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Abstract

Statistical methods for genomewide association studies (GWAS) continue to improve. However, 

the increasing volume and variety of genetic and genomic data make computational speed and 

ease of data manipulation mandatory in future software. In our view, a collaborative effort of 

statistical geneticists is required to develop open source software targeted to genetic epidemiology. 

Our attempt to meet this need is called the OPENMENDEL project (https://openmendel.github.io). It 

aims to (1) enable interactive and reproducible analyses with informative intermediate results, (2) 

scale to big data analytics, (3) embrace parallel and distributed computing, (4) adapt to rapid 

hardware evolution, (5) allow cloud computing, (6) allow integration of varied genetic data types, 

and (7) foster easy communication between clinicians, geneticists, statisticians, and computer 

scientists. This article reviews and makes recommendations to the genetic epidemiology 

community in the context of the OPENMENDEL project.
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1 Introduction

Genomewide association studies (GWAS) query the entire genome to identify genetic 

variants associated with a trait of interest. GWAS have enjoyed many successes [77] and 

have uncovered many clues to the genetic etiology of common diseases [23]. Case-control 

tests of association between markers and traits predate GWAS by more than 50 years [1]. 

However, association studies were rarely undertaken in the pre-GWAS era unless there were 

candidate genes with strong prior evidence. The situation changed at the turn of the 

millennium when dense SNP (single nucleotide polymorphism) maps became available and 

SNP genotyping costs plummeted. Suddenly, it became possible to exploit linkage 

disequilibrium (LD) and survey hundreds of thousands to millions of genomewide SNPs. In 

the subsequent decade, hundreds of associations found by GWAS were published [76,77]. 

Genomics is in the midst of a second technological evolution driven by high-throughput 

sequencing [55,60, 40,73]. Geneticists can now survey both rare and common variants.

This sudden expansion of data leads to enormous challenges in statistical genetics. Many 

current algorithms and programs are ill adapted to handle modern data sets with 105 cases 

and 107 markers. Ever more types of genetic variation are being observed and catalogued 

[77]. These changes demand more complex data structures and data integration across 

multiple biological scales. Precision health and predictive medicine raise the stakes even 
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further [40]. Concurrently, the nature of computing is rapidly changing. In addition to new 

hardware, new programming paradigms and new algorithms must be brought online as 

quickly as possible to sustain progress in statistical genetics.

The following three studies exemplify the variety and magnitude of genomic data sets being 

collected today: a) The Million Veteran Program contains GWAS data (657,459 SNPs) on 

359,964 veterans [29]. Simply storing the genotypes in compressed format requires > 100 

GB. Obviously, this data set and others like it [70,11] will continue to grow. b) A recent 

study [72] obtained whole genome sequence (WGS) data on 10,545 humans at 30–40x 

coverage for < $2000 per genome. These researchers identified > 150 million variants, the 

majority of which are rare or de novo. c) The iPOP (integrative personal omics profile) study 

[16] followed a single individual for 401 days and collected transcriptome, proteome, 

metabolome, microbiome, epigenome, exposome, and phenome data at 20 time points, along 

with an extremely high coverage WGS. This type of omics profiling yields a dynamic 

picture of the heteroallelic changes between healthy and diseased states.

Current analysis pipelines juggle a multitude of computer programs that are implemented in 

different languages, run on different platforms, and require different input/output formats. 

This heterogeneity unintentionally creates barriers to communication, data exchange, data 

visualization, and scientific replication. End-users treat the entire pipeline as a black box and 

often fail to use their biological insight to inform statistical analysis. Students, post-docs, 

and researchers spend inordinate amounts of time coding and debugging the low-level 

languages instead of thinking about the science. In addition to these disadvantages, current 

software packages are straining under the volume, velocity, variety, and veracity of modern 

genomics data. Many programs do not even run on multiple threads. Distributed computing 

across different machines is largely ignored. In our view, the time is ripe to put in place a 

better paradigm for statistical genetics.

In this review, we first explain why the new JULIA language [6] is an ideal choice for the 

OPENMENDEL analysis platform. We then present what we see as some of the most pressing 

needs in gene mapping and our efforts to advance them through the cooperative 

OPENMENDEL effort. Owing to page and time constraints, we do not offer encyclopedic 

coverage of recent advances in GWAS or sequence analysis. Many promising methods are 

left unmentioned, for example meta-analysis based on summary statistics [15, 19, 26, 41, 52, 

83] or estimation of fine-scale population structure [58]. Instead we focus on topics related 

to projects already underway in OPENMENDEL. These projects include methods for handing 

SNP data, genotype imputation, rapid GWAS, iterative hard thresholding, kinship 

comparison, variance component modeling, and SNP-set analyses.

We want to point out that there are other groups who have made notable strides in making 

genetic analyses accessible to researchers who work with big data but lack the support 

available at large genomic centers [7,63]. Some of these projects are further along than 

OPENMENDEL. A particularly interesting example is the PLATO software project ([30] and 

https://ritchielab.org/software/plato-download), which is designed to provide a single 

platform for a variety of association analyses. A major difference in our approach and 

PLATO is language choice. This difference might seem minor but, as we outline below, we 
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believe it is a fundamental difference and is important for our goal of getting user initiated 

modules and modifications. Another example is the Ark software [7], which focuses on data 

management and is complementary to rather than competitive with OPENMENDEL.

2 The Importance of the Julia Computing Language

Many compelling features make JULIA [6] an ideal vehicle for implementing methods for 

modern statistical genetics. First, it is free, open source, and easy to install. Second, its clear, 

powerful syntax lends itself to compact, readable code and quick algorithm mock-ups. As 

needed, it can easily call Fortran, C, R, and Python functions. Third, because JULIA 

incorporates an excellent justin-time (JIT) compiler, it achieves the efficiency of low-level 

languages with minimal programming efforts. Fourth, Julia is built for parallelism at the 

multicore, graphical processing unit (GPU), and cluster levels. Fifth, JULIA employs a 

modern, easy to use package management system. Of particular relevance to statistical 

genetics, Julia has many statistical and numerical analysis packages ready to use. Finally, 

end-users can run their analyses via the interactive Jupyter (Julia, Python, R) Notebook, an 

attractive interface for data visualization and reproducible research. Together these tools 

constitute an integrated environment for rapid prototyping of new applications and, with the 

same code, the analysis of large-scale genetic data.

Traditional high-level languages such as R, Matlab, and Python face the notorious two-

language problem. In this scenario, one high-level language is used for prototyping, but a 

second low-level language is later needed for producing fast code for real world, large data 

sets. The high-level code is typically more compact, readable, and amenable to change, but 

much slower to execute. Most of the popular statistical genetics analysis tools or their most 

demanding subroutines are implemented purely in low-level languages, greatly restricting 

the community that feels comfortable exploring the code. Most tools are also restricted to 

certain computer platforms and input formats.

Today, a typical analysis pipeline requires a glue language such as Bash, Perl or Python to 

chain packages together. Data plotting and display require additional software, typically R or 

Matlab. Current analysis pipelines are cumbersome, opaque, and error-prone, creating 

barriers to the development of new statistical methods. Researchers wade through a swamp 

of low-level code and reinvent statistical genetics wheels instead of focusing on their unique 

contributions. This can be avoided as JULIA has solved the two-language problem through 

careful design of the programming language itself. Julia is both easy to code and scales to 

peta-flop computing levels [21]. We can now use Julia in all phases of our methods 

development, from prototyping to production software. OPENMENDEL includes many leading-

edge statistical genetics methods written in this fast, high-level language that invites easy 

contributions from scientists. Using JULIA, OPENMENDEL can become the first highly efficient, 

open source statistical genetics software that can scale to million-subject studies and is both 

user- and developer-friendly.
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3 Handling SNP Data

The SnpArrays.jl module of OPENMENDEL provides a convenient bridge between binary SNP 

data and downstream statistical analysis. The VCFTools.jl module achieves the same end for 

the richer genetic information distributed in VCF and BCF file formats. In SnpArrays.jl, 

biallelic genotype data are held in BitArrays, which store four genotypes per byte. As much 

as possible, compressed storage is also maintained during computation. Julia allows 

operators such as matrix multiplication to be defined directly on BitArrays without 

decompression. The design features of Julia make it easy to build high-performance 

statistical genetics software that is scalable to data sets with millions of subjects and tens of 

millions of SNPs.

The functionality of SnpArrays.jl includes: (1) reading and writing compressed SNP files, 

(2) computing summary statistics, (3) filtering data by genotyping success rates and other 

criteria, (4) copying compressed data into numerically oriented vectors and matrices, (5) 

computing genetic relationship matrices, (6) computing principal components, and (7) 

extending matrix and vector operations to compressed SNP data. SnpArrays.jl serves as a 

data interface to other OPENMENDEL modules.

4 Genotype Imputation

Genotype imputation involves the inference of unobserved genotypes from observed 

genotypes. It is possible to base inference on the observed genotypes of surrounding 

pedigree members [68], but pedigree data are now viewed as poor substitutes for linkage 

disequilibrium. In particular, pedigree data are incapable of imputing genotypes at 

completely untyped SNPs in a study. Recent versions of genotype imputation rely on panels 

of reference genotypes and employ hidden Markov models, with the hidden states being 

underlying haplotype pairs [34, 48, 54]. These programs are computationally intensive and 

operate by haplotyping individuals on the typed SNPs in the sample. These partial 

haplotypes are then compared to the reference panel to impute the full set of genotypes [33, 

74]. We have taken an alternative approach based on the generic data mining technique of 

matrix completion [14, 18].

Matrix completion fills in the missing entries of an m × n matrix X = (xij) whose observed 

entries are indexed by a subset Ω of {1, …, m} × {1, …, n}. Imputation involves finding a 

low rank matrix Y = (yij) consistent with the observed entries of X = (xij). This is done by 

minimizing the loss function

f (Y) = ∑
(i, j) ∈ Ω

xi j − yi j
2

(1)

over the set of matrices Y of rank r or less. Taking r small is a form of parsimony capturing 

the hidden structure of the data. In genotype imputation, X records the observed genotype 

dosages (0, 1, or 2 counts of the reference allele), with rows corresponding to people and 

columns to SNPs. Imputation is performed over a narrow genomic window of a few hundred 

SNPs where linkage disequilibrium prevails. Including reference individuals typed on out-

of-sample SNPs is a key part of the strategy.
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Because every rank r matrix Y of dimension m × n can be expressed as a matrix product UV, 

where U is m×r and V is r × n, matrix completion can be phrased as updating the factors U 
and V of Y in the loss function (1). Imputation is iterative, and to restore symmetry at 

iteration m, each missing entry xij is imputed by its current best guess (UmVm)ij. New values 

Um+1 and Vm+1 can be recovered by taking the singular value decomposition (SVD) of Zm, 

the current completed version of X. The MM (majorization/minimization) principle of 

optimization shows that this procedure drives the loss downhill [44].

Chi et al. [18] compared the matrix completion program Mendel Impute to several popular 

model based imputation programs including MaCH and IMPUTE2 using a number of 

simulated and real datasets. The accuracy of imputation is dependent on the nature of the 

specific scenarios and so no program was universally most accurate. The least favorable 

scenario for Mendel Impute in terms of accuracy occurred when imputing genotypes 

between high density microarray platforms using as a measure of accuracy the mean r2 

between the imputed values and the true genotypes at masked loci. In this case Mendel 

Impute was slightly worse then MaCH which was slightly worse than IMPUTE2 (Table 1). 

In other scenarios Mendel Impute was more accurate than MaCH and IMPUTE2 and in still 

others they were are roughly the same. However, in all the scenarios presented Mendel 

Impute was at least an order of magnitude faster than MaCH or IMPUTE2.

Alternating least squares provides an alternative to SVD that is potentially much faster [31]. 

The alternating updates

Vm + 1 = Um
t Um

−1
Um

t Ym

and

Um + 1 = ZmVm + 1
t Vm + 1Vm + 1

t −1

can achieve extremely high numerical throughput on modern computer architecture such as 

multicore CPUs and multiple GPUs. Because alternating least squares offers no guarantee of 

finding the global minimum of the loss, initial values for U and V should be as accurate as 

possible. Application of a randomized SVD to supply initial values is one possibility [49]. In 

practice we divide the current window into equal thirds and construct a hold-out-set by 

masking entries in the outer two thirds. We then choose the best rank r based on 

performance on the hold-out-set. Once we impute missing entries in the middle third, we 

shift the window to the right and begin again.

5 Enhancements to Ordinary GWAS

MendelGWAS.jl performs ordinary SNP-by-SNP association testing. To maximize speed in 

linear, logistic, and Poisson regression, MendelGWAS.jl employs score tests [3,17,20,89]. 

For the most significant SNPs, the score test is supplemented by the slower but more 
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accurate likelihood ratio test (LRT). Principal components can be included as predictors, 

SNPs and subjects can be filtered by success rates, and a Manhattan plot is provided.

In addition to these standard approaches to GWAS, we are in the process of implementing 

score tests for generalized linear models (GLMs) [66]. GLMs permit trait-genotype relations 

to be modeled with more exotic response distributions. We are also planning to develop an 

efficient score test for the challenging Cox survival model [37, 56, 69]. Multinomial 

regression models for complex categorical phenotypes would be a valuable extension of 

logistic regression [57]. Finally, efficient GWAS for ordered discrete phenotypes is 

becoming increasingly important for the study of complex diseases and traits derived from 

electronic health records.

6 Iterative Hard Thresholding

To avoid the computational complexity of multiple regression and the identifiability issues 

caused by having more predictors p than sample individuals n [12], GWAS has traditionally 

focused on the marginal effects of single SNPs. Previously we introduced lasso penalized 

regression to GWAS to perform subset selection [81,91]. Our recent paper [38] implements a 

better heuristic, iterative hard thresholding (IHT), to solve this inherently combinatorial 

problem. We showed that IHT is better for GWAS than lasso or MCP penalties in controlling 

for false positive and false negative rates, in reducing parameter shrinkage, and in capturing 

heritability. It achieves these goals with little sacrifice in computational speed.

We now sketch how IHT iterates toward good local optima. To keep the discussion simple, 

consider the setting of linear regression with design matrix X, response vector y, and 

parameter vector β. The goal is to minimize the loss function f (β) = 1
2 y − Xβ

2
 subject to 

the sparsity condition β 0 ≤ k. The notation β 0 is shorthand for the number of nonzero 

entries of β. In GWAS the entry xij of X denotes the number (0, 1, or 2) of reference alleles 

carried by individual i at SNP j or the imputed dosage value. The entry yi of y corresponding 

to individual i encodes a continuous trait such as height, blood pressure, or an expression 

level.

At iteration n, the IHT algorithm [8] moves in the steepest descent direction −▽f(βn) 

modified by the sparsity constraint. Here the gradient ▽f(β) of the objective equals −Xt(y − 

Xβ). The IHT update is explicitly

βn + 1 = PSk
βn − s∇ f βn , (2)

where s is the steplength and PSk
(β) denotes projection onto the sparsity set 

Sk = β: β 0 ≤ k . The projection operator PSk
(β) sends to 0 all but the k largest entries of β 

in magnitude. The preferred entries of β are untosuched. The steplength s is chosen to 

minimize f(β) along the ray s βn − s∇ f βn  prior to projection. This is achieved by taking
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s =
∇ f βn

2

X ∇ f βn
2 .

The best value of k can be chosen by cross-validation.

The theory and practice of IHT continues to advance. Shen and Li [67] show how to relax 

the restricted isometry property originally invoked to prove convergence [9]. Yang et al [82] 

suggest group-sparse IHT to promote sparsity on a group-level. Khanna and Kyrillidis [39] 

validate the application of momentum acceleration to IHT. Yuan et al [86] and Bahmani [5] 

adapt IHT to logistic regression. Further extension to generalized linear models is a natural 

target. MendelIHT.jl brings IHT under the OPENMENDEL umbrella. Integration of IHT with 

SnpArrays.jl unifies data handling and leads to faster code with a smaller memory footprint. 

Finally, we are investigating weighting predictors to accommodate candidate genes and 

candidate SNPs [88].

7 Kinship Comparison

Kinship coefficients quantify the degree of relationship between two relatives. Two genes 

are identical by descent (IBD) if one is a copy of the other or they are both copies of the 

same ancestral gene. The theoretical kinship coefficient ϕij is the probability that a randomly 

sampled gene at some arbitrary locus from individual i is IBD to a randomly sampled gene 

at the same locus from individual j. For example, if we assume no inbreeding, ϕi j = 1
2  if i = j, 

and ϕi j = 1
4  if i and j are first degree relatives. In the former case, the two genes are sampled 

with replacement. In an accurately constructed pedigree, the full matrix Φ of kinship 

coefficients ϕij can be calculated from a simple recurrence [43]. Jacquard’s more complex 

kinship coefficients [35] are less useful in practice and harder to calculate [46]. In the 

MendelKinship.jl module of OPENMENDEL, Jacquard’s coefficients are approximated by the 

Monte Carlo method of gene dropping.

When pedigrees are unknown or suspect, SNP markers can be used to estimate the kinship 

matrix Φ empirically. One popular estimate is the genetic relationship matrix (GRM), 

represented here by S = (sij). If pk denotes the reference allele frequency of SNP k, xik 

counts the number of reference alleles carried by individual i, and K is the number of SNPs, 

then the elements of S are calculated as

si j = 1
K ∑

k = 1

K xik − 2pk x jk − 2pk
4pk 1 − pk

.

Alternatives to the GRM include a methods of moments estimator MoM [24] and a robust 

GRM [53,75]. The latter is

Zhou et al. Page 8

Hum Genet. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ϕi j = 1
∑k = 1

K 4pk 1 − pk
∑

k = 1

K
xik − 2pk x jk − 2pk .

This unbiased estimator generally has smaller variance than the standard estimator S, which 

is sensitive to low minor allele frequencies [78]. The MendelKin-ship.jl module calculates 

the GRM, the robust GRM, and the MoM estimators. All three of these estimators are 

special cases of general kinship estimators that are unbiased under ideal conditions [78]. 

When there is ethnic inhomogeneity and spread in the degrees of relationships, S can exhibit 

bias because it confounds close relatedness and ancestry differences [22]. Ethnic admixture 

can be accommodated by replacing the allele frequency pk by an ethnic specific estimate for 

each individual i [22].

Finding the variances of these estimators has been impossible without simplifying 

assumptions [78]. Our own unpublished approximation to the variance

E S − E(S) F
2 ≈ 1

K2 R
F

2
Φ F

2 + tr(Φ)2
(3)

of the GRM matrix S allows for inbreeding, linkage disequilibrium, and closely related 

relatives. It relies on the simplifying assumption that the fourth moments of the SNP counts 

coincide with the fourth moments of similarly distributed Gaussian random variables. In 

formula (3), tr(A) is the trace of A, ∥A∥F is the Frobenius norm of A, and R is the correlation 

matrix of the SNPs (LD matrix).

To check suspect pedigrees for hidden relatedness, one can compare theoretical kinships ϕij 

and empiric kinships ϕi j It is convenient to put these on a common scale by subjecting them 

to an approximate variance-stabilizing transformation. RA Fisher considered the simpler 

problem of comparing an ordinary covariance matrix Ʃ = (σij) to a sample covariance matrix 

S = (sij). Under an assumption of normality, he argued [27,28] that the quantity

tanh−1 si j
siis j j

− tanh−1 σi j
σiiσ j j

is approximately normal with mean 0 and variance (K − 3)−1, where K is the sample size, 

and tanh−1 is the inverse hyperbolic tangent function. By analogy, we subject the GRM 

matrix or one of its variants to Fisher’s transformation and order the discrepancies from least 

to greatest in absolute value. The OPENMENDEL MendelKinship.jl tutorial explains in a 

concrete example how transformation identifies outlier pairs.

8 Variance Component Models

Association studies are subject to the effects of unmeasured confounding. The most common 

confounder is ethnic ancestry [4, 32, 42], which arises when both trait values and marker 

allele frequencies differ by region of origin. Ancestry informative markers are particularly 
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prone to show up as false positives in a naïıve GWAS [64]. Currently there are two general 

adjustments for ethnic ancestry. The first approach uses either a few principal components of 

the GRM matrix [59, 61, 95] or estimated ancestry proportions [2, 62] as fixed effects. The 

second approach explicitly accounts for the correlation between subjects by including an 

estimate of the kinship matrix, e.g. the GRM matrix, as a random effect in a variance 

components model. When reliable pedigrees are available, the second approach is analogous 

to positing the theoretical kinship matrix as a random effect [10]. Because the theoretical 

kinship matrix does not capture hidden correlations, inclusion of the one of the SNP based 

estimates of the kinship matrix is usually preferred.

In any event, the variance components model y N Xβ, ∑ j = 1
k σ j

2V j  figures prominently in 

genomewide association testing [25, 43]. In this model β are the fixed effects of covariates X 

and σ j
2 is the variance of the jth random effect. Estimation of the parameter vectors β and 

σ2 = σ1
2, …, σk

2 t
 has been the subject of intense study for decades. Most statisticians opt for 

maximum likelihood or restricted maximum likelihood. In the linear mixed model, the 

covariance matrices Vj factor as U jU j
t . The factored form is advantageous if Uj is n × rj with 

rj small. In the absence of low rank structure, one can take Uj to be the Cholesky factor of 

Vj.

The covariance model W = 2σa
2Φ + σe

2I corresponds to polygenic background σa
2  plus 

random noise σe
2 . The kinship matrix here can be theoretical or empirical. The model is 

overly simplistic but widely applied due to its computational tractability. It omits dominance 

effects, shared environment, and parent of origin effects, among other things. Calculation of 

the inverse and determinant of W is the rate limiting step in estimation. In the simple 

polygenic model, a good tactic is to first calculate the spectral decomposition ODOt of Φ, 

where D is a diagonal matrix. One can then exploit the formulas det W = det σa
2D + σe

2I  and 

W−1 = O σa
2D + σe

2I
−1

Ot. The indicated determinant and inverse of the diagonal matrix are 

trivial to compute [36, 50, 71].

Our program VarianceComponentModels.jl incorporates this spectral decomposition tactic. 

It also treats more realistic models with multiple variance components and multivariate 

traits. For estimation we have compared Fisher scoring and the EM algorithms long familiar 

to computational statisticians. We have also explored a new MM algorithm that alternates 

updates of β and σ2 [90]. The normal equation update of β in our algorithm is

βn + 1 = XtWn
−1X

−1
XtWn

−1y,

where Wn is the value of ∑ j = 1
k σ j

2V j at the current estimate of σ2. The variance component 

updates are
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σn + 1, i
2 = σni

2 y − Xβn + 1
tWn

−1ViWn
−1 y − Xβn + 1

tr Wn
−1Vi

. (4)

The MM algorithm converges faster than the standard EM algorithm. Fisher scoring requires 

fewer iterations to converge but substantially more effort per iteration, particularly in high 

dimensions. Both the EM and MM algorithms can be accelerated by quasi-Newton 

extrapolation [87].

The VarianceComponentModels.jl module serves as a convenient vehicle for other genetic 

applications. One example is Mendelian randomization (MR). Observational studies often 

find an association between a biomarker or expression (or methylation) level at a particular 

locus and a quantitative trait. The goal of MR is to assess the statistical support for this 

“exposure” as a cause of the trait, as opposed to reverse causality or confounding [13]. Our 

Mendelian randomization tutorial for continuous traits demonstrates the value of 

modularized genetic software such as VarianceComponentModels.jl.

When there are many loci to test, we [20,89] and others [3,17,36,50] have employed score 

tests or their equivalents in variance component models. Score tests are much faster than 

likelihood ratio tests (LRTs) because score tests require the likelihood to be maximized only 

under the null hypothesis. In contrast, LRTs require the likelihood be maximized both under 

the null and alternative hypotheses. When the null hypothesis is the same for all loci tested, 

this can amount to substantial savings. These score tests are easily extended to include 

maternal genetic effects and maternal-o spring genetic interaction as fixed effects [20]. 

Although most software programs implementing the score test adopt the simple covariance 

model 2σa
2Φ + σe

2I, in principle other variance components such as household effects can be 

included.

Our recent analysis of the GWAS data from the COPDGene study (http://

www.copdgene.org) exemplifies the vast performance gain and yet ease of use of a typical 

OPENMENDEL workflow in genetic heritability analysis of a realistically large data set [93]. 

The data are available from NIH dbGap under phs000179.v5.p2. The steps are: (1) load the 

binary genotypes of 6,670 individuals at 630,860 SNPs, (2) compute summary statistics on 

the SNPs, (3) impute missing genotypes, (4) calculate the empirical kinship matrix, (5) load 

13 phenotypes, (6) estimate the heritability of each phenotype, (7) estimate the coheritability 

of each pair of phenotypes, and (8) fit a joint model to all 13 phenotypes. All these steps are 

performed in a single interactive Julia environment on a common laptop computer. Typically 

such an analysis pipeline would require running at least five separate programs on a Linux 

machine.

In our experience, a pure Julia computation is often faster than the corresponding 

computation in a low-level language such as C, and much faster than any other high-level 

language such as R or Python. Figure 1 compares the speed of fitting large-scale variance 

component models in our Variance-ComponentModels.jl module to the two cutting edge 

programs GCTA [84] and GEMMA [94], both implemented in C++. In this example, there 
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are two variance components, one for additive genetic effects and one for environmental 

effects. To make a fair comparison, the genetic relationship matrix S was pre-computed 

using the GCTA software. There are 13 continuous phenotypes. For both univariate (top 

panel) and bi-variate (bottom panel) models, we observe between 5 and 100 fold speedup 

over GEMMA and even more over GCTA. In all cases, the final log-likelihoods by JULIA 

match those by GCTA and GEMMA to the third digit.

The current versions of GCTA and GEMMA are only available for the x86 64-bit Linux 

operating system, while Julia, and thus OPENMENDEL, are available on all common systems. 

It is remarkable that a cross-platform, interactive, high-level language such as Julia can 

achieve such excellent computational efficiency.

9 SNP-Set Analysis

SNP-set analysis, or pathway-based analysis [79], is a powerful, widely-used strategy in 

sequencing studies. SNPs are grouped into sets to be examined for association with a certain 

phenotype. This analysis has been shown to have increased power over individual SNP 

analysis, especially for identifying rare variant associations [47].

Two types of SNP-set analyses are under active development within OPENMENDEL. The 

VarianceComponentTests.jl module implements different approaches for testing a set of 

markers as random effects. Notably the sequence kernel association test (SKAT) [80] is the 

first method to incorporate the generalized linear mixed model in testing the effect of a set of 

variants on a quantitative or dichotomous trait. Our recent work on exact tests [92] boosts 

the power of SKAT on small samples.

In contrast to marginal SNP-set analysis, an alternative approach is subset selection in a joint 

model y N Xβ, ∑ j = 1
m σ j

2V j + σ0
2I , where Vj is the kernel matrix for the jth SNP-set and the 

σ j
2 for j ≥ 1 are the variance components subject to selection. Variance component selection 

is achieved by minimizing the penalized log-likelihood

−L β, σ2 + ∑
j = 1

m
Pλ σ j ,

where L(β, σ2) is the log-likelihood function and Pλ(σj) is a penalty function. Several 

penalties, including the ridge, the lasso, the smoothly clipped absolute deviation (SCAD), 

and the minimax concave penalty (MCP), are implemented. The MM update (4) generalizes 

to penalized estimation because the variance components σ j
2 are nicely separated in the 

surrogate function [90].

10 Simulation Utilities

Simulation is vital in demonstrating the accuracy and power of new statistical methods. It is 

also important in designing genetic studies, where overly simplistic assumptions can lead to 

low power. Although there are a number of simulators already available [51, 65, 85], there is 
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plenty of room for improvement. The unified nature of the OPENMENDEL environment makes 

it easy to craft code for simulating traits conditional on genotypes under any generalized 

linear model (GLM) or generalized linear mixed models (GLMM).

At the time that this article was written, the MendelTraitSimulate.jl option was under 

development. In its current version, we accommodate study designs involving both 

unrelateds and multigenerational families. We allow the user to specify both fixed and 

random effects for simulated univariate or multivariate traits. The simulated traits can be 

based on arbitrary functions of the provided covariates. By default, the program will use the 

PLINK format and make appropriate calls to SnpArrays.jl and VCFTools.jl.

11 Tutorials

Accompanying this article we have prepared a collection of tutorials via Jupyter Notebooks 

to demonstrate interactive genetic analysis using OPENMENDEL packages (https://github.com/

OpenMendel/Tutorials). These include (1) PLINK binary data input, summary statistics, 

filtering, and visualization, (2) kinship calculation and comparison, (3) population GWAS, 

(4) iterative hard thresholding for GWAS, (5) heritability estimation, (6) Mendelian 

randomization, (7) GWAS based on linear mixed models, (8) SNP-set analysis, and soon to 

come (9) trait simulation. These tutorials will adapt to and grow with the expanding 

OPENMENDEL ecosystem.

12 Discussion

Readers may be familiar with our existing statistical package MENDEL [45]. Although 

MENDEL possesses many advantages, our goal going forward is not to modernize it, but to 

create an entirely new open source platform. Although Mendel is free, it is not open source. 

The Fortran language underlying it is also antiquated. Fortran lacks the supporting libraries 

of R and Matlab, its graphics functionality is nil, it neglects crucial statistical and linear 

algebra tools, and its code is needlessly verbose.

For the sake of brevity, we have not discussed many OPENMENDEL modules. Omitted 

modules include: (1) discovery of ancestry informative markers, (2) estimation of allele 

frequencies from pedigree data, (3) testing for transmission disequilibrium by the gamete 

competition model, (4) random genotype generation by gene dropping, (5) genetic 

counseling, (6) two-point linkage analysis, (7) location scores for linkage analysis, and (8) 

function optimization by recursive quadratic programming. Table 2 lists the currently 

available OPENMENDEL analysis options and utility packages as well as those soon to be 

released as part of the OPENMENDEL project.

OPENMENDEL is inspired by a vision of genomic analysis that extracts the maximum benefit 

from the world-wide increase in genetic data and exploits the promise of collaborative, 

parallel, and distributed computing. We are not alone in this vision. As examples, notable 

strides have been made by HAIL (https://hail.is/) and TOPMed (https://www.nhlbiwgs.org/

awards) in enabling large scale sequence analysis and the Ark data management system for 

health and biomedical research [7,63]. In our opinion, however, the barriers need to be 

lowered further to encourage more statistical geneticists and genetic epidemiologists to take 
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part. The Julia language provides the ideal vehicles for this purpose. It is our hope that the 

OPENMENDEL project will spark a global effort to build a computing platform equal to the 

challenges of 21st-century genetic research.
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Fig. 1. 
Comparison of the OpenMendel VarianceComponentModels.jl implementation with GCTA 

(C++) and GEMMA (C++) for fitting a univariate variance component model 

Y N 0, σa
2S + σe

2I  (top panel) and a bivariate variance component model 

Y N 0, Σa ⊗ S + Σe ⊗ I  (bottom panel). GEMMA and OPENMENDEL runtimes exclude the 

eigen-decomposition of S, which is pre-computed.
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Table 1

Comparison of imputation methods.

Mendel Impute MaCH IMPUTE2

r2 0.683 0.751 0.802

relative time 1.00 13.10 7.41
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Table 2

JULIA packages in the OPENMENDEL project.

OPENMENDEL Option Description

MendelAimSelection.jl Selects the most informative SNPs for predicting ancestry

MendelEstimateFrequencies.jl Estimates allele frequencies from pedigree data

MendelGameteCompetition.jl Tests for association under the gamete competition model

MendelGeneticCounseling.jl Computes risks in genetic counseling problems

MendelGWAS.jl Tests for association in genome-wide data

MendelIHT.jl GWAS using Iterative Hard Thresholding (forthcoming)

MendelImpute.jl Genotype imputation (forthcoming)

MendelKinship.jl Computes kinship and other identity coefficients

MendelLocationScores.jl Maps a trait via the method of location scores

MendelOrdinalGWAS.jl Implements GWAS for ordinal categorial phenotypes

MendelTwoPointLinkage.jl Implements two-point linkage analysis

MendelBase.jl Base functions for OPENMENDEL

MendelGeneDropping.jl Simulates genotypes based on pedigrees

MendelSearch.jl Optimization routines

MendelTraitSimulate.jl Trait simulation using GLM and GLMM (forthcoming)

SnpArrays.jl Utilities for handling compressed storage of biallelic SNP data

VCFTools.jl Utilities for handling compressed storage of sequence data

VarianceComponentModels.jl Utilities for fitting and testing variance components models
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