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Abstract

Nontraditional glycemic biomarkers including fructosamine, glycated albumin and 1,5-

anhydroglucitol (1,5-AG) are potential alternatives or complements to traditional measures of 

hyperglycemia. Genetic variants are associated with these biomarkers, but the heritability, or 

extent to which genetics control their variation, is not known. We estimated pedigree-based, SNP-

based and bivariate heritabilities for traditional glycemic biomarkers (fasting glucose, HbA1c), 

and nontraditional biomarkers (fructosamine, glycated albumin, 1,5-AG) among white participants 

in the Atherosclerosis Risk in Communities (ARIC) Study (N=400 first-degree relatives from 

sibships, N=5,575 unrelated individuals). Pedigree-based heritabilities (representing heritability 

from the entire genome) for nontraditional biomarkers were substantial (0.44 – 0.55) and 

comparable to HbA1c (0.34); the fasting glucose estimate was nonsignificant. SNP-based 

heritabilities (representing heritability from common variants) were lower than pedigree-based 

heritabilities for all biomarkers. Bivariate heritabilities showed shared genetics between 

fructosamine and glycated albumin (0.46 pedigree-based, 1.00 SNP-based) and glycated albumin 

and 1,5-AG (0.50 pedigree-based, 0.47 SNP-based). Genetic factors contribute to a considerable 

proportion of the variance of fructosamine, glycated albumin and 1,5-AG and a portion of this 

heritability likely comes from common variants.
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INTRODUCTION

Type 2 diabetes mellitus is a major public health problem that affects over 10% of the US 

adult population and is associated with substantially increased risks of mortality and serious 

clinical outcomes such as heart disease, stroke, chronic kidney disease and retinopathy 

(Selvin 2014, Marathe 2017). Diabetes is defined by hyperglycemia, or elevated glucose 

concentrations in the blood. Fasting glucose and hemoglobin A1c (HbA1c) are the most 

common biomarkers used for screening and diagnosis of diabetes, but have limitations. 

Fasting glucose requires substantial patient preparation (i.e., an eight-hour fast), has high 

pre-analytic variability with sample stability issues, is acutely affected by factors such as 

recent physical activity or illness, and has moderate intra-individual variability. HbA1c is 

less affected by these factors, but the interpretation of HbA1c can be problematic in the 

setting of altered red blood cell turnover or changes in hemoglobin, factors due to 

characteristics of the biomarker and unrelated to circulating glucose (Marathe 2017, 

Parrinello 2014, Sacks 2011, Sacks 2014). The limitations of traditional measures of 

hyperglycemia have led to a growing interest in nontraditional biomarkers including 

fructosamine, glycated albumin and 1,5-anhydroglucitol (1,5-AG) (Parrinello 2014, 

Goldstein 2004).

Fructosamine, glycated albumin and 1,5-AG are indirect measures of blood glucose levels. 

Fructosamine and glycated albumin are both biomarkers where glucose is bound to protein. 

Fructosamine is glucose bound to serum total protein, and glycated albumin is glucose 

bound to serum albumin. The majority of serum protein is comprised of albumin, thus there 

are expected similarities between these two biomarkers and they represent the average blood 

glucose over the previous ~2–3 weeks (Armbruster 1987).

1,5-AG is a molecule structurally similar to glucose and is consumed through food. During 

hyperglycemic conditions, when glucose exceeds the renal threshold, glucose is 

preferentially reabsorbed from urine by the kidney, leading to excretion of 1,5-AG in the 

urine and a reduction of serum 1,5-AG levels. Blood 1,5-AG concentrations represent 

glycemic excursions above the renal threshold over the previous 1–2 weeks (Buse 2003, 

Dungan 2008, Yamanouchi 1994).

Heritability, the proportion of variance in a phenotype that can be attributed to genetics, is 

population specific, and is affected by the relative genetic and environmental impacts on the 

phenotype. Previous studies in various populations have estimated the narrow-sense 

heritability using a pedigree-based approach of fasting glucose to range from 0.30 to 0.70, 

and HbA1c to range from 0.20 to 0.75 (Shin 2014, Meigs 2002, Pilia 2006, Watanabe 1999, 

Mills 2004, Hsueh 2000, Simonis-Bik 2008, Snieder 2001, Mitchell 1996). Recent studies 

evaluating hundreds of metabolites using non-targeted assays have estimated the heritability 

of 1,5-AG to be 0.61 to 0.63 (Shin 2014, Long 2017) in population-based studies. To date, 

no study has estimated the heritability of fructosamine or glycated albumin. Quantifying the 
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genetic contribution of these biomarkers will inform the extent to which genetics may play a 

role in these non-traditional biomarkers, and determine if they are comparable to traditional 

diabetes biomarker (fasting glucose and HbA1c) heritabilities.

An underlying assumption of heritability is that if a trait is heritable, individuals who share 

more of their genetics (i.e., are more closely related) will have more similar phenotypes than 

those who share less of their genetics (i.e., are distantly related or unrelated). Traditional 

heritability methods use closely related individuals (first- and second-degree relatives) and 

infer the degree of shared genetics (shared identity by descent (IBD)) based on family 

structure. These pedigree-based methods provide estimates of narrow-sense heritability (h2), 

or the proportion of additive genetic variance in a phenotype passed down from parents to 

offspring. However, these estimates may be influenced by shared environments between 

related pairs. In newer SNP-based (hSNP
2 ) heritability methods, the amount of shared genetics 

among unrelated individuals can be estimated using measured genotypes, taking advantage 

of the small amount of shared genetics across all humans from our common ancestor as a 

species (Speed 2012, Yang 2010). These methods are less likely to be influenced by shared 

environment. hSNP
2  is commonly estimated using genome-wide association studies (GWAS) 

data, which target common or less frequent SNPs (minor allele frequency (MAF)>0.01) that 

are in linkage disequilibrium (LD) with causal variants, and thus hSNP
2  generally represents 

the h2 due to common genetic variation. Thus comparing hSNP
2  and h2 (representing the 

entire proportion of a phenotype due to genetics) can inform the genetic architecture of a 

trait, representing the proportion due to common variants.

In this analysis, both pedigree-based and SNP-based heritability were estimated for 

fructosamine, glycated albumin and 1,5-AG using the same participants from the 

Atherosclerosis Risk in Communities (ARIC) Study, and compared across the different 

glycemic biomarkers.

METHODS

Study population

The ARIC Study is a prospective cohort study initiated in 1987 to evaluate risk factors for 

cardiovascular disease in a community-based setting. Briefly, participants were recruited 

from four study sites: Forsyth, North Carolina; suburban Minneapolis, Minnesota; Jackson, 

Mississippi; and Washington County, Maryland. Overall, 15,792 middle-aged adults 

participated in the initial study visit (visit 1, 1987–1989), with 6 subsequent study visits 

(1990–2019). All study participants provided written informed consent, and the study 

protocols were approved by the relevant institutional review boards (ARIC Investigators 

1989).

Glycemic biomarkers

Samples for all glycemic biomarkers were collected at ARIC visit 2 (1990–1992). 

Fructosamine (Roche Diagnostics, Indianapolis IN, USA), glycated albumin (GA-L Asashi 

Kasei Pharma Corporation, Tokyo, Japan) and 1,5-AG (GlycoMark, Winston-Salem, NC) 
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were measured in 2012–2013 using a Roche Modular P800 system from samples stored at 

−70°C. Glucose was measured at visit 2 using the Roche Hitachi 911 analyzer using the 

hexokinase method (Roche Diagnostics). HbA1c was measured at visit 2 in stored whole 

blood samples using high performance liquid chromatography, using NGSP-certified assays 

standardized to the Diabetes Control and Complications Trial (Selvin 2010).

Genotyping and Quality Control

Genotyping was performed using the Affymetrix 6.0 array. Samples with sex mismatches, 

genetic outliers, failed concordance with Taqman genotypes, or missingness >98% were 

excluded. First-degree relatives were defined by a DST value>0.8 (DST = IBS distance 

(IBS2 + 0.5*IBS1) / (N SNP pairs)) generated from PLINK (Purcell 2007). Both members 

of each first-degree relative pair were included in the pedigree-based heritability estimation, 

and one member of a first-degree relative pair were excluded in SNP-based heritability 

estimation. SNPs were excluded if missingness was >5%, Hardy-Weinberg Equilibrium 

(HWE)<0.00001, low MAF <0.005. Imputation was pre-phased using ShapeIt (v1.r532) and 

then imputed using IMPUTE2 to 1,000 Genomes Phase I (March 2012) (1000 Genomes 

Project Consortium 2015).

From the 30,038,522 imputed SNPs, SNPs were excluded if they had bases other than G, C, 

T or A, had duplicate base pair positions, imputation quality info score<0.99 and minor 

allele frequency (MAF)<0.01 to obtain a dataset with 3,224,517 SNPs. Imputed scores were 

converted to hard calls for the SNP-based heritability analyses using PLINK (Purcell 2007).

Family-based study sample for pedigree-based heritability

Because pedigree data was not available for this data, we used genetic data to infer 

relatedness and took a conservative approach to our inclusion criteria. We chose to include 

only first-degree relatives, as the distinction between parent-offspring and sibling pairs can 

be reasonably estimated by age. Through genotyping, 384 first-degree relative pairs were 

identified (688 individuals, some were part of multiple pairs). Individuals were excluded if 

they met the following criteria: failed genetic quality control (N=50), did not attend visit 2 

(N=29), did not fast for at least 8 hours (N=11) or missing fasting status (N=1), had 

diagnosed diabetes (N=32), or missing fasting glucose, HbA1c, fructosamine, glycated 

albumin, and 1,5-AG data (N=40). Individuals were further excluded if their related pair 

member did not pass quality control (N=91), potential parent-child relationships (N=20, 

defined as first-degree relative pairs with >15 year age difference), and likely monozygotic 

twins (first-degree relatives with the same age and sex, N=14), leaving 400 individuals who 

were members of sibling-pairs (Figure 1). With this sample size, we had 80% power to 

detect a heritability of 0.16 or greater as estimated by the h2power feature in the program 

SOLAR-Eclipse (Almasy 1998).

Pedigree-based heritability analysis

Pedigree-based heritability was estimated using the variance components method using the 

program SOLAR-Eclipse (Almasy 1998). This method uses a linear mixed model, with 

covariates (age, sex and ARIC study center) as fixed effects and genetics and environment as 

random effects. It partitions the variance between genetic and environmental effects and then 
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heritability is calculated as the ratio of genetic variance to the total variance. The 

distributions of all glycemic biomarkers were skewed to the right among all participants, and 

were therefore inverse normal transformed for all analyses.

SNP-based heritability study sample

The present study was restricted to self-identified white individuals because of limited power 

due to the smaller sample size of self-identified black participants (N=1,483 after 

exclusions; recommended sample size for hSNP
2  =4,000 (Speed 2012)). Of the 9,044 white 

ARIC participants with available genotyping data, participants with low quality genotype 

data (missingness>2%; N=290), did not attend ARIC visit 2 (N=313), did not fast for at least 

8 hours (N=147) or missing fasting status (N=11), individuals with diagnosed diabetes (self-

reported physician diagnosis or use of diabetes medications; N=480), or missing fasting 

glucose, HbA1c, fructosamine, glycated albumin, and 1,5-AG data (N=587), were excluded 

(Figure 1).

LDAK SNP-based heritability analysis

The method Linkage Disequilibrium Adjusted Kinships (LDAK) was used to analyze SNP-

based heritability for fasting glucose, HbA1c, fructosamine, glycated albumin and 1,5-AG 

(Speed 2012, Speed 2017). This method employs a linear mixed model, with covariates such 

as age and sex as fixed effects and a genetic relationship matrix (GRM) calculated from 

genotyped SNPs for all pairs of individuals as random effects. The variance of the random 

effects is partitioned to isolate the variance due to genetics, and restriction maximum 

likelihood estimation is then used to estimate that variance. Heritability is then calculated as 

the proportion of total variance in the outcome due to genetics. We used recommended 

parameters for all analyses. The first step in LDAK is to calculate weights for each SNP, 

dividing the genome into approximately 1000kb sections and weighting SNPs based on the 

local linkage disequilibrium (LD) structure such that areas of high LD had lower weights 

than those with low LD. The total weight of these SNPs was 113,120, representing the 

approximate number of independent loci evaluated.

Closely related individuals may affect SNP heritability analysis due to their shared 

environment or shared regions of LD, and hence we excluded them from analysis. To 

determine relatedness, kinship was calculated based on a thinned set of SNPs (not within 

1Mb of each other or in LD, with r2>0.2) using alpha = −0.25 (alpha is a parameter 

representing the relationship between heritability and MAF). Individuals were excluded so 

that no pair of individuals had a kinship value greater than the smallest observed kinship 

(−0.025, approximately no more related than cousins twice or thrice removed). Our analytic 

sample contained 5,575 individuals (Figure 1). The ARIC study included a large percentage 

of married participants (McAdams-DeMarco 2011) (N=4,500 spousal pairs, 57% of 

individuals who attended visit 1), which represents a form of shared environment. However, 

the biomarker correlations among married couples was low (<0.10).

In each analysis, age, sex, ARIC study center, and the top 20 principal components (PC) 

were included as covariates. Predictor loadings from 1000 genomes were projected onto our 

data and the top 10 loadings were controlled for as recommended by the LDAK developers 
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(Speed 2017). For each biomarker, strongly associated SNPs (p<1×10−20) were evaluated 

using linear regression and excluded from heritability estimates to avoid biasing results 

(rs182549 for 1,5-AG). Inflation due to population substructure was determined by 

calculating heritability separately in four chunks of chromosomes (chromosomes 1–3, 4–7, 

8–11, 12–22) and comparing the sum of the heritabilities from the chunks to the heritability 

calculated using all of the chromosomes. If population substructure was present, the 

chromosomes would be correlated and hence the sum of heritability from the four chunks 

would be greater than heritability from all of the chromosomes (because each chunk would 

be representing more than just the heritability from the chromosomes in that chunk). 

Sensitivity analyses were performed excluding undiagnosed diabetes cases (defined as 

fasting for at least 8 hours and glucose ≥126 mg/dL) from the heritability estimations.

GCTA SNP-based heritability analysis

Because there has been much debate but no consensus in the literature as to whether LDAK 

or the originally proposed SNP-based heritability method, Genome-wide Complex Trait 

Analysis (GCTA) (Yang 2010) provide more accurate SNP-based heritability estimates 

(Speed 2017, Yang 2017, Yang 2015, Lee 2013) both methods were used in this analysis. 

Due to sample size constraints, the most recent version of GCTA (GCTA-LDMS) did not 

run and therefore the original version of GCTA (GCTA-SC) was used. We ran GCTA using 

recommended parameter settings. Individuals with kinship>0.05 were removed, leaving 

6,443 individuals. A genetic relationship matrix was calculated and SNP-based heritabilities 

were estimated controlling for age, sex, ARIC study center and the first 10 principal 

components.

Bivariate heritability analyses

To explore the shared heritability among the glycemic biomarkers, bivariate heritability was 

performed, which calculates the percentage of heritability shared across two traits. Bivariate 

heritability models two traits as the outcome and estimates the genetic correlation between 

the traits using the equation

ρp = h1
2 (h2

2)ρg + 1 − h1
2 1 − h2

2)ρe

Where ρp is the phenotypic correlation, ρg is the genetic correlation, ρe is the environmental 

correlation, and h2
1 and h2

2 are the heritabilities of trait 1 and trait 2.

A negative correlation (between −1 and 0) indicates that the same genes increase the values 

of one trait while decreasing the values of the other trait, and a positive correlation (between 

0 and 1) indicates that the same genes increase the values of both traits. Pedigree-based 

bivariate heritability was estimated using SOLAR-Eclipse and SNP-based bivariate 

heritability using GCTA.

RESULTS

There were 5,575 unrelated individuals in the SNP-based heritability analytic sample and 

400 first-degree relatives in the pedigree-based heritability analytic sample. Approximately 
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half of the participants were female. Mean biomarker values were similar across both 

samples, and 5–7% of samples had undiagnosed diabetes (Table 1).

Pedigree-based heritability

The pedigree-based heritability estimates using sibling-pairs for 1,5-AG (h2=0.55), glycated 

albumin (h2=0.45) and fructosamine (h2=0.44) were statistically significant (p<1.9×10−4) 

(Figure 2, Table 2) and comparable to HbA1c (h2= 0.34). The fasting glucose estimate was 

not significant (p=0.43), but analysis using visit 1 data (N=522) estimated heritability was 

0.23 (p=0.03).

SNP-based heritability

The glycated albumin SNP-based heritability estimated using LDAK was (hSNP
2 = 0.30), 

followed by 1,5-AG (hSNP
2 = 0.17) and fructosamine (hSNP

2 = 0.13) (Figure 2, Table 2). HbA1c 

had similar SNP-based heritability to the nontraditional biomarkers (hSNP
2 = 0.30). The 

fasting glucose result was nonsignificant (p=0.11). Inflation for SNP-based heritability of 

the biomarkers was low (<3.3%). Sensitivity analyses using a relatedness cutoff of 0.05 

consistent with the GCTA methods produced similar results (results not shown).

SNP-based heritabilities estimated by GCTA were lower than estimates using LDAK. 

Fructosamine (hSNP
2 = 0.11), glycated albumin (hSNP

2 = 0.10), 1,5-AG (hSNP
2 = 0.15) and 

HbA1c (hSNP
2 = 0.17) (Figure 2, Table 2). The fasting glucose estimate was not significant 

(p=0.08).

For all methods, excluding undiagnosed diabetes cases had little impact on heritability 

estimates (Table 3).

Bivariate heritability analyses

Bivariate heritability estimates for fructosamine and glycated albumin showed shared 

genetics using SOLAR-Eclipse (0.46) with nearly complete overlap using GCTA (1.00). 

Glycated albumin and 1,5-AG had shared genetics which influence these traits in opposite 

directions, consistent with the inverse correlation of these biomarkers (−0.50 in SOLAR, 

−0.47 in GCTA); Table 4). No other pairs of biomarkers had significantly shared heritability 

using GCTA or SOLAR-Eclipse.

DISCUSSION

In this study, both pedigree-based and SNP-based heritabilities were estimated for 

nontraditional glycemic biomarkers. Because heritability is a population-specific measure 

that depends on relative genetic and environmental factors, it is important to estimate 

heritabilities in the same population in order to compare heritabilities across traits. This was 

done this for both traditional and nontraditional glycemic biomarkers, using the same 

population of white individuals participating in the ARIC Study.
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Approximately half of the variation in fructosamine, glycated albumin and 1,5-AG was 

estimated to be controlled by genetic factors. Our results for 1,5-AG are consistent with 

previous estimations (0.55 in our study vs. 0.61 to 0.63 in previous studies) (Shin 2014, 

Long 2017). There are no published reports of the heritability of fructosamine and glycated 

albumin. Our results illustrate that genetics play an important role in nontraditional glycemic 

biomarkers, and may affect these markers in a similar manner to HbA1c. Given that 60 

variants are associated with HbA1c (Wheeler 2017) (heritability = 0.20 to 0.75) (Meigs 

2002, Pilia 2006, Mills 2004, Hsueh 2000, Simonis-Bik 2008, Snieder 2001), it is likely that 

more than the currently discovered (1 for fructosamine, 1 for glycated albumin, 7 for 1,5-

AG) (Li 2017, Loomis 2018) variants are associated with nontraditional glycemic 

biomarkers and these low numbers of SNPs may reflect the limited sample sizes to date for 

GWAS and sequencing studies for these biomarkers. The nonsignificant heritability 

estimates for fasting glucose may be in part due to its pre-analytic and intra-individual 

variability. Although nonsignificant, SNP-based heritability was similar to that estimated in 

a previous study in ARIC using participants from visit 1 (hSNP
2 =0.13 vs 0.08 in our LDAK 

analyses) (Vattikuti 2012). The significant and larger pedigree-based heritability estimated 

using visit 1 data (N=521, h2=0.23, p=0.03) indicates that the smaller sample from visit 2 

likely reduced power to estimate fasting glucose heritability.

As expected, the SNP-based heritabilities were lower than the pedigree-based heritabilities. 

SNP-based methods estimate heritability based on the variants for which data is collected 

(genotyped or sequenced), while pedigree-based heritability among related individuals is 

based on the entire genome. Additionally, pedigree-based heritability may be influenced by 

shared environment among family members, which has much lower impact SNP-heritability 

estimates. The two SNP-based heritability methods give different estimates for some of the 

biomarkers, which may be due to differences in the methods. For instance, our sample size 

was too small to be adequately powered to run the most recent iteration of GCTA (GCTA-

LDMS (Yang 2015)), which accounts for LD structure. While there is still debate as to 

which method of SNP-based heritability estimation is preferred (Speed 2017, Yang 2017, 

Yang 2015, Lee 2013), we presented results from multiple methods but refrain from 

quantitative comparison. Regardless of the estimated value, for all biomarkers, SNP-based 

heritabilities represented a portion of the pedigree-based heritability, indicating that the 

genetic influences on these traits is likely due to both common and rare variants.

Bivariate heritability was also estimated across all of the biomarkers, examining how much 

heritability is shared between them. The shared heritability between fructosamine and 

glycated albumin was significant, suggesting a substantial portion of overlapping genetics. 

However, this was expected due to the biological similarity of these two measures (80% of 

glycated proteins (i.e., fructosamine) are glycated albumin) (Anguizola 2013, Cohen 2013) 

and their strong phenotypic correlation (correlation coefficient = 0.76, Table 5). The SNP-

based bivariate heritability of 1, however, is likely an overestimation and some of the 

phenotypic correlation is due to environmental correlation (environmental correlation among 

related =0.67, Table 4). It is possible that the shared variants between fructosamine and 

glycated albumin are more common and thus captured by SNP-based heritability. While the 

biomarkers in the present study all aim to capture hyperglycemia, some variability in these 
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measures may be explained by non-glycemic factors (e.g. the known nonglycemic variants 

associated with HbA1c (Wheeler 2017), which may be particularly important in the non-

diabetic range. Alternatively, it could simply indicate the biomarkers are under control of 

different genes for other reasons such as the different time frames each biomarker represents 

(2–3 weeks for fructosamine and glycated albumin, 1–2 weeks for 1,5-AG 2–3 months for 

HbA1c, instantaneous for fasting glucose) or the differences in variability of these measures. 

Unfortunately, the lack of significance across the other bivariate analyses limit our ability to 

draw other conclusions about the amount of shared genetics across the other biomarkers.

The substantial heritability estimates for nontraditional biomarkers indicate a strong genetic 

component. Additional studies focused on the identification of genetic variants associated 

with fructosamine, glycated albumin and 1,5-AG will inform the biology of these 

biomarkers, and may identify limitations and implications for their clinical interpretation.
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Figure 1. 
Study participant exclusions.
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Figure 2. 
Heritability estimates for glycemic biomarkers by method†

†p<0.05 for all estimates
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Table 1.

Demographic and clinical characteristics in unrelated and first-degree relative study participants†

SNP-based heritability Pedigree-based
heritability

Unrelated Participants
(N=5,575)

First-degree relatives
(N=400)

Female 54% 55%

Age (years) 57 (5.7) 58 (5.3)

Fructosamine (μmol/L) 227 (23) 227 (22)

Glycated albumin (%) 12.6 (1.6) 12.5 (1.5)

1,5-AG (μg/mL) 18.7 (5.7) 19.9 (6.4)

HbA1c (mmol/mol) 36 (5.5) 37 (6.5)

(%) 5.4 (0.5) 5.5 (0.6)

Fasting glucose (mg/dL) 104 (17) 104 (16)

Undiagnosed diabetes‡ 5% 7%

†
Continuous variables shown as mean (SD) and categorical variables shown as %

‡
Undiagnosed diabetes defined as fasting and glucose≥ 126 or nonfasting and glucose≥ 200
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