between neurons. Knowledge of the limited time

scale of correlation allowed the derivation of a more efficient
metric for spike count correlation based on spike timing infor-
mation, and it also revealed a potential relative advantage of
larger neuronal pools for shorter integration times. Finally, cor-
relation did not depend on the presence of the visual stimulus
or the behavioral choice of the animal. It varied little with
stimulus condition but was stronger between neurons with
similar direction tuning curves. Taken together, our results
strengthen the view that common input, common stimulus
selectivity, and common noise are tightly linked in functioning
cortical circuits.
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A fundamental problem in sensory neuroscience is to understand
how psychophysical performance is related to the signaling ca-
pacities of single sensory neurons. It is now widely recognized
that no satisfactory solution to this problem can be achieved in
the absence of detailed knowledge concerning correlated firing
within the pool of sensory neurons contributing to a particular
psychophysical judgment (Johnson et al., 1973; Johnson, 1980;
van Kan et al., 1985; Britten et al., 1992; Gawne and Richmond,
1993; Zohary et al., 1994; Geisler and Albrecht, 1997; Parker and
Newsome, 1998). For example, combining signals across a pool of
neurons can generate superior psychophysical sensitivity if the
noise carried by individual members of the pool is averaged out.
This benefit of pooling is only achievable, however, to the extent
that the noise carried by individual neurons is independent (un-
correlated); noise that is common to the entire pool cannot be
averaged out. In general, the effect of correlated noise depends on
how signals are combined, and although correlation may either
aid or hinder noise removal (Johnson, 1980; Abbott and Dayan,
1999; Panzeri et al., 1999), its impact on the amount of informa-
tion conveyed by a pool of neurons may be profound. Thus,
empirical analysis of correlated firing is central to a quantitative

understanding of the relationship between physiological re-
sponses and psychophysical judgments.

Extrastriate visual area MT is ideal for investigating pools of
sensory neurons that underlie psychophysical performance. MT
contains a preponderance of directionally selective neurons
(Zeki, 1974; Maunsell and Van Essen, 1983; Albright et al., 1984),
the activity of which has been linked compellingly to the psycho-
physical discrimination of direction in stochastic motion stimuli
(Newsome et al., 1989; Britten et al., 1992; Salzman et al., 1992;
Murasugi et al., 1993; Salzman and Newsome, 1994). In a previ-
ous study, therefore, we measured correlated firing in MT and
found that spike counts from adjacent neurons were noisy and
only weakly correlated but that even this small amount of corre-
lated noise placed substantial limits on the benefits of signal
averaging across a pool (Zohary et al., 1994). Subsequently,
Shadlen and colleagues (1996) incorporated these insights into a
computational model of the relationship between the activity of
MT neurons and psychophysical judgments of motion direction.

In the present study, our primary goals were to examine the
time scale at which correlation arises: in particular, to relate spike
count correlation to spike timing correlation and examine the
dependence of correlated firing on stimulus and behavioral pa-
rameters. Our most intriguing finding is that trial-to-trial corre-
lations in spike count, measured over trials of 2 sec duration, are
produced largely by the same mechanisms that generate peaks in
the spike train cross-correlogram (CCG) on a time scale of a few
tens of milliseconds. For a given pair of MT neurons, a quanti-
tative measurement based on the CCG peak predicts with fair
accuracy the level of correlation calculated from spike counts over
the full trial length. Furthermore, the CCG-based measure is
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substantially more reliable than the measure based on spike count
correlation. The spike train CCG is typically used as a qualitative
indicator of functional connectivity among neurons. In contrast,
our results suggest that the spike train CCG can provide quanti-
tative measures of neuronal correlation that are of considerable
interest for models that seek to reconcile neuronal and psycho-
physical performance.

Some of these results have been published previously in ab-
stract form (Bair et al., 1996, 1999).

MATERIALS AND METHODS
Subjects, surgery, and daily routine. The experiments were performed on
three adult rhesus monkeys weighing between 7 and 9 kg (Macaca
mulatta, two males and one female). Before the experiments, each
monkey was surgically implanted with a device for stabilizing head
position (Evarts, 1968), a scleral search coil for measuring eye position
(Judge et al., 1980), and a recording cylinder that allowed microelectrode
access to cortex within the occipital lobe. All surgical procedures were
performed under aseptic conditions with halothane anesthesia. After
recovery from surgery, each animal engaged in daily training or experi-
mental sessions of 2–6 hr duration. Behavioral control was accomplished
by operant conditioning techniques using fluids as a positive reward; fluid
intake was therefore restricted during periods of training or electrophys-
iological recording. The diet was supplemented with moist monkey
treats, fruits, and nuts. The animals were maintained in accordance with
guidelines set by the U.S. Department of Health and Human Services
(NIH) Guide for the Care and Use of Laboratory Animals.

Visual stimuli. The visual stimuli used in this study were a set of
dynamic random dot patterns in which a unidirectional motion signal was
interspersed among random motion noise. The stimulus set has been
described extensively in previous publications (Britten et al., 1992), and
we simply summarize its essential features here.

Dynamic random dots were plotted sequentially on the face of a CRT
screen at a high rate (6.67 kHz). After 45 msec, a dot was either displaced
in a specified direction (coherent motion) or replaced by another dot at
a random location on the screen (noise). In one extreme form of the
display, all dots were positioned randomly so that the display was pure
noise. In this form, which we term 0% coherence, the display contained
many local motion events (caused by fortuitous pairings of the dots in
space and time) but on average no net motion in any direction. At the
other extreme (100% coherence), all dots were displaced uniformly so
that the display contained noise-free motion in a specified direction. Our
software permitted us to create any stimulus intermediate between these
two extremes by specifying the percentage of dots that carried the
“coherent” motion signal. The percentage of dots engaged in coherent
motion governed the strength of the motion signal without affecting the
overall luminance, contrast, or average spatial and temporal structure of
the stimulus. When a psychophysical subject was asked to discriminate
the direction of motion in such displays, the difficulty of the discrimina-
tion was related directly to the percentage of dots in coherent motion.

In early experiments (monkey E), the stimuli were generated by a PDP
11/73 computer and displayed on a large, electrostatic deflection oscillo-
scope via a high speed DMA digital-to-analog converter. In later exper-
iments (monkeys R and K), the stimuli were created by means of an IBM
386 equipped with a dedicated graphics board (SGT Pepper no. 9). These
stimuli were displayed on a raster scan CRT monitor with a 60 Hz refresh
rate. In all experiments, the display monitor was positioned 57 cm in
front of the monkey.

A critical distinction must be made between two different methods of
presenting repeated stimuli for a particular condition (e.g., a 6.4%
coherence, upward stimulus). Our standard method used a new random
number sequence for each repeat, resulting in what we will refer to as
“ensemble stimuli,” which differ in detail but have on average the pre-
scribed motion coherence. As a control for the effect of random stimulus
variation on neuronal responses, we recorded from four pairs using
repeated presentations of stimuli generated with exactly the same se-
quence of random numbers. We will refer to the identical stimulus
repeats used by this method as “replicate stimuli.”

Behavioral paradigms and selection of visual stimuli. We used two
behavioral paradigms in this study: a fixation task and a discrimination
task. In the fixation task, the monkey was required only to maintain its
eye position within an electronically defined window around the fixation
point for 2–4 sec. The monkey received a liquid reward on successful

completion of each trial. In most experiments, the window permitted eye
movements up to 1.5° away from the fixation point, but in practice, the
monkeys usually held their eye position within 0.5° of the fixation point.

The monkeys performed the fixation task during the initial search for
well isolated pairs of neurons, during mapping of receptive fields, and
during quantitative measurement of the direction tuning properties of
the neurons. Receptive field boundaries were mapped qualitatively for
each neuron of the pair, and the stimulus aperture was positioned to
include both receptive fields. The receptive fields typically overlapped
substantially, so that the stimulus aperture only engaged a small portion
of the surround of either receptive field. The optimal speed was esti-
mated qualitatively for each neuron, and subsequent experiments were
conducted using a motion speed intermediate between the two optima.
To measure a direction tuning curve, a 100% coherence dot pattern was
presented in eight different directions of motion equally spaced around
the clock at 45° intervals. The different directions were presented in a
pseudorandom sequence until 10–20 repetitions were completed for each
direction.

The two direction tuning curves were used to assign a “preferred-null”
axis of motion for use during the discrimination task (below). Ostensibly,
the preferred-null axis was the axis of maximal directionality for the two
neurons; motion in opposite directions along the axis should yield a
maximal difference in responsiveness. In practice the axis chosen was
usually a compromise between the preferred directions of the two
neurons measured individually. Most pairs of neurons had similar pre-
ferred directions, and the compromise therefore resulted in a near-
optimal axis for both. On occasion we recorded from pairs of neurons
with preferred directions that were nearly opposite each other. In this
case again, the choice of directional axis was easy because the signs of the
two response were simply reversed along the same axis. Occasionally,
however, the preferred directions of the two neurons were nearly orthog-
onal to each other, or one of the neurons was not directional at all. In
such cases, we chose the preferred-null axis and the speed of the motion
signal to match the preferences of the more responsive, directional
neuron. On the whole, therefore, most neurons were studied during the
discrimination task with stimuli that matched their physiological prop-
erties reasonably well. For a few neurons, the stimuli were substantially
suboptimal.

In the discrimination task, the monkey performed a two-alternative,
forced-choice discrimination of motion direction. This task has been
used extensively in our laboratory and is described in detail in previous
publications (Britten et al., 1992). On each trial a random dot stimulus
was presented for 2 sec within the aperture covering both receptive fields.
The direction of the coherent motion signal was varied randomly from
trial to trial between the preferred direction of the neurons under study
and the direction 180° opposite (the “null” direction); the monkey’s task
was to discriminate correctly the direction of motion. The strength of the
motion signal was varied among a range of coherence levels that spanned
psychophysical threshold. A minimum of 15 repetitions was obtained for
each stimulus condition (i.e., each combination of direction and coher-
ence), and all conditions were presented in pseudorandom order. We will
refer to the neuronal data from these experiments as “coherence series
data” to distinguish them from the direction tuning data.

Each trial began with the appearance of the fixation point. After the
monkey achieved fixation and held its gaze within the fixation window for
300 msec, the visual stimulus was presented as described above. The
monkey was required to hold its gaze on the fixation point during
stimulus presentation so that the stimulus remained well positioned on
the receptive fields of the two neurons. At the end of the 2 sec display
interval, the random dot pattern and the fixation point disappeared, and
two small visual targets appeared, one corresponding to each of the two
possible directions of coherent motion. The monkey made a saccadic eye
movement to one of the two targets to indicate the direction of motion
perceived in the visual stimulus. Eye movements were measured contin-
uously with the scleral search coil technique, permitting the computer to
register correct and incorrect choices. Correct choices were followed by
a liquid reward; incorrect choices were followed by a brief time-out
period. On 0% coherence trials, the monkey was rewarded randomly with
a probability of 0.5 because there was no “correct” answer on these trials.
If the monkey broke fixation prematurely during a trial, the trial was
aborted, the data were discarded, and a time-out period ensued.

Electrophysiolog ical recording and spike sorting. Electrophysiological
recordings were made with tungsten microelectrodes inserted into the
cortex through a transdural guide tube (electrode impedance 5 0.5–2.0
MV at 1 kHz) (Micro Probe, Potomac, MD). The guide tube was held
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rigidly in a stable coordinate system by a plastic grid inside the recording
cylinder (Crist et al., 1988). We recorded through any particular guide
tube for several consecutive days.

The signal from the microelectrode was amplified and bandpass-
filtered (0.5–10 kHz), and action potentials from multiple single neurons
were discriminated using an on-line spike sorting system that was devel-
oped originally in the laboratory of Dr. Moshe Abeles (Hebrew Univer-
sity, Jerusalem) and was commercially available from Alpha Omega
Engineering (Nazareth, Israel). The filtered microelectrode signal was
continuously sampled at a rate of 14 kHz by a digital signal processing
system housed in an IBM 386 platform. (The apparent discrepancy
between the 7 kHz cutoff frequency, implied by 14 kHz sampling, and the
10 kHz cutoff of our bandpass filter was not a limiting factor, because in
practice the amplitude of the noise from 7 to 10 kHz was small relative
to the amplitude of all well isolated action potentials.) The computer
software provided a user interface to the spike sorting hardware and
included graphics displays of voltage waveforms, spike templates, and
distributions of matching errors (below). Spikes were discriminated
on-line using an eight-point template-matching algorithm (Wörgötter et
al., 1986). Each time the voltage exceeded a threshold level, an eight-
point voltage sample was acquired and compared with the predefined
templates that characterized the waveform of each recorded neuron. If
the root-mean-square error (RMSE) of the match between the signal
waveform and one of the templates was below a criterion value, an action
potential was registered for that neuron. A template was defined by the
software to minimize the RMSE of the match to the template across a
sample of 100 action potentials accepted by the experimenter as belong-
ing to a specific neuron.

The quality of unit isolation was determined by the separation of the
templates from each other and from the noise. Excellent separation of
the templates from each other was necessary to prevent “cross-talk”
between the two waveforms. Occasional misclassification of the two
action potentials could result in artifactual correlations that would be
deleterious to certain analyses. The only substantive insurance against
cross-talk were the rigor and attentiveness of the experimenter—both in
selection of pairs for study and in maintaining quality of isolation during
the experiment. We attempted to be exceedingly rigorous in selecting
pairs for study, rejecting all candidates except those with waveforms that
were strikingly distinct from each other. Similarly, we attempted to be
unusually conservative in on-line assessment of the quality of isolation. If
either waveform began to deteriorate, creating any doubt about isolation,
we ceased recording until the waveforms could be restored.

Separation of the two templates from the noise could be achieved more
objectively. For each template, the software compiled and displayed a
frequency histogram of RMSE values resulting from comparison of each
triggered waveform with that template. Excellent separation of the
template from the noise corresponded to a bimodal histogram of RMSE
values. A peak at low RMSE values corresponded to action potentials
from the neuron that defined the template; a larger peak at high RMSE
values reflected the substantial mismatch between noise waveforms and
the template. We insisted that both modes be visible and well separated
from each other in the RMSE histogram. The criterion RMSE value for
accepting an action potential as corresponding to a particular template
was set at the local minimum in the bimodal RMSE distribution. This
ensured a reasonable balance between minimizing noise contamination
and minimizing false negative matches to the template. We rejected
recordings for which the error distributions were judged by eye to overlap
in a manner that would produce more than ;5% false positives, but we
estimate that the contamination rate was typically lower because the
peaks in the bimodal error distribution often showed no sign of overlap
after collecting hundreds of spikes. Admitting a small percentage of
spikes from other neurons to one or the other template should have
negligible effect on estimates of pair-wise interneuronal correlation be-
cause of the modest to weak correlations typical between cortical
neurons.

Obviously, our technique of multi-unit recording with a single elec-
trode cannot detect simultaneous spikes because the two waveforms
superimpose, resulting in a poor match to either template. Because the
primary lobes of the action potential waveforms were generally #0.5
msec in duration (Mountcastle et al., 1969; Funahashi and Inoue, 2000),
this limitation only resulted in an underestimation of spikes that were
synchronous to within 1 msec [for example, see Gawne and Richmond
(1993); Funahashi and Inoue (2000)]. For two neurons with uncorrelated
activity firing at rates ,100 spikes per second, the probability of spike
synchrony at the millisecond time scale is ,0.1 2, which is reasonably

uncommon. However, the pairs of neurons studied here often have peaks
in their CCGs at time zero (see Fig. 5B), and therefore the probability of
simultaneous firing may be many times greater. This problem can be
compounded for cells that fire bursts during which firing rates may reach
300–500 spikes per second. However, multi-electrode cross-correlation
studies in monkey and cat suggest that CCG peaks in visual cortex are
typically broader than 1–2 msec (Ts’o et al., 1986; Krüger and Aiple,
1988; Ts’o and Gilbert, 1988; Cardoso de Oliveira et al., 1997). The
available evidence suggests that the vast majority of CCGs do not have
sudden discontinuities on the time scale of 1 msec at the origin and that
peaks of width 1 msec, when they exist, are weak and could not account
for a substantial fraction of the strength of interneuronal correlation
commonly observed in visual cortex. Therefore, we approximate the
CCG value at time zero using values at neighboring time lags, as
described later.

Analysis of direction selectivity. To assess neuronal direction selectivity,
we determined which of two different models could better match the
direction tuning curves. The first model assumed that the neuron was not
direction selective and that response variation across direction was
caused simply by sampling noise. It therefore predicted that the level of
activity was essentially invariant with direction and was best estimated as
the mean of the responses to all directions. The second model assumed
that the neuron was in fact direction selective with a Gaussian distribu-
tion of responses centered on the optimal direction of motion. This
distribution had four free parameters: the optimal direction of motion,
the maximal response rate, the bandwidth of the Gaussian function, and
the baseline response (the spontaneous firing rate). We performed max-
imum likelihood fits to the two separate, nested models under the
assumption of normal errors. The likelihoods (L) obtained from these
computations were transformed by:

l 5 22ln
L~datauGaussian fit!
L~datauuniform fit! , (1)

such that l is distributed as x2 with three degrees of freedom (Hoel et al.,
1971). If l was below the criterion value (p 5 0.05), we concluded that the
direction tuning function of the neuron was better described by a Gauss-
ian fit than by a constant response independent of direction. We consid-
ered these neurons to be direction selective, and the quantitative analyses
in this paper used optimal directions and bandwidths obtained from the
Gaussian fit to the tuning curve of each neuron. We will use the notation
DPD to refer to the difference (in degrees) between the preferred direc-
tions of neurons within a pair.

Analysis of psychophysical data. Psychophysical data from the discrim-
ination experiments were compiled into psychometric functions depict-
ing the proportion of correct decisions as a function of the strength of the
motion signal (in % coherence). We used a maximum likelihood method
(Watson, 1979) to fit these data with sigmoidal functions of the form:

p~c! 5 d 2 ~d 2 0.5!e2(c /a)b, (2)

where p is the probability of a correct decision, c is coherence, a is the
coherence level that supports threshold performance (82% correct), b is
the slope of the sigmoidal function, and d is the asymptotic performance
for strong motion signals (expressed as proportion of correct decisions).
The threshold parameter, a, and the slope parameter, b, provide a
succinct description of the psychophysical data.

Equation 2, derived from the integral of a Weibull distribution (Quick,
1974), provided acceptable fits to the bulk of our psychophysical data.
Thirty-four of 46 psychometric functions in our data set were well fit
[likelihood ratio test, p . 0.05; see the Appendix of Watson (1979)] when
the asymptotic performance, d, was constrained to be unity, and the
remaining functions were well fit by allowing d to vary. The non-unity
asymptote in the latter 12 experiments reflected the monkey’s occasional
errors at the highest coherence levels.

Analysis of neural thresholds. We measured neural thresholds to the
stochastic motion stimuli in a manner that permitted direct comparison
with psychophysical thresholds [see Britten et al. (1992) for a detailed
description]. For each neuron, we first compiled for each motion coher-
ence a frequency histogram of responses to preferred direction motion
and a separate histogram of responses to null direction motion. We
considered a “response” to be the total number of spikes generated by the
neuron during the 2 sec stimulus. For very strong (high coherence)
motion signals, these “preferred” and “null” response distributions were
typically non-overlapping because most of our neurons were highly
directional. At these coherence levels, the direction of motion could be
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determined unambiguously on any given trial simply by monitoring the
response of the neuron. For very weak motion signals, however, the
preferred and null response distributions overlapped almost completely,
so judgments of motion direction based on the responses of the neuron
would be at chance. Intermediate coherence levels resulted in partial
overlap between the two response distributions, leading to intermediate
levels of performance.

Following these intuitions, we used a method based on signal detection
theory (Green and Swets, 1966; Britten et al., 1992) to compute the
performance expected of an ideal observer who based judgments of
motion direction on the measured neuronal responses. For each neuron,
this calculation was performed for each coherence level (typically six
non-zero levels, but as many as eight, and the results were compiled into
a neurometric function that plotted expected performance (in % correct
decisions) as a function of coherence. A sigmoidal curve was fitted to the
data using Equation 2, and the threshold and slope parameters were
extracted as described in the preceding section. These parameters de-
scribe the sensitivity of a single neuron to the motion signals in our
displays in a manner that can be compared directly with the psychophys-
ical sensitivity measured on the same trials. Equation 2 described our
neurometric data well; the fits were acceptable (likelihood ratio test, p .
0.05) for all 83 of the neurons comprising the 46 pairs with valid
psychophysical data.

Assessment of correlated activity. We analyzed two main types of
correlation between the responses from each pair of neurons: signal
correlation and noise correlation (Gawne and Richmond, 1993; Gawne
et al., 1996; Lee et al., 1998). Signal correlation, designated rsignal, refers
to the common modulation in a set of paired mean responses associated
with multiple stimulus conditions. For our purposes, it is simply the
correlation coefficient computed for the mean spike rates from a pair of
direction tuning curves. Noise correlation, rnoise, refers to common trial-
to-trial fluctuations around the mean response for a single stimulus
condition, and its estimation and interpretation occupy the bulk of this
paper. The dichotomy implied by the names “signal” and “noise” corre-
lation is somewhat unfortunate because apparently noisy variations in
spike rate may carry information about neural signals that we simply
cannot access. However, we will adhere to these terms for the sake of
precedent. The traditional measure of noise correlation is the interneu-
ronal correlation coefficient (van Kan et al., 1985; Bach and Krüger, 1986;
Gawne and Richmond, 1993; Zohary et al., 1994; Gawne et al., 1996; Lee
et al., 1998), which measures correlation at a fixed time scale and
temporal relationship, i.e., the simultaneous trial. We will describe two
new methods for quantifying noise correlation, one at time scales greater
than and equal to the single trial that generalizes the interneuronal
correlation coefficient to non-simultaneous trials (below) and another at
the scale of milliseconds that is derived from spike train correlograms
(Appendix A). Table 1 provides a unified reference to all of our notation
regarding correlation.

The trial cross-covariance. The interneuronal correlation coefficient is
traditionally computed for the spike counts N1 and N2 of neurons 1 and
2, respectively, according to:

rSC 5
E@N1N2# 2 EN1EN2

sN1sN2

, (3)

where E is expected value and s is the SD computed across all repetitions
of a particular stimulus. However, an experiment yields several sets of
paired spike counts (one set for each stimulus condition), and rather than
applying Equation 3 separately to each set, the sets can be combined
after performing a within-set normalization. One simple normalization,
the z-score, involves modifying the spike count values within each set
(i.e., for each stimulus condition) by subtracting the mean and dividing by
the SD for that set of responses. The subtraction eliminates the mean
stimulus-evoked portion of the response, and the division scales the
variance around the mean so that random fluctuations at high firing rates
(which are known to be larger than those at low rates) are not unduly
weighted. Further empirical justification for this normalization comes
from the observation that rSC changes very little with firing rate or
stimulus condition, as shown in Results. The resulting z-scores can be
represented in the order in which they occurred in the original experi-
ment by the sequences z1

i and z2
i , 1 # i # M, where M is the total number

of trials in the experiment. Because Ez1 5 Ez2 5 0, and sz1
5 sz2

5 1, the
equation for the correlation coefficient, Equation 3, simplifies to:

rSC 5 E@z1
i z2

i #. (4)

For a single set of paired responses, this equation is equivalent to
Equation 3 because neither subtraction nor division by a positive con-
stant (applied to the spike count data) changes the value of the correla-
tion coefficient. For multiple sets of responses, the equation provides an
aggregate correlation coefficient. Equation 4 can be generalized from
responses that occurred on the same trial to responses that occurred on
trials separated in time by a lag, f, in units of experimental trials (;5 sec
per unit; see below). This generalization, which we will refer to as the
trial cross-covariance (TCC), is simply the cross-correlation of z1 and z2:

TCC~f! 5 E@z1
i z2

i1f#. (5)

The value at f 5 0 is equal to rSC (Eq. 3) averaged across all stimulus
conditions (with appropriate weighting for the number of trials for each
condition), and we use the symbols TCC(0) and rSC interchangeably. For
f Þ 0, TCC(f) is the correlation coefficient, with values from 21 to 1, for
temporal offsets in arbitrary numbers of trials. For a pair of uncorrelated
neuronal responses, TCC(f) will approach zero everywhere as the num-
ber of trials used in its estimate increases. The trial auto-covariance,
TAC(f), is defined in a similar manner by replacing z2 with z1 (or vice
versa) in Equation 5, and by definition it is equal to unity for f 5 0.

We already know that TCCs will have positive values at f 5 0 for
neuronal pairs with rSC . 0. If interneuronal correlation arises at a time
scale shorter than the trial duration, the positive value at f 5 0 will stand
as a narrow, isolated peak. However, if the correlation between neurons
arises from slow changes in their responsiveness, the positive value at
f 5 0 will be part of a broader peak, i.e., the TCC will have positive
values for f Þ 0 as well. Similarly, the presence of a broad peak around
the origin in the TAC will indicate the presence of slow variations in the
excitation of individual neurons.

Our use of the TCC does not rest on whether the horizontal axis is
given in units of time or trials. We retained “trials” as the axis unit to
avoid the technical difficulty associated with the cross-correlation of data
sampled at somewhat irregular time intervals. The irregularity in the
mapping from trials to time was caused by the monkey’s failure to fixate
immediately on 10–20% of trials during a recording session. To estimate
the time scale of slow correlation, we will convert from trials to time
using the average time between trial starts, ;5 sec.

Previous studies by Eggermont and Smith (1995, 1996) have attempted
to separate correlation at multiple time scales using a method similar in
concept to the TCC, but their time unit was 50 msec, roughly two orders

Table 1. Summary of notation regarding correlation

Symbol Description

r Pearson’s correlation coefficient (Eq. 3)
rsignal r for mean responses, computed from direction tuning

curves
rnoise r for trial-to-trial fluctuations around mean response
rSC rnoise computed directly from spike counts
TCC(f) Trial-based cross-covariance, generalizes rSC beyond

simultaneous trials (Eq. 5); TCC(0) 5 rSC

TCChp(f) TCC computed after z-scored spike counts are high-pass
filtered

rST Short-term component of rnoise, TCChp(0)
rLT Long-term component of rnoise computed from

smoothed TCC
TAC(f) Trial auto-covariance; TAC(0) 5 1
rAC Estimate of long-term correlation from smoothed

TAC(f) as f 3 0
Cjk(t) Raw cross-correlation of simultaneous spike trains,

averaged over trials (Eq. 14)
CCG(t) Spike train cross-correlogram, based on Cjk (Eq. 6)
ACG(t) Spike train auto-correlogram, based on Cjk, j 5 k
rCCG(t) rnoise estimated from the ACGs and CCG (Appendix A)
Sjk(t) Raw cross-correlation of post-stimulus time histograms,

related to shift-predictor (Eq. 15)
C*jk(t) Raw all-way shift-predictor (Eq. 8)
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of magnitude faster than ours. Variations in firing rate on the time scale
of 10s to 100s of milliseconds (Nelson et al., 1992; Eggermont and Smith,
1995; Arieli et al., 1996) are considered by us to be short term because
they fall well within the duration of our behavioral epoch.

The spike train cross-correlogram. We measured correlation at the time
scale of milliseconds using spike train auto- and cross-correlograms
(ACGs and CCGs) (Perkel et al., 1967a,b). Our CCG is defined based on
the trial-averaged cross-correlation, Cjk(t) (defined in Appendix A, Eq.
14), of binary spike sequences from neurons j and k (typically, 1 and 2).
In particular:

CCG~t! 5
Cjk~t!

Q~t!Îljlk
, (6)

where lj and lk are the mean firing rates (in spikes per second) of
neurons j and k. For ACGs, j 5 k 5 1 or 2. The function Q(t) is a triangle
representing the extent of overlap of the spike trains as a function of the
discrete time lag t, i.e.:

Q~t! 5 T 2 utu, ~2T , t , T!, (7)

where T is the duration of the spike train segments used to compute Cjk.
Dividing Cjk by Q(t) in Equation 6 changes the units of our CCG from
raw coincidence count to coincidences per second and corrects for the
triangular shape of Cjk caused by finite duration data.

In Equation 6, we chose to divide by the geometric mean spike rate
(GMSR), =l1l2, because under this normalization the area of our CCG
peaks remained relatively constant as firing rate varied [shown later; see
also Krüger and Aiple (1988)] and because it is symmetric with respect
to the two neurons. With this normalization, the CCG is the ratio of a
coincidence rate to a mean spike rate and ends up with units of coinci-
dences per spike. Once the shift-predictor (below) is subtracted, this
normalization is similar to that of many other studies (Mastronarde,
1983a; Krüger and Aiple, 1988; Eggermont and Smith, 1996; Cardoso de
Oliveira et al., 1997) and is conceptually similar to that proposed by
Aertsen et al. (1989) for their “joint peri-stimulus time histogram.” A
different normalization, dividing by the product of the spike rates, has
been favored less often (Melssen and Epping, 1987, their Eq. 17; Das and
Gilbert, 1995), and for our data was less appropriate than dividing by the
GMSR.

Shift- (also known as shuffle-) predictors [defined in Perkel et al.
(1967b)] for CCGs and ACGs were computed using the same normal-
ization as above but based on the average cross-correlation of all M 2 2
M pairings of nonsimultaneous responses from neurons j and k for a set
of M trials. This “all-way” cross-correlation, denoted C*jk(t), can be
computed efficiently from the cross-correlation of the post-stimulus time
histograms (PSTHs), Sjk (defined in Appendix A, Eq. 15), according to
the following expression:

C*jk~t! 5
MSjk~t! 2 Cjk~t!

M 2 1 , (8)

which approaches Sjk(t) as M increases (Perkel et al., 1967b). Substituting
C*jk for Cjk in Equation 6 gives the final shift-predictor. A shift-predictor
computed from responses to ensemble stimuli (i.e., those that resulted
from different sequences of random numbers; see above) will be referred
to as an ensemble shift-predictor. When computed for replicate stimuli
(i.e., repetitions of identical stimuli), it will be referred to plainly as a
shift-predictor.

CCGs, ACGs, and shift-predictors were computed from data in the
post-stimulus onset period 300–2000 msec to avoid processing the initial
transient response. This made shift-predictors flatter and prevented
changes in correlation strength that might be associated with the stimulus
onset transient from influencing the analysis. We computed all quanti-
tative results for the full trial as well and found only negligible differ-
ences. CCGs and ACGs were computed individually for each stimulus
condition, shift-predictors were subtracted, and then averages were taken
across all valid stimulus conditions. We set criteria for the minimum
quantity of data required for neurons to be accepted into the CCG and
ACG analysis pool. These rules were applied in order: (1) no trial was
valid that had fewer than four spikes within the analysis window, (2) no
stimulus condition was valid that had fewer than four valid trials or ,64
spikes in total per neuron, and (3) no pair of neurons (or neuron) was
included that had fewer than four valid stimulus conditions. These
criteria eliminated 1 of 104 pairs from our direction tuning data set and
2 of 50 pairs from our coherence series data set.

RESULTS
Our findings are organized as follows. The first section provides
a brief description of our data for a typical pair of neurons and
shows how all pairs are distributed according to the strength of
their interneuronal correlation and the similarity of their direc-
tional tuning curves. The second major section is devoted to
measuring the time scale of interneuronal correlation, which
involves (1) separating long- and short-term correlation, (2) as-
sessing the time scale of short-term correlation using spike train
CCGs, and (3) relating CCG peaks to spike count correlation. A
more efficient metric for spike count correlation is derived here
and in Appendix A. The next major section of results reports the
dependence of correlation, or synchrony, on stimulus parameters
and on the decision-making and behavioral state of the animal. A
brief section shows that neurons do not cluster with respect to
their sensitivity to the stimulus or their relationship to behavior,
and the final section describes control experiments for the influ-
ence of stimulus variance on our estimates of correlation.

Basic measurements of response correlation
Our results are based on simultaneous recordings from 107 pairs
of MT neurons in three monkeys. We obtained directional tuning
data for 104 pairs; we gathered discrimination data for a subset of
46 pairs. All recordings admitted to our database conformed to
two requirements: both neurons were well isolated for at least 10
repetitions per stimulus condition, and at least one of the neurons
yielded reliable, directionally selective responses to fully coher-
ent random dot stimuli. For analyses involving CCG and ACG
computations, we further restricted the database to pairs that
satisfied criteria for a minimum number of spikes (see Materials
and Methods). For ease of reference and consistency checking,
the numbers of cells and pairs qualified for the major analyses are
summarized in Table 2.

Figure 1 depicts a complete set of measurements for a repre-
sentative pair of simultaneously recorded MT neurons. A and B
are direction tuning curves for neurons 1 and 2, respectively. Both
neurons were directionally selective and exhibited similar pre-
ferred directions and tuning bandwidths. C and D depict re-
sponses of the same two neurons as a function of motion coher-
ence for both the preferred and null directions of motion. For
these measurements, the preferred direction was set to 90°, ap-
proximating the optimal directions of both neurons. Off-line
analysis of the data in A and B revealed the preferred directions

Table 2. Summary of counts of cells and pairs

Fixation task, direction tuning data

196 Neurons with valid direction tuning data
163 Neurons classified as directional
104 Pairs with valid direction tuning data
103 Pairs met minimum data criteria for CCG computation
69 Pairs with both neurons directional
57 Directional pairs with DPD , 90°

Discrimination task, coherence series data

46 Pairs with valid psychophysical discrimination data (83 neurons)
72 Neurons have valid neurometric thresholds, a (from 41 pairs)
48 Pairs met minimum data criteria for CCG computation (86 neurons)
46 Pairs with direction tuning data (85 neurons)
34 Pairs with both neurons directional
29 Directional pairs with DPD , 90°
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to be 58° and 82° for neurons 1 and 2, respectively (see Materials
and Methods). In C and D, the firing rates of both neurons
increased roughly linearly with motion coherence in the preferred
direction and decreased linearly with motion coherence in the
null direction, a typical pattern for MT neurons (Britten et al.,
1993).

Using the direction tuning data for each pair of neurons, we
assessed the strength of two distinct types of correlation, that of
the mean responses and that of the variations about the mean.
The former, commonly known as signal correlation, measures the
similarity of tuning curves for a pair of neurons and was com-
puted here as the correlation coefficient, rsignal, between the sets
of data points from the direction tuning curves. For the curves in
Figure 1, A and B, rsignal was 0.88, indicating a high degree of
match. The distribution of rsignal for all pairs (Fig. 2A) was
comparable to that of a more conventional but less general metric,
the difference between preferred directions, DPD, shown for
comparison in Figure 2B. The dominant modes in both distribu-
tions, i.e., high rsignal and low DPD, indicate that adjacent neurons
in our study tended to have similar direction tuning, consistent

with the known columnar organization of MT (Albright et al.,
1984; DeAngelis and Newsome, 1999).

The second type of correlation is assessed not from the mean
responses for all stimuli but from the trial-to-trial fluctuations
(evidenced by the error bars in Fig. 1) around the mean response
for each stimulus condition. This interneuronal correlation has
therefore been dubbed noise correlation (Gawne and Richmond,
1993; Gawne et al., 1996; Lee et al., 1998). Noise correlation, or
rnoise, is typically estimated by computing the correlation coeffi-
cient, rSC, between the number of spikes generated by one of the
neurons and the number of spikes generated by the second,
simultaneously recorded neuron for a set of nominally identical
stimuli. However, we developed a lower-variance estimator for
rnoise (introduced and described in detail in the next section of
Results) and have plotted those estimates against the values of
rsignal for all pairs in Figure 2C (the marginal distribution of rnoise

Figure 1. Example of direction tuning curves and responses versus
coherence for a pair of neurons recorded simultaneously. A and B show
mean firing rate as a function of stimulus direction for the two neurons
(pair emu018). Stimuli were 100% coherence moving dots. Error bars
show 61 SE. Thin, flat lines show spontaneous firing rate. C and D show
mean firing rate as a function of coherence for preferred direction (90°,
thick lines) and null direction (270°, thin lines) stimuli for the same
neurons as A and B, respectively. Note that the minimum and maximum
spike rates here do not reach those in A and B because 100% coherence
was not included in these direction-discrimination experiments. Although
some error bars are occluded at low coherence for null direction stimuli,
they were roughly the same size as those for the preferred direction. A
linear horizontal axis is maintained to emphasize the roughly linear
relation between firing rate and coherence.

Figure 2. The joint distribution of signal and noise correlation for pairs
of MT neurons. A, The marginal frequency distribution of rsignal for all
pairs represented in C. B, The frequency distribution of DPD (applicable
to only those 69 pairs with both neurons directional) was similar to that
reported by Albright et al. (1984) for pairs of MT neurons recorded
successively at 50 mm intervals. Their study showed a second, small mode
in the distribution for DPD between 120 and 180°, corresponding to nearly
opposite preferred directions for the two neurons. This mode was not
readily apparent in our data; however, our sample size was smaller. From
104 pairs, 163 of 196 individual neurons (84%) were directional by the
likelihood test described in Materials and Methods. C, Noise correlation
is plotted against signal correlation for 103 pairs (direction tuning data).
Squares indicate that at least one cell in the pair did not meet the
directionality criterion (n 5 34). Circles indicate directional pairs, and
filled circles (n 5 57) indicate pairs with similar preferred directions, i.e.,
DPD , 90°. For the 57 directional pairs with similar preferred directions,
rsignal was typically high (median 0.86), and the mean rnoise value was 0.20
(SD 0.15), which was significantly greater than zero (p , 10 26; t test). The
two filled circles in the top lef t quadrant represent pairs for which DPD was
only slightly ,90° (87 and 83°) and for which peculiarities of the direction
tuning curves caused rsignal to be negative. For directional pairs with
DPD $ 90°, rnoise 5 20.02 (SD 0.09; n 5 12; not different from zero; p 5
0.59). For pairs with at least one nondirectional cell, rnoise 5 0.06 (SD
0.15; n 5 34; not different from zero; p 5 0.11). D, Marginal frequency
distribution of rnoise for all pairs represented in C.

Bair et al. • Correlated Neuronal Firing in Area MT J. Neurosci., March 1, 2001, 21(5):1676–1697 1681



is shown in D). The pairs appear to fall into two general groups
in C that are not apparent from the marginal distributions alone.
One group consists of pairs with very similar direction tuning
curves (i.e., high rsignal values) and positive noise correlation. A
second group consists of pairs with low or negative signal corre-
lation and noise correlation near zero. Overall, the correlation
coefficient between rsignal and rnoise is 0.61 (p , 1026; n 5 103;
direction tuning data).

The correlation of rnoise with rsignal is consistent with the notion
that shared common input endows nearby neurons with similar
tuning properties and makes them subject to similar noise
sources. This observation is not unique to our data set, but it
allowed us to focus our investigation of interneuronal correlation,
when appropriate, on the cluster of neurons associated with
non-zero rnoise values. We will use DPD , 90° as a criterion for
making this separation.

The time scale of interneuronal correlation
In this section, we determine the time scale at which interneuro-
nal correlation arises. We will quantify fluctuations in the neu-
ronal response at time scales much slower and faster than the
psychophysical trial and will show that the magnitude of rnoise for
our MT pairs can be accounted for by the central peaks in their
spike train CCGs on the order of 10s of milliseconds wide.

Short-term and long-term correlation
Since the earliest attempts to estimate rnoise in visual cortex, it has
been recognized that slow processes could play an important role
in determining its magnitude (van Kan et al., 1985; Bach and
Krüger, 1986). Changes in neuronal excitation caused by motiva-
tional or attentional factors or fatigue could create a correlation
at a time scale of anywhere between seconds and many minutes
across a large population of neurons. On the other hand, common
synaptic input to multiple neurons that operates on a millisecond
time scale would also contribute to interneuronal correlation but
across a smaller population of neurons sharing similar tuning
properties. Because knowing the time scale of correlation may
shed light on its origin and on its effect on pooled signals, our first
goal was to determine to what extent long-term correlation was
present and to calculate the remaining short-term component of
rnoise once any long-term fluctuation of the firing rates was fac-
tored out. Assessing the presence of slow covariations in firing
rate is also important because such covariation, when combined
with faster stimulus-locked modulation, can lead to narrow CCG
peaks that may be misinterpreted as evidence for fast synchroni-
zation (Brody, 1998, 1999). To tackle the problem of estimating
slow changes in neuronal excitation for data collected in discrete
epochs, i.e., trials, we developed a method called the TCC.

The TCC is a spike-count (as opposed to spike-train) -based
cross-covariance that operates on the deviations from the ex-
pected responses (instead of the actual responses) for the two
neurons, given the stimulus. Figure 3 outlines the TCC compu-
tation for two pairs of neurons, one for which correlation was
predominantly long term, exceeding the duration of the 2 sec trial
(lef t column), and a second for which correlation was predomi-
nantly short term (right column). The top panels (A and D) show
for the individual neurons the z-score-normalized spike counts
(see Materials and Methods) for trials in the order in which they
occurred in the discrimination experiments. These traces esti-
mate the levels of relative responsiveness of the neurons through-
out the experiment. Beneath them, their auto-covariance func-
tions, TAC(f), are shown side-by-side (B and E; f has units of

experimental trials, typically 5 sec per trial). Only the left or right
halves of the TACs are shown (the functions are symmetrical
about the origin), and the unity values at the origin are omitted.
The gradual rise to a positive value around the origin, which was
typical for our neurons, indicated that responses, or more pre-
cisely, response deviations from the mean, on any particular trial
were correlated to those on earlier trials. For the two example
pairs, the cross-covariance functions, TCC(f), for the data in the
top panels are shown at the bottom (C and F). TCC(0) is the
traditional interneuronal correlation coefficient for spike counts,
rSC (or more generally rnoise), whereas TCC(f Þ 0) is a general-
ization of rSC to responses occurring f trials apart. In Figure 3C
the broad central rise in the TCC indicates that the positive
correlation on simultaneous trials (TCC(0) 5 0.1; indicated by the
circled dot) is related to a correlated drift in the activities of the
neurons on a time scale longer than one trial. The example in F
shows an entirely different outcome. Namely, the positive corre-
lation coefficient for simultaneous trials does not extend to neigh-
boring trials, despite the slow drifts in responsiveness of the two
individual neurons evident from positive values near the origin in
their TACs.

The TCC provides a framework for estimating long- and short-
term components of rnoise, which is represented at TCC(0). Long-
term correlation, rLT, is the value of the TCC around, but not at,
zero. We estimated rLT by replacing the value at zero with the
average of its neighbors (at lag 61 trial), convolving with a
Gaussian of SD four trials, and reading off the new value at zero
(very similar results held for Gaussian SD two or eight trials). The
traces from which rLT was measured are shown as smooth curves
superimposed on the raw TCCs (which still have their central
values intact) in Figure 3, C and F. For the neuronal pair in C, rLT

was nearly the same as the raw rnoise value (the circled point is near
the smooth line at lag 0), whereas in F, rLT is close to zero and
does not account for the value of rnoise. We used the same method
(replacing the center and smoothing) to compute the long-term
component of the auto-covariance, rAC, from the two-sided, sym-
metrical forms of the TACs (Fig. 3B, E, arrows mark values).

To estimate the short-term component of rnoise, we removed
the slow changes in responsiveness underlying rLT by applying an
ideal high-pass filter to the z-scored spike counts. The filter’s
cutoff frequency, 0.1 trial21 (cutoff period 10 trials), was chosen
to be faster than the mean time scale of slow changes in excit-
ability observed in the TACs. The filtered data were subsequently
renormalized to z-scores and used to compute a TCC (denoted
TCChp) whose zero-lag value was our estimate of short-term
correlation, i.e., rST 5 TCChp(0). Figure 4 depicts the TCC and
TCChp (A and B, respectively) for a pair of neurons that had
substantial long- and short-term correlation. The long-term cor-
relation was no longer visible in TCChp , but a narrow, central
peak remained. A simpler approach to computing rST is to sub-
tract rLT from rSC, i.e., from TCC(0). However, this may yield less
accurate results for many neurons because it is not in general
correct to assume that rST and rLT are additive.

Figure 4, C and D, shows database averages for our estimates of
long- and short-term correlation. Separate averages are shown for
pairs with DPD , 90° (black bars) and pairs with DPD $ 90° or in
which one neuron was not directional (white bars). A distinction
between coherence series data (C) and direction tuning data (D)
was maintained because we collected fewer total trials (typically
80) and had more pairs for direction tuning experiments (n 5
104) than for discrimination experiments (at least 210 trials; n 5
48). The database averages led to three significant observations.
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First, the average long-term auto-covariance, rAC, was positive
( gray bars; averaged across all individual cells), indicating that
responses of single cells were correlated on a time scale longer
than the single trial. For coherence series data, the mean long-
term auto-covariance was 0.14 (SD 0.12; n 5 86), only 4 of 86 cells
had negative values, and the average TAC peak width at half-
height was 48 trials (SD 51), corresponding to no less than 4 min.
Second, however, the long-term cross-correlation, rLT, was on
average no different from zero (t test; p 5 0.39; coherence series
data). For the coherence series data, the distribution of rLT was
roughly Gaussian with mean 0.01 (SD 0.07; n 5 48). Third, rST

accounted for roughly the entire magnitude of rnoise for pairs in
which both neurons were directional and had DPD , 90. For other

pairs, rST was not on average significantly different from zero,
consistent with Figure 2C.

These results have the potentially counterintuitive implication
that two neurons have responses that are correlated with their
own responses on later trials and with each other’s responses on
simultaneous trials but not with each other’s responses on later
trials. In other words, long-term auto-correlation and short-term
cross-correlation exist in the absence of long-term cross-
correlation. This situation could arise if the sources of variance
that caused the long-term auto-correlation in the responses of the
individual neurons were independent from each other and from
the source of variance that caused the short-term cross-
correlation. That long- and short-term correlation arise from

Figure 3. The trial cross-covariance (TCC) can reveal the presence or absence of long-term correlation. A, The z-score normalized spike counts for all
320 trials are plotted in the order they occurred for two simultaneously recorded neurons (emu080). Spikes were counted during the 2 sec stimulus, but
trials occurred on average 5 sec apart, so 100 trials represent ;8.3 min. The dots show data points for preferred direction, 100% coherence stimuli to
demonstrate how trials from one stimulus condition are interleaved among all others. B, Trial auto-covariance (TAC) plots are shown for the sequences
from A, one on the lef t and one on the right side of lag 0 (the TAC is necessarily symmetrical about 0). Both have peaks of correlation around zero,
indicating that the responsiveness of these neurons was not independent from trial to trial. The value at zero, 1 by definition, was omitted. The smooth
line was used to estimate the value that the plot approached near the origin (arrows), referred to as rAC or the long-term auto-correlation. C, The TCC
is the cross-correlation of the sequences in A. TCC(0) (circled point) is the aggregate rSC for the pair. For this pair, the value at TCC(0), 0.1, is associated
with a peak that extends over lags of 670 trials. The smooth line shows the TCC, with center value replaced (see Results), convolved with a Gaussian
(SD 4 trials) and was used to estimate the long-term cross-correlation, rLT. D, Traces similar to those in A, but for a different pair of neurons (emu090).
Data are shown for the first 400 of 1320 trials. E, TACs for the traces in D. Both neurons show positive correlation around zero. F, The isolated peak
at TCC(0) (circled point) for this pair indicates that correlation was predominantly short term, i.e., not associated with drifts in the responsiveness of the
cells at time scales longer than the trial duration.
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independent mechanisms would not be surprising, because they
operate on time scales separated by four orders of magnitude, i.e.,
several minutes (shown above) versus 10s of milliseconds (shown
in the next section).

In summary, slow drifts in the response strength of individual
neurons were present (rAC . 0) but on average uncorrelated
(rLT ' 0) between pairs of neurons in MT, and therefore did not
contribute significantly to the magnitude of interneuronal corre-
lation across our database. Thus, rnoise was accounted for by the
short-term component of correlation alone and must arise on a
time scale no longer than the behavioral trial.

Spike train auto- and cross-correlograms
The positive value of rnoise (;0.21) associated with the cluster of
points on the right side of Figure 2C did not result from long-term
correlation, so we now test for its relationship to faster sources of
correlation, the presence of which is revealed by spike train auto-
and cross-correlograms. Examining ACGs as well as CCGs is
important because ACGs bear on the interpretation of a CCG
and because both are required for a mathematical result that we
will use below to derive a new metric for rnoise. In this section, we
establish, consistent with a body of cross-correlation studies, that
correlation is largely limited in time to a small, central region of
the ACGs and CCG and show that for our MT pairs there is a
strong empirical relationship between that central region of the
CCG and the traditional measure of spike count correlation, rSC.

We computed the average spike train ACG for each individual
neuron and the average CCG for each pair of neurons as de-
scribed in Materials and Methods. Plots for one pair of neurons
are shown on the lef t in Figure 5, and database summaries appear
on the right. On the lef t, the ACGs (A) and CCG (B) are plotted
in excess of the ensemble shift-predictor (see Materials and Meth-
ods) and are encased in lines showing 63 SD of the noise
(estimated from the tails of the plots for lags from 400 to 800
msec). The ACG for neuron 1 (Fig. 5A, top trace, shifted vertically
for visibility) has a dip near the origin, indicating that the likeli-
hood of a spike occurring within 5 msec of another is lower than
expected if spikes were fired independently of each other. This
period of anti-correlation in the ACG is followed by a period of
positive correlation from 7 until ;80 msec after a spike. Periods
of both correlation and anti-correlation appeared in the ACG for
neuron 2 as well (Fig. 5A, bottom trace). In addition, neuron 2
tended to fire pairs, or bursts, of spikes; however, this is not
evident in the ACG plotted here because the positive values, at
lags 2 and 3 msec, lay above the upper vertical limit of the plot and
are not shown. The average CCG (Fig. 5B) for this pair of
neurons had a central, somewhat asymmetric peak that did not
extend beyond 100 msec from the origin.

Across our database, ACG shapes were diverse and varied in
the presence and size of (1) a narrow central peak associated with
short bursts, (2) a dip associated with a 1–3 msec absolute refrac-
tory period that was sometimes extended by a longer relative
refractory or integration period (Abeles, 1982), and (3) a broader
peak of positive correlation. The CCGs had mainly single, central
peaks that varied in size, shape, and symmetry. Peak shapes were
consistent with common synaptic input more so than with serial
coupling (Moore et al., 1970). The shapes of our ACGs and CCGs
were not consistent with the oscillatory Gabor functions that
Kreiter and Singer (1996) used to describe CCGs in MT. In
particular, we did not observe rounded central peaks flanked by
similar but damped side-lobes.

We did not attempt a systematic classification of the subtleties
of correlogram shapes, which would have required more data
than we were able to collect for many of the pairs, but character-
ized only the extent in time of the correlation. This was accom-
plished for both correlation and anti-correlation by computing at

Figure 4. Noise correlation can be divided into short-term and long-term
components. A, In the TCC ( points connected by line segments, for pair
emu008), the total noise correlation, rSC, is the value at zero lag (circled
point). The long-term correlation, rLT, is the value of the smooth line
(computed according to text, and Fig. 3C legend) at lag zero. B, For the
same data as in A, the TCChp was computed after the z-scored spike
counts were high-pass filtered. This eliminated the long-term correlation
visible in A. The value at zero lag is taken to be the short-term correlation,
rST. C, Database averages of correlation measures for coherence series data.
Gray bar shows long-term auto-correlation, rAC, averaged across all indi-
vidual neurons (n 5 86). Long- and short-term cross-correlation, rLT and
rST, are shown for directional pairs with DPD , 90 (black bars; n 5 29) and
other pairs (white bars; n 5 19). Error bars show one SEM. D, The same
measurements shown in C are shown here for direction tuning data from a
larger set of pairs (n 5 196 gray bars; n 5 57 black bars; n 5 47 white bars).
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each millisecond time lag the fraction of cells that had correlation
.3 SDs above the ensemble shift-predictor and the fraction that
had anti-correlation ,3 SDs below the shift-predictor. Correlo-
grams were smoothed with a Gaussian of SD 2 msec before the
test was applied to avoid counting isolated points that exceeded
the criterion (as observed frequently in Fig. 5A,B). The results for
the ACGs (Fig. 5C) revealed that significant response correlation
for individual neurons was confined almost entirely to time lags
,100 msec, was most prevalent around 30 msec, and decreased at
shorter times because of the presence of anti-correlation associ-
ated with “non-burst” firing patterns or inter-burst intervals [de-
scribed by Bair et al. (1994) for a comparable MT data set]. The
extent of correlation in the CCGs is summarized in Figure 5D
and, similar to that in the ACGs, was almost entirely confined to
within 100 msec of the origin.

Two points deserve emphasis regarding these results. First, our
analysis does not preclude weaker, yet significant, correlation that
extends beyond 100 msec; it simply indicates that strong correla-
tion, i.e., that which caused 3 SD differences between the corre-
lograms and ensemble shift-predictors, was common at time
scales on the order of 10s of milliseconds but was rare beyond 100
msec. Weaker, long-term sources of correlation certainly exist in
MT but are not likely to contribute substantially to rnoise. Second,
the time scale of correlation in our ACGs and CCGs is intrinsic
to the visual system and does not result from temporal correlation
in our stimulus because the signal strength (amount of preferred
motion) in our dynamic dot stimulus was uncorrelated in time. In
particular, the number of signal dots in any epoch (or in one video
frame) was uncorrelated with that in any other epoch. The time
scale of the correlation observed in Figure 5, C and D, matches

both the integration times for visual neurons upstream from MT
(Hawken et al., 1996) and the temporal limits of motion percep-
tion for dynamic dot stimuli (Morgan and Ward, 1980). When
analysis was restricted to zero coherence stimuli (which were
effectively white noise to beyond 1 kHz), we found the same time
scale of correlation across our database; therefore, the 45 msec
time between signal dots in our stimulus was not responsible for
the correlation observed here.

Having determined the typical time scale of correlation in our
data, we may now apply a simple test to assess whether rnoise

estimated in the traditional manner from the spike count for the
entire trial is related to the central peak in the CCG. In Figure 6,
the integral of CCG(t) minus the ensemble shift-predictor (for
t 5 232 to 32 msec) is plotted against rST for our database
(coherence series data). There is a clear relationship between
these two measures of correlation (overall, r 5 0.76, p , 1026,
n 5 48; for pairs with DPD , 90°, r 5 0.71, p 5 0.00001, n 5 29,
filled circles; for other pairs, r 5 0.66, p 5 0.002, n 5 19, open
circles). This may seem striking because rST was derived from
spike counts for the entire trial without information regarding the
temporal structure of the spike trains, whereas the CCG area is
based on the interrelationship of spikes occurring within 32 msec
of each other. The significant positive correlation between the
two metrics holds for limits of integration down to 62 msec (r 5
0.48) but does not grow much in the range from 632 to 6128
msec (e.g., r 5 0.80 at both 664 and 6128 msec). The data
indicate that pairs of neurons with high spike count correlation
also tend to have a substantial peak around the origin in their
CCGs. This relationship is not given a priori (van Kan et al., 1985)
and was not found in other studies of visual cortex (Gawne and

Figure 5. The time scale of spike train
auto- and cross-correlation. A, ACG(t)
is plotted for two simultaneously re-
corded neurons (with ensemble shift-
predictors subtracted). The thick line is
a smoothed (Gaussian convolution, SD
2 msec) version of the raw ACG trace
(thin line). The three horizontal lines
show zero and 63 SD of the noise (see
Results). The top plot, ACG 1, has been
shifted upward for clarity. B, CCG(t) is
plotted for the pair with ACGs that are
shown in A. Again, a smoothed trace is
superimposed, and horizontal lines indi-
cate zero and 63 SD of the noise. C,
The fraction of neurons for which the
ACGs were significantly (3 SDs) below
(thin line) and above (thick line) the
ensemble shift-predictor is plotted as a
function of time lag (logarithmic axes).
D, The fraction of pairs for which the
CCG was significantly above (thick
lines) and below (thin lines) the ensem-
ble shift-predictor is plotted versus time
lag. CCGs are two-sided, and results for
negative time lags have been reflected
onto positive time lags (yielding two
traces at each thickness) for ease of
comparison with the plot in C. Signifi-
cant correlation occurs much more fre-
quently for time intervals of several to
tens of milliseconds than it does at or
above 100 msec.
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Richmond, 1993; Gawne et al., 1996), although it was hinted at by
Bach and Krüger (1986).

Assessing rnoise f rom the cross-correlogram
We will now make a more rigorous connection between rnoise and
the area under the CCG by defining a metric based on the CCG
that estimates exactly the value of rnoise under the condition that
correlation has a limited time scale. Our approach derives from
the fact that the equation for rSC (the well known Pearson’s
correlation coefficient) can be rewritten in a form that is based
solely on the areas under the spike train CCG and ACGs as
follows (from Appendix A, Eq. 26):

rSC 5
Area under CCG

ÎArea under ACG1 3 Area under ACG2
, (9)

where the areas are integrated across all lag times in the corre-
lograms. However, if correlation is limited to short time lags, as
suggested by results from the previous section, only those regions
near the origin will contribute to non-zero areas in Equation 9.
The flanks of the CCG and ACGs, which approach the shift-
predictors, will contribute on average nothing but noise. We
therefore propose the use of a metric, rCCG(t) (defined in Ap-
pendix A, Eq. 27), which estimates rnoise by integrating only a
limited central region (from 2t to t msec) of the CCG and ACGs.
This metric eliminates the noise that would be contributed by the
flanks of the correlograms by simply not including the flanks in

the integration. In essence, it assumes that the correlograms
beyond 6t are on average equal to the shift-predictors.

Before applying the rCCG(t) metric to our MT data, we tested
it on pairs of simulated spike trains that had a central, Gaussian-
shaped CCG peak (SD 4 msec) and an rnoise value of exactly 0.2.
For the simulated data, all of the area in the CCG (and ACGs)
was concentrated near the center, and the expected value of the
flanks (when the shift-predictor was subtracted) was known to be
zero. Figure 7A shows rCCG(t) plotted for 10 sets of simulated
spike trains (details of the simulation are given in the Figure
legend). As t increased, the average value of rCCG increased until
it reflected the true value, 0.2. A plateau occurred when t ex-
ceeded the time scale of the correlation, and further increases in
t caused a loss of precision as noise from the ACG and CCG
flanks was integrated. When t reached the full trial duration
(here 1700 msec), rCCG became equivalent to rSC, according to
Equation 28. This simulation shows vividly how noise from the
tails of the ACGs and CCG corrupts rSC, and it demonstrates that
a more accurate estimate of rnoise can be obtained with rCCG(t)
when t is shorter than the trial duration (but longer than the time
scale of correlation).

We plotted rCCG(t) for our neuronal pairs and found a similar
pattern of results. Curves for one pair are shown in Figure 7B for
11 coherence levels (from 100% preferred to 25.6% null direction
motion, which satisfied the minimum data requirements stated in
Materials and Methods). The curves increased together to r '
0.16 as t approached 30–40 msec but then diverged as t grew
larger. This was consistent with the CCGs (data not shown),
which had central peaks that fell to the level of the shift-predictor
at ;30–40 msec from the origin. The direction of divergence of
curves such as those in Figure 7B typically did not depend on the
stimulus condition (a systematic analysis is given in the next
section), so we averaged across conditions to get an rCCG(t) curve
for each pair, and we averaged across pairs to get one database
curve. The database curve for pairs having DPD , 90° (Fig. 7C,
filled circles) approached an asymptote of ;0.21 for values of t
above 32–64 msec. The value 0.21 was the same as that for
short-term correlation for this database (Fig. 4C, right-hand bar),
and the timing of the approach to the asymptote was consistent
with the time scale of correlation observed in the ACGs and
CCGs (Fig. 5C,D). Figure 7C also shows the SD for the rCCG

estimate (open circles, averaged across the same set of curves used
to compute the mean). The SD grew with increasing t even after
the mean of rCCG(t) had leveled off. This shows the inefficiency of
a long integration time such as that associated with the rSC metric
(i.e., the entire trial duration). Finally, a direct comparison of rSC

with rCCG(32) for individual pairs is provided in Figure 7D. The
SD was always smaller for rCCG (thick lines) than for rSC (thin
lines). Two points are labeled, one for the pair from B (emu005)
and another (emu080) from Figure 3C, that had a large long-term
component of rSC. For the latter, rCCG(32) is much less than rSC

because rCCG(32) discounts long-term correlation. It does so by
integrating area over only 1.9% (32 msec/1700 msec) of the CCG
and therefore captures only 1.9% of the excess area that a source
of long-term correlation spreads evenly across a CCG.

Clearly, rCCG provided a more repeatable (less noisy) estimate
of interneuronal correlation (for t , T) than did rSC, but we
wanted to verify that it also maintained the relationships that rSC

had with the measures for similarity of neuronal tuning men-
tioned above, namely, rsignal and DPD. Compared with rSC, rCCG(t)
was more positively correlated with rsignal (Pearson’s r 5 0.59,
rather than 0.53, for both t 5 32 and 64 msec; n 5 46) and was

Figure 6. The area under the cross-correlogram peak is correlated with
interneuronal correlation, rnoise. The area under CCG(t) from t 5 232 to
32 msec and in excess of the ensemble shift-predictor is plotted against
rST, an estimator of rnoise. The correlation coefficient for all points is 0.76
(p , 10 26; n 5 48; coherence series data). A significant relationship also
holds for the subset of 29 pairs for which DPD , 90° (F) and for the
remaining 19 pairs (E; see Results for statistics). The ordinate and
abscissa have similar values here, but their units are not the same. A
metric that estimates rnoise by appropriate normalization of the CCG peak
area is demonstrated in Figure 7.
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more negatively correlated with the logarithm of DPD (Pearson’s
r 5 20.47, rather than 20.36, for both t 5 32 and 64 msec; n 5
34, where the logarithm was taken to correct the skew of the
distribution in Fig. 2B).

In summary, it appears that rCCG(t) accurately captures the
amount of interneuronal correlation for our pairs. That it does so
for t as small as 32 msec shows that most of the correlation
observed at the time scale of the behavioral epoch can be ac-
counted for by CCG peaks at a time scale nearly two orders of
magnitude shorter. Therefore, mechanisms underlying narrow,
central CCG peaks affect response properties relevant to both
temporal and rate coding.

Dependence of correlation on stimulus and behavior
Assessing the dependence of correlation on stimulus parameters
is necessary to justify averaging rnoise values and CCGs across
stimulus conditions as we have done. In addition, this assessment
is important with respect to both stimulus and behavioral param-
eters because of the potential link between correlation, or syn-
chrony, and the perception of the animal as reflected by its
behavior. Here we examine how correlation changes with the
firing rates of the neurons, the direction and coherence of stim-
ulus motion, and the presence of the stimulus, and we test
whether synchronous activity exerts extra influence on the mon-

key’s decision and whether it varies from passive fixation to active
discrimination.

Correlation versus firing rate, direction, and motion coherence
Because firing rate varied as our stimulus parameters changed, we
first established that our correlation metrics did not show a
substantial dependence on firing rate before testing for more
interesting relationships between interneuronal correlation and
other variables. Figure 8, A and C, shows scatter plots of the area
under the CCG peak (from 232 to 32 msec) and rCCG(32) versus
geometric mean spike rate for each coherence level for the 29
directional pairs with DPD , 90°. Firing rate was not significantly
correlated with CCG area and showed only a weak relationship
with rCCG (see Figure legend for details). A pair-by-pair analysis
also revealed no overall trend, although several individual pairs
showed significant relationships (see Fig. 8 legend). Similar re-
sults held for data from the direction tuning experiments, for
integration times ranging from several to hundreds of millisec-
onds, and when all pairs were included in the analysis.

The same two correlation metrics were largely constant when
plotted against stimulus direction and coherence, except at 100%
coherence where both measures were lower (B and D show CCG
area and rCCG, respectively, Fig. 8). The numbers of individual
pairs for which these metrics were significantly correlated with

Figure 7. Computing rCCG(t) for simu-
lated and neuronal data. A, rCCG(t) is
plotted against integration time t for 10
blocks of simulated pairs of spike trains
in which the time scale and strength of
correlation were known. (For each trial,
2 simulated spike trains were generated
by selecting spike times independently
and at random with probability 0.2 per
spike from a Poisson spike train having
mean rate 200 spikes per second. The
rate is arbitrary and does not affect the
results. The spike times in one of the
resulting trains were jittered by adding a
Gaussian random variable with mean
zero and SD 4 msec. The resulting pairs
of spike trains have rnoise 5 0.2 and a
time scale of correlation matching the
Gaussian jitter.) For the simulated data,
rCCG(t) approached the true value of
rnoise once t exceeded the time scale of
correlation but became corrupted by
noise as t increased. Arrows indicate
where rCCG(32) and rSC are read out.
Here, rCCG(32) 5 0.200 SD 0.009,
whereas rSC 5 0.197 SD 0.037 (n 5 20).
The ratio of SDs was 1:4. B, Results
from an analysis similar to A but for 11
coherence levels for neuronal data (pair
emu005). As in A, the curves rose from
zero as t increased but became highly
corrupted by noise as t exceeded 100
msec. For this pair, the width at one-
half height of the CCG (data not shown)
was 9 msec. C, The mean value of
rCCG(t) across 29 pairs (averaged across
all coherence levels for each pair with
DPD , 90°) is plotted as a function of t
in 1 msec steps ( filled circles mark oc-
tave steps). Vertical bar indicates 61 SE

at t 5 64 msec. The SD of rCCG(t) is plotted at octave steps only (open circles connected by straight lines). The value of rCCG reached an asymptote of
;0.21 for t around 30–100 msec, but the SD continued to increase with t. D, rCCG(32) (thick lines, filled circles) and rSC (thin lines, open circles) for 48
pairs of neurons (coherence series data). Arrows indicate points corresponding to example pairs from B (emu005) and from Figure 3C (emu080). Points
are sorted by increasing value of rCCG. Vertical lines show 61 SD (computed across coherence levels) and were always larger for rSC.
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coherence were almost identical to those for spike rate. The drop
in correlation strength at 100% coherence can be related to the
nature of MT responses to coherent and incoherent motion. MT
neurons typically show clear stimulus-locked modulation for stim-
uli of ,100% coherence, but at 100% coherence there is little or
no such modulation (Bair and Koch, 1996). How this modulation
impacts our measures of correlation is the subject of the last
section of Results. Whether the reduction in rnoise at 100%
coherence is also related to a previous report that correlation is
almost completely abolished during high contrast motion in MT
(Cardoso de Oliveira et al., 1997) is discussed in the next section.

The consistency of rnoise in the face of large changes in firing
rate indicates that the underlying mechanism did not act addi-
tively to alter neuronal firing rates, for if it did, rnoise would be
larger at lower firing rates. In the absence of substantial overall
relationships between our correlation metrics and the stimulus
direction and coherence or the firing rate, we chose to average
these metrics across all stimulus conditions. The observed de-
crease at 100% coherence had little influence on our statistics
because ,10% of our coherence series data was collected at c 5
100%.

Correlation during spontaneous and stimulus-driven activity
We tested the dependence of correlation on the presence of the
stimulus by computing rnoise for a 330 msec epoch of spontaneous
activity and for an equal duration epoch of stimulus-driven ac-
tivity. The spontaneous epoch began when the monkey acquired
fixation and ended 30 msec after stimulus onset, precluding the
arrival of stimulus-driven activity in MT (Raiguel et al., 1999).
The driven epoch began 30 msec after stimulus onset. We limited
analysis to pairs that had at least four stimulus conditions each
having at least 10 trials with at least one spike per trial per cell
during the 330 msec period. The value of rCCG(32) for the
spontaneous epoch was significantly correlated with that for the

driven epoch (r 5 0.63; p 5 0.00001; n 5 40), and the average
difference between the values for spontaneous and driven activ-
ity, 0.018 (SD 0.14), was not significantly different from zero.
Limiting the analysis to directional pairs with DPD , 90° gave
nearly identical results. Similar results were found when (1) rST,
computed from the TCC, was substituted for rCCG(32), or (2) the
driven epoch was defined to be the entire stimulus epoch, rather
than just the first 330 msec. We conclude that noise correlation
during spontaneous activity is similar to and predictive of the
noise correlation during activity evoked by our random dot
stimuli.

This result stands in striking contrast to the report of Cardoso
de Oliveira et al. (1997) that interneuronal correlation in MT is
present during spontaneous activity but is practically abolished
during visual stimulation. To determine whether our correlation
values were more similar to their values for spontaneous or for
driven activity, we normalized our CCGs according to their
methods (after dividing by the geometric mean spike rate, we
used a three-point boxcar function to smooth the CCGs and then
found the peak within 6100 msec of zero) and computed peak
height, position, and width statistics like those presented in their
Figure 5. All three measures from our data were well matched to
their results for spontaneous activity, indicating that our results
differ only during visual stimulation. If we assume that high-
contrast, coherently moving stimuli reduce correlation strength
between responses of nearby MT neurons, then it remains to be
determined why our strongest stimulus (100% coherence motion)
caused a decrease in correlation strength that was small compared
with the decrease caused by the square-wave grating of Cardoso
de Oliveira et al. (1997).

Does correlation change with behavior?
Investigators have hypothesized that synchronous firing among
cortical neurons underlies various coding or processing functions

Figure 8. CCG peak area and rnoise plotted as a
function of geometric mean spike rate (GMSR) and
motion coherence. A, The area of the CCG (minus
the ensemble shift-predictor) integrated from t 5
232 to 32 msec is plotted as a function of GMSR for
pairs of directional neurons with DPD , 90°. Each
point represents data for one coherence level from 1
of 29 qualified pairs. Pearson’s correlation coeffi-
cient for this scatter was not significantly different
from zero (r 5 20.02; p 5 0.65; n 5 329). We chose
our CCG normalization (Eq. 6) to realize this em-
pirical observation. For individual pairs, 3 of 15
negative relationships and 6 of 14 positive relation-
ships were significant (p , 0.05). B, Mean CCG area
(632 msec) averaged over the same 29 pairs as in A
is plotted for preferred (thick line) and null (thin
line) motion as a function of coherence (there are
typically 24 –29 pairs per point because some pairs
were not tested at all coherence levels). Vertical bars
show 61 SEM. Values remained relatively constant
except for a 43% reduction at 100% coherence
compared with the average across all lower coher-
ence stimuli (preferred and null directions com-
bined). C, A measure of rnoise, here rCCG(32), is
plotted against GMSR for the same set of pairs.
There is a small overall positive correlation with
mean spike rate (r 5 0.14; p 5 0.01; n 5 329). For
individual pairs, 1 of 12 negative and 6 of 17 positive
relationships were significant. D, Like CCG area,
the rnoise measure varies little with motion direction
and coherence except at 100% coherence where it dropped by 32% relative to the average across all lower coherence levels (preferred and null
directions combined). As in B, typically 24 –29 pairs contributed data to each point.

1688 J. Neurosci., March 1, 2001, 21(5):1676–1697 Bair et al. • Correlated Neuronal Firing in Area MT



(for review, see Singer and Gray, 1995; Roelfsema, 1998). Our
data provide the opportunity to determine whether synchrony
among adjacent MT neurons is correlated with perceptual choice
or behavioral state.

The relation of synchrony to perceptual choice is best assessed
at low motion coherence where the monkey correctly identifies
the direction of motion on some trials but makes mistakes on
others. The psychometric function in Figure 9A (thick line, filled
circles) plots the monkey’s performance on trials for which the
stimulus was optimized for the pair of neurons the tuning curves
of which are shown in Figure 1. We asked whether synchrony was
stronger on trials in which the animal chose the direction pre-
ferred by the pair of neurons, as might be expected if synchro-
nously active neurons exert stronger effects on downstream deci-
sion circuitry. To test this, we divided the trials for each stimulus
condition (i.e., for a particular coherence level and direction) into
two groups, one in which the animal chose the preferred direction
(for the pair) and one in which the animal chose the null direc-
tion. Note that one group corresponds to correct decisions,
whereas the other corresponds to incorrect decisions (where the
correspondence depends on whether the direction of motion was
null or preferred for the stimulus condition) except at zero
coherence where there was no “correct” response.

We considered only stimulus conditions that had at least 10
trials with preferred responses and 10 trials with null responses;
therefore, 51.2 and 100% coherence conditions were rarely in-
cluded because the monkey rarely made 10 mistakes for such
salient stimuli. This limited the number of pairs for this analysis
from 46 to 35. Figure 9B shows CCGs for preferred and null
decision trials for the same pair of neurons illustrated in Figures
1 and 9A. The CCGs appear virtually identical, which was typical
for our data set. Figure 9, C and D, depicts quantitative measure-
ments of the area under the CCG from 232 to 132 msec (C) and
from 22 to 12 msec (D) for preferred and null decision trials for
137 stimulus conditions from the 35 pairs of neurons. In both
panels, the points cluster around the unity diagonals, showing that
synchronous firing did not differ between the two decision states
(paired t test; p 5 0.75 for C, p 5 0.94 for D). This result also held
for the rCCG metric, for all integration times tested (from 62 to
6128 msec), and when only directional pairs were tested.

We also analyzed synchrony simply as a function of motion
coherence, regardless of perceptual choice. At low coherence, the
dot patterns appear to be a white noise stimulus and elicit no
global motion percept. As coherence increases, however, observ-
ers perceive the entire stimulus to drift in the specified direction
as though the disparate motion signals provided by individual dot
pairs are bound into a perceptually coherent whole. Theories of
perceptual binding that postulate a unique role for synchronous
neural activity might predict that synchrony should be stronger
for coherent (c 5 100%) than for incoherent dot patterns (c 5
0%). However, we have already seen that the opposite is true (Fig.
8B,D).

Finally, we compared CCGs obtained during passive fixation
(direction tuning experiments) with those obtained during active
discrimination to determine whether the overall behavioral state
of the animal was correlated with neural synchrony. In the subset
of experiments in which both blocks of data were obtained, the
area under the CCG did not differ systematically between the two
states (paired t test; t 5 20.06; p 5 0.95; n 5 46), and the
measurements were highly correlated between the two states (r 5
0.90; p , 1026). In short, we found no evidence that synchronous

Figure 9. Psychophysical and neuronal performance. A, The monkey’s
performance ( filled circles) and the neuronal performance for neuron 1
(3’s) and neuron 2 (squares) are plotted as a function of motion coher-
ence (logarithmic axis) for the same pair of neurons as in Figure 1. The
lines show fits to Equation 2. The thick line is for the monkey’s psycho-
physical responses. B, An example of average CCGs for preferred (thick
lines) and null (thin lines) direction decisions. CCGs for coherence levels
of 66.4, 63.2, and 0% were averaged together; other coherence levels did
not have a sufficient number of choices in each direction. C, The area
under the CCG between 232 and 32 msec and in excess of the shift-
predictor for null decisions is plotted versus that for preferred decisions.
Each point (n 5 137) shows data for a particular coherence level and
direction, so there are multiple points per neuronal pair (n 5 35). D, For
the same data set as in C, the comparison of CCG area is made for a
narrower integration region, from 22 to 2 msec. Results in B–D reflect a
lack of correlation between perceived direction of motion and the mag-
nitude of synchronous activity in the population of neurons that prefer the
perceived direction.
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firing varied systematically as a function of perceptual decision or
behavioral state.

Do sensitive or informative neurons cluster?
For each experiment in which we obtained psychophysical data,
we used analytic methods based on signal detection theory [see
Materials and Methods, or see Britten et al. (1992) for detailed
methods] to compare the directional sensitivity of each neuron
with the monkey’s psychophysical sensitivity. Figure 9A illustrates
the outcome of this analysis for the data depicted earlier in Figure
1, C and D. The filled circles represent the psychophysical perfor-
mance of the monkey on the direction discrimination task, which
increased from nearly chance at low coherence levels to perfec-
tion at the three highest levels. Psychophysical threshold, defined
as the motion coherence that supported 82% correct perfor-
mance, was 4.3% coherence. The 3’s and squares indicate the
performance of the two MT neurons measured on the same trials
represented in the psychometric curve. Neuron 2 was as sensitive
to the directional signals as was the monkey psychophysically,
yielding a neurometric threshold of 4.7% coherence. Close cor-
respondence between neuronal and psychophysical thresholds is
common in MT (Britten et al., 1992). In contrast, neuron 1 was
considerably less sensitive to motion signals in the displays, yield-
ing a threshold of 13.8% coherence (sensitivity 5 1/threshold).
Across 72 directional neurons studied in 41 discrimination exper-
iments, the geometric mean ratio of neuronal to psychophysical
threshold was 1.72 (range, 0.27–11.5), a value higher than those
previously observed in this laboratory (Newsome et al., 1989;
Britten et al., 1992; Celebrini and Newsome, 1995). The discrep-
ancy arises because the inclusion criterion for direction selectivity
was less stern in the current study to maximize the number of
pairs. Interestingly, neither neuronal thresholds nor choice prob-
abilities [defined in Britten et al. (1996)] were significantly corre-
lated between adjacent MT neurons in our sample. Thus we find
no evidence for clustering of neurons that are particularly sensi-
tive to the stimulus or that have particularly close relationships to
behavior.

Controls for stimulus variance–replicate stimuli
Our estimates of interneuronal correlation have been based on
responses to ensembles of stochastic stimuli in which the random
detail of the dot patterns differed from repeat to repeat within a
particular stimulus category. In principle, such sets of nonidenti-
cal stimuli could inflate rnoise estimates and increase CCG peak
sizes if the responses of the neurons were influenced by the
random variation across stimuli. For example, if 15 of 30 stimuli
that were generated at 6.4% coherence had by chance slightly
more motion in the preferred direction than the other 15 stimuli,
an ideal pair of neurons with no common noise source but having
identical direction preferences would tend to fire on average more
for the former than for the latter 15 stimuli. This would yield an
erroneous positive value of rnoise, which should otherwise be zero.
Below we describe direct experimental controls as well as simu-
lations that allow us to estimate the magnitude of this effect in our
data.

In our experiments, random variation from stimulus to stimulus
was necessary to prevent the monkeys from associating particular
spatial patterns with a reward. However, for four pairs of neurons
we interleaved experiments using replicate stimuli in which the
dot patterns for a particular stimulus condition were identical (see
Materials and Methods). Estimates of rnoise for the four controls
using both the rSC and rCCG(32) metrics are presented in Figure

10. The values of rSC (A) offered no evidence that interneuronal
correlation was greater for stochastic stimuli (white bars) than for
replicate stimuli (black bars), but the lower-variance estimates
provided by rCCG(32) (B) painted a clearer picture. For pairs
emu034 and emu035, rCCG(32) was higher for stochastic stimuli
than for replicate stimuli (p 5 0.08 and p 5 0.00001 respectively,
t tests). For the other two control pairs, the difference was
negligible.

An examination of the PSTHs, CCGs, and shift-predictors for
emu035 (the pair that had a significant decline in rCCG for
replicate stimuli) reveals how stimulus-locked modulation can
inflate rnoise. For replicate stimuli, the stimulus-locked modula-
tion of firing rate is captured in the PSTHs (Fig. 11A,B, thin lines,
neurons 1 and 2, respectively), but when the stimulus varies from
one repeat to the next (ensemble stimuli), the modulation is
washed out (A, B, thick lines). The difference in the PSTHs carries
over into the CCG shift-predictors because shift-predictors are
closely related to the cross-correlation of the PSTHs [see Eq. 8 in
Materials and Methods, Eq. 15 in Appendix A, and Perkel et al.
(1967b)]. The ensemble shift-predictor is flat (Fig. 11C, thick line),
whereas the shift-predictor for replicate stimuli has a peak (line
with dots). The peak indicates that the stimulus-locked modula-
tion in neuron 1 and 2 PSTHs (A, B, thin lines) was correlated.
The difference in area between the CCG (C, thin line) and the two
shift-predictors accounts for the difference in rCCG plotted in
Figure 10B for this pair (emu035). In summary, an ensemble
shift-predictor fails to capture correlated stimulus-locked modu-
lation, so subtracting it from the raw CCG yields an overestimate
of the correlation if correlated stimulus-locked modulation
existed in the first place. Thus, when there is little stimulus-
locked modulation (as was the case for rt068 and rt072 in Fig.
10B) or when modulation is present but largely uncorrelated
(e.g., emu034), using an ensemble shift-predictor is acceptable.

Figure 10. A comparison of interneuronal correlation strength for sto-
chastic versus replicate stimuli. A, rSC is plotted for four pairs tested with
both ensemble (white bars) and replicate (black bars) stimuli. No signifi-
cant change was observed for the first three pairs. For the fourth pair, the
responses to replicate stimuli had a large long-term component of corre-
lation because of drifts in firing rate during the experiment (rLT 5 0.27,
rST 5 0.02). Error bars show SE. B, rCCG(32) is shown for the same four
pairs. In the first three cases, rCCG(32) was less for replicate stimuli. The
difference was significant for emu035 (see Results). Lower values for
replicate stimuli (black bars) were consistent with the reduction in the
CCG peak that occurred when the true shift-predictor (Fig. 11C) was
subtracted. Cases emu034 and emu035 were based on coherence series
data; rt068 and rt072 were based on direction tuning data (c 5 100%). For
rt072, the low rnoise value was consistent with DPD . 90°.
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But for emu035, it caused an overestimate of the CCG peak
area and of rnoise.

One method for estimating the inflation of rnoise caused by
stochastic stimuli across our database is to compare results for 0
and 100% coherence stimuli. Such a comparison is useful because
there is little or no stimulus-locked response modulation for c 5

100% stimuli, whereas modulation is strong at c 5 0% (Bair and
Koch, 1996). For the 20 pairs that we tested at both c 5 0 and
100% and that consisted of two directional neurons with DPD ,
90°, rCCG was on average 0.20 (SD 0.13) at 0% coherence and 0.17
(SD 0.13) at 0%. This 15% decrease is consistent with our
hypothesis but was not statistically significant (paired t test; t 5
1.45; p 5 0.16). A similar, but unpaired, comparison can be made
from the plot of rCCG in Figure 8D, which shows a 27% reduction
from c 5 0 to c 5 100% (preferred direction only). Again, this
change was not statistically significant (t test; t 5 1.48; p 5 0.16).
A broader unpaired comparison between all data from discrim-
ination experiments (the vast majority of which was collected at
low coherence) and all data from direction tuning experiments
(where c 5 100%) for pairs with DPD , 90° showed only an 8%
decline in rCCG(32) for the direction tuning data set. These results
suggest that inflation of rnoise caused by stochastic stimuli is
modest across our database.

Finally, we used a simulation to estimate the inflation of rnoise

caused by the modulated drive resulting from stochastic stimuli.
The stimulus drive consisted of randomly occurring bursts of
stimulation that simulated those caused by the random occur-
rence of coherent dots in our motion stimulus. Parameters for the
strength and frequency of occurrence of the random bursts de-
termined the amount of trial-to-trial variability and thus the value
of rnoise. The details of the simulation and a solution for rnoise for
all parameter values are given in Appendix B. An example of the
drive provided by a simulated stimulus during a 1 sec epoch from
one trial is shown in Figure 12A. The trace represents the PSTH
for both neurons, which are defined to be identical. For a set of
trials governed by the same statistics that generated the trace in A
(see legend for parameters), the expected value of rnoise is 0.04.
For a simulation with stronger modulation (B), the expected value
of rnoise is higher, 0.24. Figure 12D plots the value of rnoise for a
wide range of parameter combinations and shows (with white
dots) the parameters used to generate traces for the examples just
described. A comparison of the PSTH for a simulated pair of
neurons (B) with the measured PSTHs (C) for the pair of neurons
from Figure 11 reveals a critical difference: the neuronal PSTHs
are not identical. This was true although this pair of neurons was
as closely matched in preferred direction and bandwidth of di-
rection tuning as any in our database (DPD 5 9°; rsignal 5 0.97).
Because nearby neurons have responses that differ in fine detail
(DeAngelis et al., 1999), our simulation provides an upper bound
on the strength of correlation induced by stochastic stimuli. Fur-
thermore, gauged by responses to replicate stimuli here and in a
previous study of MT (Bair and Koch, 1996), the strength of
modulation in Figure 12A appears typical or above average,
whereas that in B represents an upper limit to what has been
observed. Therefore, our simulations suggest that stochastic stim-
uli are not likely to inflate rnoise by more than ;0.04 units on
average.

In summary, stochastic stimuli probably inflate our estimates of
rnoise but cannot be responsible for more than a small fraction of
the correlation that we measured. Experimental controls, simu-
lations, and comparisons of incoherent to coherent stimuli sug-
gest that this inflation is likely to range from negligible to at most
20% of our average rnoise estimates.

Response variance caused by eye movements
One final potential source of error in our estimate of rnoise is the
movement of the monkey’s eyes. Small saccades executed during
fixation could cause correlated signals in neurons with similar

Figure 11. Comparing PSTHs and shift-predictors for responses to en-
semble and replicate stimuli for pair emu035. A, PSTHs (bin size 20 msec)
for neuron 1 averaged across 60 trials of different 0% coherence stimuli
(thick line, ensemble stimuli) and averaged across 30 trials of one partic-
ular 0% coherence stimulus (thin lines, replicate stimuli, broken into 2
groups of 15 trials to demonstrate that the modulation is reproducible). B,
Similar to A, but for the simultaneously recorded responses of neuron 2.
C, The raw CCG (without the shift-predictor subtracted; thin line) is
plotted for comparison against the ensemble shift-predictor (thick line)
and the actual shift-predictor ( points) computed from responses to rep-
licate stimuli. Plots show averages across 13 stimulus conditions ranging
from 0 to 51.2% coherence, preferred and null directions. The shift-
predictor accounts for roughly half of the area of the CCG peak. It is
worth noting that the raw CCG for ensemble stimuli does not differ on
average from that for replicate stimuli because both result from cross-
correlation of simultaneous responses to stimuli with the same underlying
statistics; therefore, only one trace marked CCG is shown here. Of course,
any particular CCG from repeats of one replicate stimulus will deviate
from the average ensemble CCG, but if raw CCGs from many different
replicate stimulus sets are averaged together, they will approach the raw
ensemble CCG. This is not true for shift-predictors, as seen here, because
they are based on responses from non-simultaneous trials.
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direction preferences. The potential strength of this effect has
been estimated from the influence of eye movements on single-
unit MT data (Bair and O’Keefe, 1998), and it was concluded that
fixational saccades are too brief and typically too infrequent to
create substantial correlation except when occurring on a back-
ground of very low firing rate. We found no indication that rnoise

was higher at lower firing rates (Fig. 8C) and believe that eye
movements did not substantially affect estimates of correlation
strength in this study.

DISCUSSION
Summary
We have investigated the time scale at which interneuronal cor-
relation arises for pairs of nearby cortical neurons and have
explored the relationship between interneuronal correlation and
behavioral and stimulus parameters in area MT.

We found that synchrony, revealed by CCG peaks, was closely
linked to correlated variability, rnoise, at the time scale of the trial.
In principle, these two phenomena need not be related (van Kan
et al., 1985), but several observations showed that they were

related for our MT pairs. First, the predominant time scale of
interneuronal correlation was on the order of 10–100 msec,
consistent with numerous cross-correlation studies throughout
the visual system of both cat and monkey (Mastronarde, 1983b;
Michalski et al., 1983; Ts’o et al., 1986; Krüger and Aiple, 1988;
Nelson et al., 1992; Cardoso de Oliveira et al., 1997) and in
auditory cortex (Dickson and Gerstein, 1974; Abeles, 1982; Egg-
ermont and Smith, 1996). Next, CCG peaks at this time scale
(10–100 msec) were strikingly predictive of rnoise for the behav-
ioral epoch. Although rnoise is mathematically related to the total
area under the CCG, such a result need not apply to the central
CCG region alone. For example, pairs could have had central
CCG peaks that were canceled by negative side-lobes, or they
could have had excess area distributed across the entire CCG.
Neither of these are consistent with our findings. Finally, slow
drifts in the gain of single neuronal responses occurred but were
not on average correlated between neurons and therefore had
little impact on rnoise. This result was somewhat surprising be-
cause it has been suggested that long-term cross-correlation is
common for neurons in primary visual cortex (Bach and Krüger,
1986). Also, because nearby cortical neurons share a large frac-
tion of their inputs, it is unclear how one cell can undergo gain
changes that are independent from those of its neighbors. How-
ever, if mechanical instability of the electrode in the tissue was the
source of the long-term gain changes, it is conceivable that nearby
neurons could be affected independently.

In the second part of this study, we found that synchronous
activation in pairs of neurons was not related to the monkey’s
decision on the direction discrimination task and that synchrony
was not stronger for perceptually more salient or unified stimuli.
Synchrony did not depend on whether the monkey was actively
discriminating or passively fixating during stimulus presentation.
Finally, the strength of synchrony was similar with and without
the stimulus, and it showed little systematic variation with firing
rate. We are unable to corroborate reports that synchrony in MT
changes with the unity of the stimulus (Kreiter and Singer, 1996;
Castelo-Branco et al., 2000) or is nearly abolished during visual
stimulation (Cardoso de Oliveira et al., 1997). Experiments using
more diverse stimulus configurations will have to resolve these
differences. Other studies have suggested that synchrony could
signal behavioral events in frontal cortex (Vaadia et al., 1995),
encode tone frequency in auditory cortex (deCharms and Mer-
zenich, 1996), indicate attentional selection in somatosensory
cortex (Steinmetz et al., 2000), or be involved in arousal, atten-
tion, or learning in sensorimotor cortex (Murthy and Fetz, 1996).
In contrast, our results portray synchrony and correlation as
relatively constant for a typical pair of MT neurons.

In the course of this analysis, we derived two metrics that are
useful for determining the strength and time scale of correlation.
The TCC provides a systematic way to extract short- and long-
term components of the traditional interneuronal correlation
coefficient, rSC, for trial-based data, whereas rCCG(t) offers an
estimate of rnoise with lower variance than rSC when the time scale
of correlation is shorter than the period during which spikes are
counted. We believe that these techniques are potentially useful
for comparing correlation across a wide range of data.

Other studies of rsignal, rnoise, and the CCG
Previous studies of visual cortex have examined rnoise, rsignal, and
spike train CCGs (Gawne and Richmond, 1993; Gawne et al.,
1996). They reported r 2 values, interpreted as percentage of
explained variance, so we squared our rnoise and rsignal values

Figure 12. Modeling the interneuronal correlation caused by stimulus
variation for a pair of identical neurons. A, Simulated time-varying
instantaneous mean firing rate for p 5 0.5, lmax 5 100 spikes/sec, lmin 5
5 spikes/sec (smoothed with Gaussian SD 4 msec to achieve a realistic
temporal resolution). The single line represents the PSTHs for two iden-
tical neurons in an ideal pair. See Appendix B for a description of the
model. B, Similar to A, but p 5 0.1, lmax 5 400 spikes/sec. C, PSTHs for
pair emu035 for comparison to the simulations. The PSTHs for neuron 1
(thin line) and neuron 2 (thick line) represent a segment of the same data
shown by the pairs of thin lines in Figure 11, A and B, but are smoothed
like the simulation traces in A and B here. D, For our model, rSC is plotted
as a function of all values of p and lmax (see Eq. 39). Points A and B mark
parameters used to generate traces in A and B. Black shading indicates low
correlation, white indicates high correlation. Values are given for the
contour lines.
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(before averaging) for comparison. Their value of rnoise
2 , ;5% for

both inferotemporal cortex (IT) and primary visual cortex (V1),
was similar to our values: 4.5% for all pairs and 6.4% for direc-
tional pairs with DPD , 90°. They found rsignal

2 to be 19% in IT
and V1 using static, spatial (Walsh) patterns, but this increased to
40% in V1 for conventional bar stimuli. The latter value was
comparable to our mean, 48%, for MT. In spite of some similarity
between our results, including the fact that over half of their
CCGs had significant peaks, they did not comment on the rela-
tionship between rnoise and the CCG and concluded that the rsignal

and the CCG were unrelated (they found rsignal to be lower for
pairs with CCG peaks in IT, but the result failed a significance
test). This outcome is different from that depicted in our Figure
2C, which shows a clear relationship between rsignal and rnoise,
where rnoise, being rCCG, is a strong reflection of the CCG peak.
It seems likely that a relationship like this must exist between
rsignal and the CCG in both IT and V1 because one consistent
feature of CCGs from diverse regions of cortex is that peaks are
more common between nearby neurons, particularly within dis-
tances associated with cortical columns (Fetz et al., 1991). Cor-
tical columns are clusters of neurons with similar preferences, and
such similarity is what rsignal, in principle, measures. Maybe dif-
ferences in the number of cells tested or in the method of
estimating the strength of CCG peaks or rsignal led to the differ-
ences between our results and those of Gawne and collaborators
(Gawne and Richmond, 1993; Gawne et al., 1996). For example,
the relationship between two-dimensional Walsh patterns and the
columnar structure in IT (Fujita et al., 1992; Tanaka, 1996) may
be somehow fundamentally different than that between moving
patterns and direction columns in MT (Albright et al., 1984).

Consistent with our findings, Bach and Krüger (1986) noted
that excess area in the CCG (630 msec) was slightly larger for
pairs of V1 neurons with strong common variability (i.e., rnoise).
Also, for both motor and parietal cortex, Lee et al. (1998) found
that rsignal and rnoise were higher for pairs with significant central
CCG peaks. All of these results are consistent with the simple
notion that sources of common input arrive onto nearby neurons
through one or more synapses and thereby create common noise,
central peaks in CCGs, and similar tuning curves in pairs of
neurons (Shadlen and Newsome, 1998).

Stimulus variance
A major goal of the study from which the present paired MT data
arose (Zohary et al., 1994) was to estimate accurately the strength
of noise correlation for nearby MT neurons but to do so when
those neurons were generating signals that would underlie a
psychophysical judgment made by the monkey. The latter con-
straint led to the use of stochastic stimuli to prevent the monkeys
from associating particular stimulus patterns with a reward. In
principle, however, stochastic stimuli can bias estimates of rnoise

upward, as demonstrated by our simulations. We attempted to
estimate this bias by comparing responses for replicate and en-
semble stimuli, by comparing c 5 0% with c 5 100% data, and by
simulating the effect of stochastic stimuli on neuronal responses.
The results suggested that the actual rnoise value for pairs with
similar direction tuning was somewhat less than the measured
value of 0.21, but probably not by .20%.

Implications for pooling
Interneuronal correlation places limits on the effectiveness of
signal pooling (Johnson et al., 1973; for review, see Parker and
Newsome, 1998). Our previous studies showed that the signal-to-

noise ratio (SNR) for a pooled signal was sensitive to even
modest values of rnoise (Zohary et al., 1994; Shadlen et al., 1996).
We can now use our estimates of the time scale of interneuronal
correlation to understand how rnoise and SNR change with the
length of the time window, T, in which signals are pooled.

We simulated pools of spike trains with correlation on the time
scale typical for MT (see Fig. 7A legend for methods) and
computed the SNR as in Zohary et al. (1994). The SNR for the
pooled signal is the expected value, mS, of the sum of spikes from
all neurons divided by the SD, sS, of that sum, i.e.:

SNR 5
mS

sS
5

m/s

Î1
N

1
N 2 1

N
rnoise

, (10)

where m and s are the mean and SD for spike count from a single
neuron, and N is the number of neurons in the pool. Our simu-
lated data were Poisson, so s2 5 m and doubling T would increase
the SNR by a factor of =2 if rnoise remained constant, but because
correlation was spread over time (Fig. 13A, thick line), rnoise was
lower for shorter T (B, thick line). Thus the SNR (Eq. 10) was
enhanced for larger pools of neurons at shorter integration times,
as shown in C (thick curves are squeezed upward in the bottom
right corner; see legend for details).

Therefore, the time scale of correlation must be taken into
account when signals are pooled in short time windows. This may
be of relevance to the visual system, where it is likely that some
processes underlying visual discrimination operate with integra-
tion times from 10 to 100 msec (Oram and Perrett, 1992; Thorpe
et al., 1996; Corthout et al., 1999). Here we have focused on one
particular pooling model that involves averaging across redundant
signals (Zohary et al., 1994; Shadlen et al., 1996; Shadlen and
Newsome, 1998). The ultimate role of interneuronal correlation
in computations underlying perceptual decisions will depend on
details of the actual mechanisms that have yet to be worked out.

APPENDIX A: RELATING SPIKE COUNT
CORRELATION TO SPIKE TRAIN CORRELATION
Here we derive an expression that relates the correlation coeffi-
cient of spike count, rSC, to the area under the CCG and the
ACGs for a set of paired spike trains. A similar relationship was
noted earlier by Haim Sompolinsky (personal communication of
unpublished notes of 1992 entitled “Statistics of spike counts and
spike trains in a stationary process,” pp 1–6), and recently Brody
(1999) has noted the relationship between spike count covariance
and the area of the CCG, not involving the ACGs. On the basis
of our derivation, we propose a metric, rCCG(t), which can pro-
vide a lower variance estimate of rnoise when interneuronal cor-
relation is limited to a time scale shorter than the trial.

Spike trains from M trials for the two neurons are represented
as discrete binary signals of period T at the millisecond resolu-
tion, i.e.:

xk
i ~t! 5 H 1, if on trial i neuron k fires an action potential

during the tth millisecond,
0, otherwise,

(11)

where k 5 1, 2 and 1 # t # T and 1 # i # M. The spike counts
for the i th trial are:

Nk
i 5 O

t51

T

xk
i ~t!, (12)
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and the post-stimulus time histograms are:

Pk~t! 5
1
M O

i51

M

xk
i ~t!. (13)

The spike train auto-correlation and cross-correlation functions
are defined as:

Cjk~t! 5
1
M O

i51

M O
t51

T

xj
i~t!xk

i ~t 1 t!, (14)

where j 5 k for an auto-correlation and j 5 1, k 5 2 for the
cross-correlation, C12(t), between neurons 1 and 2. The auto-
correlation and cross-correlation of the PSTHs are:

Sjk~t! 5 O
t51

T

Pj~t!Pk~t 1 t!. (15)

For convenience in defining the correlation functions above, we
have allowed the time index (t 1 t) to take values outside [1, T];
therefore, we define xk(t) and Pk(t) to be zero for t , 1 and t . T.
The function Sjk will be referred to as the shift-predictor for the
purposes of this appendix because it approximates that portion of
the correlation that results from modulation in the PSTHs (Per-
kel et al., 1967b).

The equation for the correlation coefficient of spike counts:

rSC 5
E@N1N2# 2 EN1EN2

s1s2
, (16)

where E is expected value and sk
2 is the variance of the spike

count computed over trials, can be rewritten in terms of the
cross-correlation equations above. First, observe that:

sk
2 5 ENk

2 2 E2Nk (17)

5
1
M O

i51

M FO
t151

T

xk
i ~t1!O

t251

T

xk
i ~t2!G

2 F 1
M O

i51

M O
t151

T

xk
i ~t1!GF 1

M O
i51

M O
t251

T

xk
i ~t2!G (18)

5
1
M O

i51

M F O
t52T

T O
t51

T

xk
i ~t!xk

i ~t 1 t!G
2 O

t52T

T O
t51

T

Pk~t!Pk~t 1 t! (19)

5 O
t52T

T

@Ckk~t! 2 Skk~t!#. (20)

A similar result holds for the numerator of Equation 16:

E@N1N2# 2 EN1EN2 (21)

5
1
M O

i51

M FO
t151

T

x1
i ~t1!O

t251

T

x2
i ~t2!G

Figure 13. Changes in rnoise and SNR as a function of pooling time, T. A,
CCGs of simulated spike trains are plotted for two hypothetical neuronal
populations, one with a realistic time scale of pair-wise correlation (thick
line, approximates a Gaussian of SD 8=2 msec) and one with instanta-
neous correlation (thin line, peak at zero is truncated). Simulation method
is described in the legend for Figure 7A. B, For pairs from the two
hypothetical populations, rnoise was computed as a function of T, the
period in which spikes would be counted to form a population response.
For instantaneous correlation, rnoise was constant (here 0.2) for all inte-
gration times (thin line). However, for broad correlation (thick line), rnoise
was near zero for short T and increased to the veridical value as T became
large relative to the time scale of correlation. Results for the simulated
broad correlation were comparable to those for our neuronal data (open
circles; rnoise averaged across 29 neuronal pairs that were directional and
had DPD , 90°, coherence series data). The negative value at 1 msec for
the neuronal data results from limitations in recording two nearly simul-
taneous action potentials using one electrode. Error bars for the model
show SD across 10 blocks of 200 trials (mean firing rate 40 spikes per
second). Error bars are smaller for smaller window sizes because, for
example, there are 1000 T 5 1 msec windows for each T 5 1000 msec
window. C, Pooled signals (sums of spike counts) from the hypothetical
populations were compared in terms of their SNR (Eq. 10) as a function
of neuronal pool size for time windows of various duration. For instan-
taneous correlation, the SNR curves (thin lines) had the same shape for all
T but were scaled by =2 when T doubled. For the more realistic case of
broad correlation, however, the SNR curves (thick lines) increased more
steeply with pool size for short T because rnoise was less for short T (as
shown by the thick line in B).
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2 F 1
M O

i51

M O
t151

T

x1
i ~t1!GF 1

M O
i51

M O
t251

T

x2
i ~t2!G (22)

5
1
M O

i51

M F O
t52T

T O
t51

T

x1
i ~t!x2

i ~t 1 t!G
2 O

t52T

T O
t51

T

P1~t!P2~t 1 t! (23)

5 O
t52T

T

@C12~t! 2 S12~t!#. (24)

The following generic expression:

Ajk~T! 5 O
t52T

T

@Cjk~t! 2 Sjk~t!#, (25)

defines the area under the auto- and cross-correlation integrated
from 2T to T (after the shift-predictor is subtracted). We can
rewrite the expression for the correlation coefficient in terms of
these areas as follows:

rSC 5
A12~T!

ÎA11~T!A22~T!
. (26)

We now define a metric:

rCCG~t! 5
A12~t!

ÎA11~t!A22~t!
1 # t # T, (27)

which will be used to estimate the inter-neuronal correlation
coefficient by integrating a limited central region of the CCG and
ACGs. This measure is equal to the traditional measure, rSC,
when t 5 T, i.e.:

rCCG~T! 5 rSC . (28)

In Results, neuronal data and simulated data are used to demon-
strate that rCCG(t) can provide a lower variance estimate of rnoise.

APPENDIX B: COMPUTING rSC WHEN STIMULUS
STRENGTH VARIES
Here we derive an expression for rSC, thus rnoise, for a pair of
simulated spike trains that arise otherwise independently (i.e.,
with no common noise) generated from a common stimulus that
varies in strength from trial to trial.

Let f i(t) be the mean firing rate on the i th trial as a function of
time (e.g., Fig. 12A), and let two spike trains be generated as
independent realizations of an inhomogeneous Poisson processes
according to f i(t). Assume that f i(t) varies across trial number, i,
in such a way that the time-averaged firing rate, li , for any trial
has mean ml, variance sl, and probability density gl. To derive
the correlation in spike count induced by the trial-to-trial changes
in f i(t), we need only consider the statistics of the mean rate, l,
and not the details of the modulation of f i(t) during the trial. In
particular, to compute the correlation coefficient rSC between the
spike counts N1 and N2 across trials, we must find the expected
values and variances required by Equation 16. The expected value
of the product of the spike counts can be computed as follows:

E@N1N2# 5 O
j50

` O
k50

`

jk Pr$N1 5 j, N2 5 k% (29)

5 O
j50

` O
k50

`

jkE
0

`

gl~g!Pr$N1 5 j, N2 5 k u l 5 g%dg

(30)

5E
0

`

gl~g!O
j50

`

j Pr$N1 5 jul 5 g%

O
k50

`

k Pr$N2 5 kul 5 g%dg (31)

5T2E
0

`

g2gl~g!dg (32)

5T2~ml
2 1 sl

2!, (33)

where T is the duration of the trial. A derivation similar to that
above, but substituting N1 for N2 or vice versa, leads to:

E@N1N1# 5 E@N2N2# 5 Tml 1 T2~ml
2 1 sl

2!, (34)

and a similar but even simpler derivation yields:

EN1 5 EN2 5 Tml . (35)

Using the identity VARx 5 Ex2 2 E2x and substituting the results
of Equations 33, 34, and 35 into the equation for the correlation
coefficient (Eq. 16), we arrive at:

rSC 5
Tsl

2

ml 1 Tsl
2 5

sN
2

mN 1 sN
2 , (36)

where mN 5 Tml and sN
2 5 T2sl

2 are used to express the results
in terms of spike counts rather than mean rates. This equation
states that our simulated spike trains have uncorrelated counts
(rSC 5 0) when there is no trial-to-trial variation in the stimulus
strength, i.e., when sN

2 5 0.
To determine the values of mN and sN

2 , we must define the rate
function, f i(t). Many statistical descriptions are possible, but we
chose one that provided modulation which was qualitatively sim-
ilar to that observed in PSTHs analyzed in our previous study
(Bair and Koch, 1996) of responses to replicate stimuli collected
under stimulus conditions similar to those of the present study.
The rate function, defined as a discrete signal at the resolution of
1 msec, was described by three parameters, a spontaneous firing
rate, lmin , a stimulated firing rate lmax , and a probability, p, that
at each millisecond f i(t) 5 lmax (otherwise, f i(t) 5 lmin ). Because
for any Bernoulli random variable, X, E[X] 5 p and VAR[X] 5
pq (where p is the probability of success and q 5 1 2 p), it follows
that the mean and variance of the trial spike count generated by
f i(t) for trials of duration T seconds are:

mN 5 T@plmax 1 ~1 2 p!lmin#, (37)

sN
2 5 dTp~1 2 p!~lmax 2 lmin!

2, (38)

where lmin and lmax are given in spikes per second and d 5 0.001
sec. Substituting this into Equation 36 yields:
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rSC 5 S plmax 1 ~1 2 p!lmin

dp~1 2 p!~lmax 2 lmin!
2 1 1D21

. (39)

This expression represents the strength of artifactual spike count
correlation induced by trial-to-trial stimulus variance for a model
of paired spike trains designed to be consistent with MT re-
sponses to our dynamic dot stimulus. See Figure 12 and the final
section of Results for its application.
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