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SUMMARY

Microbial interactions are major drivers of microbial community dynamics and functions but 

remain challenging to identify due to limitations in parallel culturing and absolute abundance 

quantification of community members across environments and replicates. To this end, we 

developed Microbial Interaction Network Inference in microdroplets (MINI-Drop). Fluorescence 

microscopy coupled to computer vision techniques were used to rapidly determine the absolute 

abundance of each strain in hundreds to thousands of droplets per condition. We showed that 

MINI-Drop could accurately infer pairwise and higher-order interactions in synthetic consortia. 

We developed a stochastic model of community assembly to provide insight into the heterogeneity 

in community states across droplets. Finally, we elucidated the complex web of interactions 

linking antibiotics and different species in a synthetic consortium. In sum, we demonstrated a 

robust and generalizable method to infer microbial interaction networks by random encapsulation 

of sub-communities into microfluidic droplets.

eTOC Blurb

Microorganisms often live in complex multi-species communities, where individual members 

interact with each other and the environment. These interactions are challenging to decipher and 

dictate the composition, functions, and dynamics of microbial ecosystems. We developed 

Microbial Interaction Network Inference in microdroplets (MINI-Drop) to identify the interactions 
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within microbial communities across different environments with hundreds to thousands of droplet 

replicates. We showed that MINI-Drop can identify pairwise and higher-order interactions in a 

synthetic microbial community and developed a mathematical model to investigate heterogeneity 

in community assembly in small populations. Finally, we used MINI-Drop to elucidate a complex 

interaction network between combinations of antibiotics and species in a synthetic microbial 

community.

Graphical Abstract

INTRODUCTION

Microbial communities have a tremendous impact on diverse environments ranging from the 

human body to the plant rhizosphere (Berendsen et al., 2012; Clemente et al., 2012). 

Microbe-microbe and environment-microbe interactions are major determinants of microbial 

communities and microbiomes (Cao et al., 2019; Venturelli et al., 2016). Deciphering 

interaction networks in high-dimensional microbial communities is challenging due to the 

need to rapidly and accurately determine the absolute abundance of each community 

member across many sub-communities and environments (Cao et al., 2017; Harcombe et al., 

2016).

The population sizes of microbial consortia can range from less than ten cells in mixed 

species biofilm aggregates to 1011 cells mL−1 in the human colon (Connell et al., 2014; 

Sender et al., 2016; Stoodley et al., 2001). Cellular growth history, the temporal order of 

strain colonization, or the initial phase of microbial competition can impact community 

assembly and lead to significant heterogeneity in community behaviors (von Bronk et al., 
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2017; Kong et al., 2018; Vega and Gore, 2017; Venturelli et al., 2018; Zhou et al., 2013). 

Our understanding of microbial consortia in small populations is limited due to technical 

challenges in the manipulation and analysis of small populations of cells (Connell et al., 

2014). Therefore, high-throughput methods that can rapidly resolve microbial interaction 

networks across different initial community states, population sizes and environments would 

enable a better understanding of the key parameters shaping the structure and functions of 

microbial communities.

Microbial interaction network inference requires accurate measurements of the absolute 

abundance of each member of the community (Cao et al., 2017; Fisher and Mehta, 2014). 

Recent experimental efforts have used models trained on measurements of 1–3 member 

communities to predict community composition or function of up to 12 members to varying 

degrees of accuracy (Friedman et al., 2017; Guo and Boedicker, 2016; Kong et al., 2018; 

Mounier et al., 2008; Venturelli et al., 2018). Absolute abundance quantification of each 

member of a microbial community has ranged from low-throughput selective plating to 

count colony forming units (tens of samples per experiment) (Mounier et al., 2008) to 

optical density multiplied by relative abundance based on next-generation sequencing of 

samples generated through robotic high-throughput culturing (hundreds of samples per 

experiment) (Venturelli et al., 2018).

Encapsulation of microbial communities into microdroplets has been used to study 

ecological and evolutionary processes in microbial communities (Bachmann et al., 2013; 

Park et al., 2011). Water-in-oil droplets can be generated at kilohertz (kHz) rates using 

microfluidics, wherein cells from a mixed culture are randomly encapsulated into droplets 

yielding distinct sub-communities that can be studied in parallel (millions of samples per 

experiment). Each droplet is a miniaturized compartment that can be used to study 

interactions between community members in small populations. Microfluidic technologies 

enable the generation of well-controlled droplet environments of ~1% size variation (Guo et 

al., 2012). However, previous studies have not fully leveraged the capabilities of this 

technology to quantitatively investigate microbial communities. Further, we lack a 

systematic method to rapidly infer microbial interactions using droplet microfluidics in 

different environmental contexts.

To address this challenge, we developed Microbial Interaction Network Inference in 

microdroplets (MINI-Drop). To infer microbial interactions based on the absolute abundance 

of each strain across hundreds to thousands of samples, we developed an automated 

computational method coupled to fluorescence microscopy to rapidly segment droplet 

images and accurately count fluorescently labeled cells within each droplet. We tested the 

capability of MINI-Drop to accurately infer microbial interactions using a microbial 

interaction toolbox composed of positive and negative interactions mediated by distinct 

molecular mechanisms. Our results demonstrate that MINI-Drop can accurately decipher 

pairwise as well as higher-order interactions by analyzing droplets containing 1–3 strains. 

We investigated how the molecular composition of the environment shapes the ecological 

network of a three-member consortium. A probabilistic model of cell growth modified by 

microbial interactions described the compositional heterogeneity in community states across 

droplets, providing insight into the forces shaping community assembly in small 
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populations. Finally, we investigated the complex interplay between combinations of 

antibiotics and temperature on the assembly and species interactions in a three-member 

consortium.

RESULTS

Microbial interactions represent the net impact (positive, negative or negligible) of an 

organism on the growth of another over a specified time interval (Cao et al., 2019). 

Microbial interactions can be quantified by evaluating the difference in phenotype (e.g. 

growth response or metabolic activity) of an organism in the absence and presence of 

another strain (partner strain). Encapsulation of cells in a microbial community into droplets 

using techniques from droplet-microfluidics enables parallel culturing of many sub-

communities (Fig. 1a). To infer microbial interactions, we needed a scalable method to 

determine the absolute abundance of each strain within each droplet. The average 

fluorescence in each droplet may not be proportional to the number of cells due to variability 

in cellular growth rates, which dictates the rate of dilution of the fluorescent reporter (Fig. 

S1a). In addition, absolute abundance information is critical for accurate parameter 

estimation for computational models (Cao et al., 2017; Fisher and Mehta, 2014). Therefore, 

we developed an automated procedure using techniques from computer vision to rapidly 

identify droplets (Fig. S1b) and count the number of fluorescently labeled cells in each 

droplet (Fig. S1c). The droplets were binned according to strain composition (Fig. S1d) and 

the cell counts were used to infer the interaction type (positive, negative or negligible), 

strength and directionality (see STAR Methods).

To evaluate the accuracy and dynamic range of the cell-counting method, CFP-labeled E. 
coli, RFP-labeled E. coli and YFP-labeled S. typhimurium were mixed in equal volumetric 

ratios and serially diluted to generate a broad range of cell densities (Fig. 1b). Each dilution 

of the mixed culture was encapsulated into 34 picoliter (pL) droplets (40 μm diameter), 

imaged using fluorescence microscopy, and analyzed using a computational workflow (see 

STAR methods). The number of cells of each fluorescently labeled strain decreased linearly 

with each dilution, with the exception of the highest density droplets (Fig. 1c) and the cell 

count distributions matched the expected Poisson distribution (Fig. S2a). These data 

demonstrate at least a 64-fold linear range of the cell counting method of each fluorescent 

reporter. In contrast, a similar analysis using the mean fluorescence across the droplet 

images was inaccurate in the dilution range below 2−4, which corresponds to the regime of 

cell counts for poorly growing strains (Fig. S2b). Accurate quantification of low cell counts 

is important for accurate estimation of the interaction strengths. In a separate experiment 

described below involving growth of fluorescently labeled strains in droplets (Table S1, E6), 

we analyzed the relationship between droplet diameter and the number of fluorescently 

labeled cells to determine if the experimental noise in this parameter contributed to the 

variability in cell growth across droplets. Our results showed that an ~8 mM variation in 

droplet diameter did not correlate with the number of cells labeled with CFP, YFP or RFP, 

demonstrating that this factor did not substantially contribute to differences in cell counts 

among droplets (Fig. S2c,d,e).
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Investigating microbial interaction networks in two-member consortia

To determine whether MINI-Drop could illuminate microbial interactions in synthetic 

consortia, we investigated two-member consortia engineered to display defined interactions. 

A microbial interaction was defined as a statistically significant difference in the average 

number of cells of a given strain in the presence of a second strain (partner) compared to the 

absence of the partner at a specific time point. To investigate positive interaction networks 

with MINI-Drop, we constructed a consortium composed of an RFP-labeled E. coli 
methionine auxotroph (EC Met-) and a GFP-labeled B. subtilis tryptophan auxotroph (BS 

Trp-, Table S1, E1). In the absence of supplemented amino acids, the growth of B. subtilis 
requires secretion of tryptophan from E. coli and the growth of E. coli requires secretion of 

methionine from B. subtilis, which together generates a bidirectional positive interaction 

network (Fig. 2a). The two species were mixed in equal proportions based on OD600 

measurements, encapsulated into droplets such that each droplet had 1–2 cells on average 

according to a Poisson distribution and the droplets were incubated at 37°C for 18 hours. 

The fluorescence microscopy images and cell count distributions demonstrated that single 

species droplets exhibited a low number of total cells, whereas droplets containing both 

species exhibited significantly higher number of cells of each strain (Fig. 2b,c). The inferred 

interaction network exhibited bidirectional positive interactions, mirroring the topology of 

the expected interaction network (Fig. 2a,d) and demonstrating that MINI-Drop could 

deduce positive interactions. In addition, both strains exhibited poor growth in absence of 

the partner strain (denoted by the size of the node in the network). The cell counts for BS 

Trp- and EC Met- were positively correlated, suggesting that the correlation structure in 

absolute abundance could be used to identify bidirectional positive interactions (Fig. S3a).

We next investigated whether MINI-Drop could decipher negative interactions. A synthetic 

community was constructed wherein a GFP-labeled E. coli strain (sender strain) was 

engineered to express LuxI, a synthetase for the quorum-sensing signal C6 acyl homoserine 

lactone (AHL). AHL diffuses into the RFP-labeled E. coli strain (receiver strain), binds and 

activates the receptor LuxR, which regulates the expression of the MazF toxin (Fig. 2e, 

Table S1, E2). High expression levels of the endoribonuclease MazF inhibits cell growth by 

inducing mRNA decay (Venturelli et al., 2017), generating a strong negative interaction 

from the sender to the receiver strain. To characterize this community using MINI-Drop, the 

sender and receiver strains were mixed in equal proportions based on OD600, encapsulated 

into droplets and incubated at 37°C for 18 hr. The fluorescent microscopy images and cell 

count distributions showed that the number of receiver cells was significantly lower in 

droplets containing both the sender and receiver strains compared to the average number of 

receiver cells in single-strain droplets (Fig. 2f,g). The average number of sender cells in 

droplets containing the sender strain alone was 16.7-fold higher than the average number of 

receiver cells in droplets containing only the receiver strain, presumably due to leakiness of 

mazF from the pLux promoter in the absence of AHL. The inferred interaction network 

exhibited a strong negative interaction from the sender to the receiver and a weak negative 

interaction from the receiver to the sender (Fig. 2h). The node size of the receiver strain was 

significantly smaller than the sender strain, illustrating the substantial difference in single 

strain fitness in the absence of the partner. The cell counts of the sender and receiver were 
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negatively correlated across droplets, suggesting that the absolute abundance correlation 

structure could be used to pinpoint bidirectional negative interactions (Fig. S3b).

The molecular composition of the environment shapes a microbial interaction network

The molecular composition of the environment influences the energetic costs and benefits of 

microbial interactions in microbial communities (Cao et al., 2019; Harcombe et al., 2016; 

Liu et al., 2017). A key challenge is understanding how microbial interaction networks are 

modulated by environmental parameters. To investigate this question, we constructed a 

three-member community consisting of two strains that interact via bidirectional positive 

interactions and a third strain that promotes growth of constituent members of the 

community but does not receive a benefit from the community. Specifically, the strains 

included RFP-labeled E. coli (EC WT), CFP-labeled E. coli methionine auxotroph (EC 

Met-), and YFP-labeled S. typhimurium (ST Lac*) (Fig. 3a). This consortium was 

characterized in four conditions that varied the carbon source (lactose or glucose) and the 

presence or absence of supplemented methionine. In lactose minimal media, E. coli can 

consume lactose and secrete carbon byproducts that can be utilized as substrates by ST Lac* 

(Table S1, E3–6) (Harcombe, 2010). In the absence of supplemented methionine, the growth 

of EC Met- is dependent on methionine or intermediate(s) used to produce methionine that 

are secreted by constituent community members.

We used MINI-Drop to infer the pairwise microbial interaction network by analyzing the 

number of cells of each community member in single strain and two-member droplets. In 

lactose minimal media lacking supplemented methionine, the inferred network mirrored the 

expected network, exhibiting bidirectional positive interactions between ST Lac* and EC 

Met- and unidirectional positive interactions from EC WT to ST Lac* or to EC Met- (Fig. 

3a,e,i, Table S1, E3, Table S2). In lactose minimal media supplemented with methionine, the 

positive outgoing interactions from EC WT or ST Lac* to EC Met- were absent in the 

network and bidirectional negative interactions linked EC Met- and EC WT (Fig. 3b,f,j, 

Table S1, E4). In glucose minimal media lacking supplemented methionine, the positive 

interactions from EC WT or EC Met- to ST Lac* were absent and instead EC WT and ST 

Lac* were coupled by bidirectional negative interactions (Fig. 3c,g,k, Table S1, E5). By 

contrast to the expected network, bidirectional negative interactions were inferred between 

all pairs of strains in glucose minimal media supplemented with methionine (Fig. 3d,h,l, 

Table S1, E6). The size of the EC WT node in the network did not vary significantly across 

conditions, indicating that the growth of EC WT was not sensitive to the environmental 

changes (Fig. 3i,j,k,l). By contrast, the size of the EC Met- or ST Lac* nodes were larger in 

the presence of methionine and glucose, respectively. Across all environments, the sign of 

the Pearson correlation coefficient clustered according to the pairwise network topology, 

wherein positive or negative correlation coefficients were associated with positive or 

negative interactions, respectively (Fig. S3, S4). These data show that correlations in the 

absolute abundance of strains across droplets can be used to classify two-member network 

topologies.

We next investigated the coexistence of all three strains across environmental conditions by 

examining three-member droplets. The cooperative network (lactose minimal media lacking 
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methionine) displayed the highest strain coexistence, indicating that positive interactions 

were critical features of the network that promoted ecological stability (Fig. S5a). By 

contrast, the competitive network (glucose minimal media supplemented with methionine) 

exhibited the lowest strain coexistence across all conditions, suggesting that negative 

interactions can destabilize the community. Networks with combinations of positive and 

negative interactions displayed intermediate strain coexistence. The distributions of cell 

counts in three-member droplets exhibited a distinct clustering pattern in each condition, 

demonstrating that the environmental context is a major driver of community assembly (Fig. 

S5b). In sum, our results demonstrate that the microbial interaction network is highly 

context-dependent and the network topology changes from cooperative to competitive as a 

function of the molecular composition of the environment.

Investigating higher-order interactions using MINI-Drop

Higher-order interactions occur when a pairwise interaction is modified in the presence of a 

third community member (Bairey et al., 2016; Billick and Case, 1994) and these interactions 

are challenging to identify in microbial communities. We defined a higher-order interaction 

as a difference in the presence and sign (positive or negative) of an interaction in a three-

member community compared to the presence and sign of the interaction in each two-

member sub-community (Fig. 4a). We tested whether MINI-Drop could identify higher-

order interactions by analyzing the cell count distributions of each strain in three-member 

droplets in addition to single-strain and two-member droplets. To do so, we studied a 

community consisting of RFP-labeled E. coli methionine auxotroph that is also deficient in 

lactose metabolism (EC Met- Lac*, Table S1, E7), EC Met- (CFP) and ST Lac*. In lactose 

minimal media lacking supplemented methionine, EC Met- and ST Lac* can secrete carbon 

byproducts and metabolites to rescue the methionine autotrophy and thus together enable the 

growth of EC Met- Lac*. Our results showed that the number of EC Met- Lac* cells was 

higher in the presence of both EC Met- and ST Lac* but not in the presence of either single 

strain, demonstrating that MINI-Drop could identify higher-order interactions (Fig. 4b, 

p=0.0012, Table S3). In the pairwise network, EC Met- (CFP) and ST Lac* displayed 

bidirectional positive interactions, recapitulating the expected network topology (Fig. 3a, 

Fig. S5c,d). In addition, the cell counts of EC Met- and ST Lac* displayed a strong positive 

correlation consistent with a bidirectional positive interaction topology (Fig. S3d).

To investigate other higher-order interactions that were present in our data, we analyzed 

droplets containing a three-member consortium (EC WT, EC Met- and ST Lac), two-

member sub-communities and single strains across four different environments (Fig. 3, 

Table S1, E3–E6). Our results illuminated a higher-order interaction in lactose minimal 

media (Table S1, E3, Table S3), where EC WT was significantly inhibited in the presence of 

both EC Met- and ST Lac*, while no negative interaction was observed in the pairwise 

interaction networks of EC WT co-cultured with EC Met- or ST Lac* (Fig. 3a, Fig. 4d,e). 

This higher-order interaction could be explained by enhanced growth of the mutualistic pair 

EC Met- and ST Lac*, which in turn negatively impacted the growth of EC WT. Higher-

order interactions occurred in one of twelve possible cases (3 community members in 4 

environments) in the EC Met-, EC WT, ST Lac* consortium (Table S1, E3–6, Table S3). In 

sum, our results show that MINI-Drop can elucidate higher-order interactions in microbial 
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consortia and that higher-order interactions in this consortium were infrequent across 

different environmental conditions.

The sensitivity of the MINI-Drop method was evaluated based on number of droplets 

(replicates) required to infer microbial interactions of different strengths in experiments E1–

E7 (Table S1). Specifically, we analyzed the relationship between interaction strength 

magnitude, number of replicates, and interaction significance (p<0.05) (Fig. S6). Our results 

showed that the significance of each interaction increased exponentially as a function of the 

number of droplets (Fig. S6a). The strength of the interaction was inversely related to the 

number of droplets required for statistical significance of the interaction. For example, 

strong interactions required as few as 15 replicates whereas weak interactions required more 

than 50 replicates in order to be detected (Fig. S6b).

Discrete-time Markov model of community assembly

A stochastic population dynamic model was constructed to understand community assembly 

from a small number of cells and the heterogeneity in community composition across 

droplets. In small microbial populations, stochastic variation in intracellular molecular 

concentrations can impact community assembly and functions (Boedicker et al., 2009; 

Connell et al., 2014; Hansen et al., 2016). To model community assembly in small 

populations, microbial growth can be represented as a probabilistic event, such that two 

communities seeded with the same initial strain composition exhibit different steady-state 

community compositions (Fig. 5a) (Horowitz et al., 2010). We investigated whether the 

model could be parameterized to recapitulate the cell count distributions in two and three 

strain droplets.

In the model, communities are seeded according to a Poisson distribution with λ=1.5. 

Seeded communities that do not contain both strains were discarded and resampled. At each 

time step, strain i can undergo cell division, death or remain static according to the 

probabilities Pdiv,i, Pdeath,i, and Pstatic,i, respectively (Fig. 5b). The cell death state can also 

represent a non-growing or dormant state for the duration of the experiment. The 

probabilities Pdiv,i, and Pstatic,i, are a function of the number of cells of each strain with 

parameters specific to each strain and the probability Pdeath,i, is a fixed parameter. Negative 

interactions with self or non-self are represented by inverted sigmoidal logistic functions, 

such that the probability of cell division is inversely related to the cell number. Positive 

interactions are represented as sigmoidal logistic functions, such that the probability of cell 

division increases as a function of the number of partner cells (see STAR Methods).

We tested whether this modeling framework could recapitulate the experimental cell count 

distributions, based on the assumption that the measurement time points represent model 

steady-states. Models were constructed using the positive or negative interaction functions 

and model parameters were identified to recapitulate the cell count distributions of each 

strain. We constructed a model for the EC WT, ST Lac* community grown in glucose 

minimal media that exhibited a bidirectional negative interaction network (Fig. 5c, left). Our 

results showed three clusters representing distinct community states exhibiting high 

abundance of one strain (Fig. 5c, center, clusters 1 and 4), coexistence of both strains (Fig. 

5c, center, cluster 2), or low cell counts of both strains (Fig. 5c, center, cluster 3). 
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Representative images of droplets from each cluster showed significant differences in 

community composition (Fig. 5c, right). A model of a bidirectional negative interaction 

network displaying strong and weak negative interactions was able to recapitulate the cell 

count distribution (Fig. 5c, middle, Table S4).

We evaluated whether the model could recapitulate the cell count distributions of networks 

with positive interactions. Models constructed for the EC Met-, ST Lac* consortium in two 

different environments exhibiting unidirectional or bidirectional positive interactions (Table 

S1, E3–4) could recapitulate the cell count distributions (Fig. 5d,e). Next, a model was 

developed for the quorum sensing regulated toxin consortium (Table S1, E2) that displayed a 

bidirectional negative interaction network. A model of strong and weak bidirectional 

negative interactions recapitulated the negative correlation in the cell counts of the sender 

and receiver strains (Fig. 5f). Our results demonstrate that bidirectional negative interaction 

networks can realize distinct community state distributions (Fig. 5c,f). In the model, the 

number of partner cells required to impact the probability of cell division dictates the 

strength of an interaction (Fig. 5f, Fig. S7a). The toxin mediated negative interaction in the 

quorum sensing regulated toxin consortium (Table S1, E2) exhibited a higher sensitivity to 

partner cell number than the negative interaction from ST Lac* to EC WT in glucose 

minimal media (Table S1, E5, Fig. S7a). Therefore, the recipients of the strong negative 

interactions displayed different sensitivities to variations in donor cell number, providing 

insight into the differences in the cell count distributions.

We next tested whether the model could capture the experimental cell count distributions in 

two and three-member droplets using a single parameter set. A model parameterized to the 

cell count distributions of the EC WT, EC Met- and ST Lac* consortium in glucose minimal 

media lacking supplemented methionine (Table S1, E5) recapitulated the experimental 

distributions in two and three-member droplets (Fig. S8). In sum, the model was able to 

describe the cell count distributions for positive and negative interactions mediated by 

distinct molecular mechanisms, illustrating that a probabilistic growth model can explain the 

heterogeneity in community states in small populations.

Investigating pairwise and higher order drug interactions on community assembly

Antibiotic administration is a severe perturbation that alters community composition by 

reducing diversity in the human gut microbiome for a period of time before recovery (Palleja 

et al., 2018; Shaw et al., 2019). Synergistic or antagonistic interactions between different 

antibiotics can increase or reduce the effects of each single antibiotic on bacterial growth 

and viability. Previous work has investigated drug interactions on single bacterial strains but 

the effects of combinations of antibiotics on community assembly and interactions remains 

largely unknown (Kulesa et al., 2018; Tekin et al., 2018). Microbial interactions have been 

shown to be major variables shaping antibiotic tolerance in microbial communities 

(Adamowicz et al., 2018; Radlinski et al., 2017). We investigated whether MINI-Drop could 

elucidate the web of interactions linking antibiotic and species in a three-member microbial 

consortium consisting of EC Met-, ST Lac*, and RFP-labeled Methylobacterium extorquens 
(ME), a soil bacterium that can degrade methylamine to produce ammonia (Adamowicz et 

al., 2018). The effectiveness of antibiotics can vary with temperature (Cruz-Loya et al., 
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2019) and the growth of ME is inhibited by elevated temperatures (Attwood and Harder, 

1972). Therefore, we sought to determine the effect of temperature on the interaction 

network.

The community was encapsulated in a modified Hypho medium (STAR Methods, Table S5) 

with all single and pairwise combinations of carbenicillin (CRB), streptomycin (STR), and 

erythromycin (ERY) at sub-lethal concentrations (Fig. S9a,b,c, Table S1, E8–21). The 

droplets in each condition were partitioned into two aliquots, incubated at 30°C or 37°C and 

then imaged following 36 or 18 hr, respectively, to account for slower growth kinetics at the 

lower incubation temperature (Fig. 6a). We inferred the interaction networks in each 

condition using the same analysis methods as the experiments described above (Fig. 

S10a,b). Due to the complexity of the system, we further analyzed the data to quantify 

various levels of interaction between combinations of antibiotics and species. Pairwise 

interactions between species (species-species) and each antibiotic and species (antibiotic-

species) were determined by evaluating the ratio of the mean number of cells in the presence 

of a partner strain or antibiotic to the absence of these factors (Tables S6–8, Fig. 6b,c). 

Higher-order interactions were inferred by evaluating how antibiotic-species interactions 

changed in the presence of a second antibiotic or species (species-antibiotic-species or 

antibiotic-antibiotic-species) (Tables S6–8, Fig. 6b,c).

Our results showed that ST Lac* provided a substantial growth benefit to EC Met- at both 

temperatures, presumably due cross-feeding of methionine or missing intermediate(s) 

required to produce methionine. Notably, this positive interaction was preserved in the 

presence of ERY, eliminated with the addition of either STR or CRB and maintained in the 

presence of both ERY and CRB (Fig. S10a,b). Weak negative interactions were present in 

most cases where substantial growth of both species was detected, suggesting that growth 

correlated activities such as microbial competition or production of toxic compounds was a 

prevalent mode of interaction. At 30°C, the outgoing interaction from EC Met- to ME 

displayed a sign change from negative to positive with the addition of STR, demonstrating 

that the action of STR induced a growth benefit of ME in the presence of EC Met- (Fig. 

S10a).

For antibiotic-microbe interactions, STR primarily inhibited the growth of EC Met- without 

substantially suppressing the growth of ME or ST Lac* at both temperatures, mirroring the 

differences in susceptibility to STR in a larger population in microtiter plates (Fig. S9c). 

ERY weakly inhibited the growth of all three strains at 30°C, consistent with the microtiter 

plate experiment that showed reduced growth of all species in the presence of ERY (Fig. 

S9b). CRB strongly inhibited the growth of ST Lac* in both temperatures, but only 

substantially impacted the growth of EC Met- at 37°C, indicating that temp erature is a 

major variable influencing antibiotic susceptibility across different species (Fig. 6b,c).

We next examined how a second species impacted the interaction between an antibiotic and 

each community member (species-antibiotic-species interactions). The growth of EC Met- in 

the presence of ERY and ST Lac* was enhanced at both temperatures, suggesting that EC 

Met- was still able to benefit from the presence of ST Lac* despite inhibition of both strains 

by ERY (Fig. 6b,c, Fig. S10a,b). Notably, this positive interaction was not observed in the 
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presence of CRB, but was observed in the presence of both ERY and CRB (Fig. S10a,b). 

The growth of ST Lac* in ERY was reduced in the presence of ME at 30°C or in the 

presence of EC Met- at 37°C, indicating that temperature is a critical parameter shaping 

microbial interaction networks (Fig. 6b,c). Notably, while inhibition of ST Lac* by ME at 

30°C was maintained in the presence of ERY and was not detected in the presence of CRB, 

inhibition was detected in the presence of both CRB and ERY.

We examined how combinations of antibiotics influences the effects of single antibiotics on 

the growth of each species (antibiotic-antibiotic-species interactions). STR enhanced the 

growth of ME in the presence of ERY compared to ERY alone at 30°C, representing an 

antagonistic relationship between STR and ERY (Fig. 6b). By contrast, the growth inhibition 

of ST Lac* was further enhanced in the presence of both STR and CRB relative to CRB 

alone at 37°C, demonstrating a synergistic relationship between STR and CRB (Fig. 6c). 

Antagonism between STR and ERY and synergy between STR and ampicillin (same 

mechanism of action as CRB) have been previously reported for E. coli but here we observe 

similar antibiotic-antibiotic interactions in different bacterial species (Yeh et al., 2006).

The antibiotic-species and antibiotic-antibiotic-species interactions were inferred by 

comparing cell counts from different populations of droplets. As such, differences in 

environmental conditions could alter cell morphology or fluorescence and potentially 

contribute to variation in cell counts. For example, the cell morphology of ST Lac* and to a 

lesser extent EC Met- in droplets containing CRB were altered compared to the absence of 

CRB, which could impact the accuracy of the cell counting method (Fig. S9f) (Rolinson, 

1980). Therefore, the magnitudes of these interactions should be considered as approximate. 

However, these data highlight a benefit of MINI-Drop, where a cell morphology change was 

detected in the presence of CRB that would have been overlooked by population-level 

measurements such as bulk fluorescence, selective plating, or sequencing-based methods.

To further understand how antibiotics impact community assembly, we evaluated the effects 

of antibiotics on species coexistence in three-member droplets (Fig. S9d,e). The presence of 

antibiotics globally reduced coexistence relative to the no antibiotic condition. In 30°C CRB 

conditions, coexistence was almost entirely eliminated due to its extreme impact on the 

growth of ST Lac* (Fig. 6b). Coexistence was lower in the presence of STR-CRB at 37°C 

relative to either STR or CRB alone, likely due to the synergistic impact of these antibiotics 

on growth inhibition of ST Lac* (Fig. 6c). Additionally, higher levels of coexistence were 

observed in all conditions containing CRB at 37°C compared to 30°C, potentially attributed 

to reduced inhibition of ST Lac* by CRB at 37°C.

DISCUSSION

We showed that MINI-Drop can rapidly infer pairwise as well as higher-order microbial 

interactions in two and three-member consortia in different environmental conditions 

compared to traditional methods to study microbial interaction networks (Friedman et al., 

2017; Venturelli et al., 2018). While all of the examples in this work involved bacteria 

expressing fluorescent proteins, orthogonal fluorescent labeling of the bacterial outer 

membranes and proteins via click chemistry before encapsulation in droplets could be used 
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to apply MINI-Drop to organisms that are not genetically tractable (Geva-Zatorsky et al., 

2015; Hudak et al., 2017). In addition, droplets could be injected with fluorescent stains for 

metabolic activity, cell damage, nucleic acid content or reagents for biochemical assays to 

potentially distinguish different species and characterize single-cell phenotypes in a 

microbial community (Maurice and Turnbaugh, 2013). This method can be scaled to 

quantify interactions in higher-dimensional (>3 members) communities using compatible 

fluorescent labels or combinatorial fluorescent imaging of multiple reporters within the same 

cell. While the requirement for orthogonal fluorescent labels does limit the scalability of this 

approach, MINI-Drop provides the foundation for the development of imaging-independent 

techniques that could be applied to higher complexity communities.

In MINI-Drop, a single experiment generates hundreds to thousands of replicates of many 

sub-communities. The mean number of cells per drop following cell encapsulation can be 

manipulated to investigate the contribution of initial cell density to microbial interactions or 

increase the proportion of multi-strain droplets for interrogation of higher-order interactions. 

In the three-member consortia (Table S1, E3–6), strains with higher fitness in the absence of 

a partner tended to display outgoing negative interactions, whereas strains with lower fitness 

had the propensity for incoming positive interactions. Therefore, the competitive ability of 

the strain was an indicator of outgoing negative interactions, suggesting that the unexpected 

negative interactions (Fig. 3l) could be attributed to growth-coupled activities such as 

resource competition and/or metabolic waste by-product secretion. Future work could link 

MINI-Drop to fluorescent dye droplet barcoding to elucidate microbial interaction networks 

across a large number of environmental conditions in parallel (Hori et al., 2017; Kulesa et 

al., 2018; Miller et al., 2011). Using this droplet barcoding approach, interaction 

mechanisms could be inferred by screening candidate interaction-mediating molecules to 

identify conditions in which interactions are eliminated.

Previous methods of microbial interaction inference using modeling frameworks such as the 

generalized Lotka-Volterra (gLV) model are constrained by mathematical relationships 

(Momeni et al., 2017). For example, a gLV model of strong bidirectional positive 

interactions (mutualism) tends to be unstable, leading to potential underrepresentation of 

bidirectional positive interactions. Further, it is challenging to pinpoint if the failure of a 

pairwise gLV model to accurately fit experimental data is attributed to the presence of 

higher-order interactions or to unmodeled dynamics such as metabolites mediating the 

interactions. By contrast, MINI-Drop is not constrained to a defined mathematical 

framework and thus can readily identify higher-order interactions in the networks. We 

showed that MINI-Drop accurately inferred diverse interaction topologies including 

unidirectional positive, bidirectional positive or bidirectional negative networks. In addition 

to deciphering engineered interactions, MINI-Drop illuminated pairwise interactions as well 

as higher-order interactions that were not designed.

The throughput of the MINI-Drop method was enabled by coupling two automated and 

scalable technologies, droplet microfluidics and computational image analysis. The large 

number of sub-community replicates produced by MINI-Drop allows investigation of the 

contribution of initial conditions to the heterogeneity in community assembly in small 

populations. A probabilistic analysis of the distribution of community states provides insight 
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into the stochastic forces shaping community behaviors. For example, we observed that 

bidirectional positive networks displayed frequent co-occurrence (Fig. 5e, Fig. S3, Fig. S4), 

whereas a bidirectional negative network can realize a set of distinct community states (Fig. 

5c,e). The correlation structure between taxa in a microbial community is frequently used to 

identify potential interactions based on co-occurrence or co-exclusion patterns (Faust et al., 

2012). Our results suggest that correlation structure may not illuminate negative interactions 

due to the potential for multiple community states. However, the mapping between 

correlation structure and interaction networks could differ at different population sizes and 

should be investigated.

Our stochastic growth model can recapitulate the heterogeneity in community states in two- 

and three-member consortia (Fig. 5, Fig. S8). This demonstrates that a simple probabilistic 

representation of cell growth, death and microbial interactions can give rise to multiple 

community steady-states from the same initial conditions. Our modeling framework could 

be used to predict the probability of strain growth as a function of the initial strain 

proportions and cell density. These parameters could be manipulated to maximize the 

likelihood of community member coexistence in multi-species consortia. Specific strains of 

bacteria have been shown to display positive density-dependent growth behavior referred to 

as an Allee effect wherein the per cell growth rate of the population is reduced in small 

populations (Kaul et al., 2016). We show that the model can exhibit an Allee effect and 

could be used to investigate key parameters influencing positive density-dependent growth 

behaviors in microbial populations (Fig. S7b–d). This phenomenon is unlikely to influence 

the heterogeneity in community states in our experiments due to the narrow range of initial 

cell counts and absence of cell adhesion. The Allee effect may play a larger role in 

community assembly for strains that display cell adhesion since the initial number of cells in 

each droplet could vary over a larger range.

We used MINI-Drop to elucidate a complex network of interactions between three bacterial 

species exposed to different combinations of antibiotics and varying temperature. This 

method demonstrated that antibiotics can significantly modify the species-species interaction 

network and species-species interactions in turn can modulate antibiotic tolerance (Fig. 

6b,c). We identified cases of synergism and antagonism between antibiotics consistent with 

previous work (Yeh et al., 2006) and illuminated which combinations of antibiotic 

perturbations preserved or eliminated positive and negative interactions between species. In 

our experiments, the impact of temperature was particularly simple to assess because the 

population of droplets from each encapsulation could be partitioned and incubated at 

different temperatures. This further simplifies the application of MINI-Drop when 

considering environmental variables that are applied from a source external to the culture 

medium (e.g. gas composition, external radiation or light). The MINI-Drop method could be 

used to decipher significant interactions between strains and environmental parameters, 

which could inform the design of interventions to steer communities to desired states.
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STAR METHODS

Lead Contact and Materials Availability

Further information and requests for reagents should be directed to and will be fulfilled by 

the lead contact, Ophelia S. Venturelli (venturelli@wisc.edu).

Materials Availability Statement—Plasmids and strains generated in this study (Table 

S9) are available upon request.

Experimental Model and Subject Details

General strain maintenance: Bacillus subtilis, Escherichia coli, 
Methylobacterium extorquens AM1, and Salmonella typhimurium LT2—All 

strains specified in Table S9 were maintained in 25% glycerol stocks prepared from cultures 

inoculated from single colonies and then stored at −80°C. Strains were recovered from 

glycerol stocks by inoculating liquid LB broth (Lennox, Sigma) or dilution streaking onto 

LB agar plates with appropriate antibiotics and culturing at 37°C, with the exception of 

Methylobacterium extorquens, which was streaked onto plates made with SOB Broth 

(Research Products International) and 15 g/L Bacteriological Agar (Bioworld) and cultured 

at 30°C. Precultures were inoculated either directly from glycerol stocks or from single 

colonies on dilution streaked plates.

Bacillus subtilis transformation—B. subtilis was inoculated into 1 mL MC medium 

(Loyo and Burton, 2018) and incubated for 4 hours at 37°C for transformation. Plasmid 

DNA was f irst linearized by treatment with ScaI restriction enzyme (New England Biolabs). 

Next, 200 ng of plasmid DNA was added to 200 ml cell culture and incubated for 2 hours at 

37°C. Tr ansformed cells were selected by plating on LB plates containing 100 mg ml−1 

spectinomycin (Gold Biotechnology). Plasmid pVP038 (Table S10) was transformed into B. 
subtilis 168, trpC2, cat to make B. subtilis 168, trpC2, cat, amyE::Pveg-gfp-spec (Table S9).

Escherichia coli cloning and transformation—PCR amplifications were performed 

using Phusion High-Fidelity DNA polymerase (New England Biolabs) and oligonucleotides 

for cloning were obtained from Integrated DNA Technologies. Standard cloning methods 

were used to construct plasmids. Plasmids were derived from a previously built construct 

library (Lee et al., 2011). Plasmids in Table S10 were transformed into strains as specified in 

Table S9.

Method Details

Bacterial cell culturing—For experiments E1–7 (Table S1), strains were grown for 

approximately 12 hours at 37°C in LB medium, diluted 1:50 into fresh LB medium, and 

then grown to an OD600 of 0.3–1 as measured on a 1 cm spectrophotometer (NanoDrop 

Thermo Fisher Scientific). Next, the culture (3 mL) was centrifuged for 2 min at 3,500 × g 

and supernatant was removed. The cells were washed 4X by resuspending the pellet in 0.5 

mL of minimal media and centrifuged as described above. In experiment E1 (Table S1), 

cells were cultured in M9 supplemented with glucose (1X M9 salts, 2 mM MgSO4, 100 μM 

CaCl2, 0.4% glucose) and 25 g/mL chloramphenicol (Sigma). The cell cultures containing 
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different strains were normalized to an OD600 of 0.15 and mixed in a 1:1 ratio. In 

experiment E2 (Table S1), B. subtilis and E. coli were mixed in a 2:1 volumetric ratio to 

account for differences in the cell number to OD ratios. Cells were cultured in LB media 

containing 50 ng/mL anhydrotetracycline (aTc, Cayman Chemicals), 0.1% arabinose 

(Sigma) and 25 g/mL chloramphenicol. In experiments E3–E7, cells were cultured in M9 

media (1X M9 salts, 2 mM MgSO4, 100 μM CaCl2) supplemented with 0.4% glucose, 0.2% 

lactose and/or 200 μM methionine as indicated.

In experiments E8–21 (Table S1), a single colony of ME, ST Lac* and EC Met- (CFP) were 

each inoculated into modified Hypho media (Table S5) for 48 hr at 30°C with shaking. The 

OD600 was measured for each culture. Cultures were centrifuged for 2 minutes at 3,500 × g 

and resuspended in fresh modified Hypho medium to OD600 values of 0.20, 0.033, and 0.14 

for ME, ST Lac* and EC Met-, respectively. These solutions were mixed in equal volume to 

form the community mixture. Immediately before cell encapsulation, antibiotic(s) (6 mg/mL 

carbenicillin disodium salt (Sigma), 10 mg/mL erythromycin (Sigma), and 2.5 mg/mL 

streptomycin sulfate salt (IBI Scientific)) were added to the community culture as specified 

and the culture was mixed by vortexing. All droplets for experiments E8–21 (Table S1) were 

encapsulated on the same day from the same community mixture to reduce variability across 

experiments.

Dynamic range of cell counting—The bacterial strains EC Met- (CFP), EC WT (RFP), 

and ST Lac* (YFP) were grown in LB medium to early stationary phase, centrifuged at 

18,000×g for 1 min, decanted, and resuspended in M9 minimal medium without glucose. 

Next, the cells were centrifuged at 18,000 × g for 1 min, decanted and resuspended in a 

smaller volume of M9 minimal medium without glucose to concentrate the cells. The 

OD600 values of the concentrated EC Met-, EC WT and ST Lac* cultures were 14.4, 19.6, 

and 6.4, respectively. Equal volumes of each culture were combined to generate the mixed 

culture. The mixed culture was serially diluted by a factor of 2 until a dilution of 2−7 was 

reached. The diluted cultures were encapsulated separately using the droplet maker device 

and the resulting droplets were imaged and quantified using the computational image 

analysis pipeline.

Fabrication of microfluidic devices—Photoresist masters of 25 μm layer height were 

fabricated by spinning a layer of photoresist SU-8 3025 (Microchem) onto a silicon wafer 

(University Wafer), then baked at 95°C for 10 minutes. Following baking, photoresist master 

was patterned by UV photolithography over a photomask (Data S1, CADArt). The master 

was subjected to post-exposure bake at 95°C for 4 min and developed in fresh SU-8 

developer (Microchem) for 6 min, prior to rinsing with isopropyl alcohol (Fischer Scientific) 

and baking at 150°C to remove the solvent. The microfluidic devices were fabricated by 

pouring poly(dimethylsiloxane) at a 11:1 polymer-to-crosslinker ratio (Dow Corning 

Sylgard 184) onto the master and curing at 65°C for 1 hr. The PDMS devices were excised 

with a scalpel and cored with a 0.75 mm biopsy core (World Precision Instruments) to create 

inlets and outlets. The device was then bonded to a microscope glass slide using an O2 

plasma cleaner (Harrick Plasma), and channels were treated with Aquapel (PPG Industries) 
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to render them hydrophobic. Finally, the devices were baked at 65°C for 20 min to evaporate 

excess Aquapel prior to use.

Encapsulation of cells into droplets and fluorescence microscopy—To 

encapsulate cells into droplets, 1 mL syringes (BD Luer Lok) were fitted with 27-gauge 

needles and PE/2 tubing. 500 μL of the culture was loaded into a 1 mL syringe. Fluorinated 

oil (3M Novec 7500) was prepared with 2% ionic Krytox 157 FSH surfactant (experiments 

E1–E6) (Dejournette et al., 2013) or 2% of a block copolymer of Jeffamine ED-900 and 

Krytox 157 FSH (experiments E7-E21) (Holtze et al., 2008) loaded into a 1 mL syringe. The 

free end of the tubing was primed and inserted into the droplet-making device. Droplets 

were generated using flow rates of 600 μL hr−1 oil and 300 μL hr−1 cell culture at a 30 μm × 

25 μm junction, which generated ~40 μm diameter droplets at 4.8 kHz. After allowing at 

least 20 minutes for equilibration, droplets were collected into a 1.7 mL microfuge tube for 

at least 15 min and incubated as specified in each experiment. Droplets were loaded into 

chamber microscopy slides (Invitrogen C10228) and imaged with a 20X objective (Nikon, 

MRH10201) on a Ti-E Eclipse inverted microscope (Nikon). Fluorescence was imaged 

using the following filters (Chroma): (1) CFP: 436nm/20nm (ex), 480nm/40nm (em); (2) 

GFP: 470nm/40nm (ex), 525/50nm (em); (3) RFP: 560nm/40nm (ex), 630/70nm (em); and 

(4) YFP: 500nm/40nm (ex), 535nm/30nm (em).

Fluorescence microscopy image analysis—Custom code in Python was used for 

automated cell counting in droplets and microbial interaction network inference. Droplets 

were identified from the phase-contrast images using the Hough transformation algorithm 

(OpenCV 3, Pulli et al., 2012). Droplets with a diameter 10% larger or smaller than 40 μm 

were removed from the dataset. Fluorescent cells were segmented by identifying connected 

regions using the SimpleBlobDetector object (OpenCV 3, Pulli et al., 2012). Droplets were 

binned by the presence or absence of each fluorescently labeled strain. For experiments E1–

7 (Table S1), interaction strength from strain j to strain i, where droplet d contains dk cells of 

strain k, was defined according to Equation 1.

log2
mean di∀d di 0, d j > 0
mean di∀d di 0, d j = 0

(1)

For experiments E8–21, interaction strengths were calculated as described in the text and 

summarized in Tables S6–8. The impact of each species on each other species (species-

species interaction) was inferred by comparing to the number of cells in single-species, no 

antibiotic droplets to two-species, no antibiotic droplets (6 possible interactions). The impact 

of each antibiotic on each species (antibiotic-species interaction) was inferred by comparing 

the number of cells in single-species, no antibiotic droplets to single-species, single-

antibiotic droplets (9 possible interactions). The impact of each species on each antibiotic’s 

impact on each other species (species-antibiotic-species interaction) was inferred by 

comparing the number of cells in single-species, single-antibiotic droplets to two-species, 

single-antibiotic droplets (18 possible interactions). Finally, antibiotic-antibiotic-species 

interactions were inferred by comparing the number of cells in single-species, single 
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antibiotic droplets to single-species, two-antibiotic droplets (9 possible interactions). 

Network schematics were drawn with Cytoscape 3.5 (Shannon et al., 2003).

Discrete-time Markov model of cell growth—A discrete-time Markov model was 

developed to recapitulate the experimentally measured cell count distributions. At each time 

step, the propagation of each strain is determined by computing the probability of cell 

division (Pdiv,i), cell death or cell growth dormancy for the duration of the experiment 

(Pdeath,i), and remaining unchanged (Pstatic,i) (Equations 2–4).

Pdiv, i = rdiv, io × Iii ni, sii, kii, aii × Ii j n j, si j, ki j, ai j (2)

Pdeath, i = rdeath, io (3)

Pstatic, i = 1 − Pdiv, i + Pdeath, i (4)

The parameter rdiv,io is the basal probability of cell division for strain i. The parameter 

rdeath,io represents the probability of cell death of strain i (constant). ni denotes the number 

of cells of strain I and sij defines whether the outgoing interaction of strain j (donor) to strain 

i is positive (sij = 1) or negative (sij = −1). The parameters kij and aij define the sigmoidal 

interaction function Iij, representing the incoming interaction for strain i produced by strain j 
(Equation 5)

Ii j =

1 + ai j e
ki jn j

1 + ai je
ki jn j

,  i f  si j = + 1

1 + ai j

1 + ai je
ki jn j

,  i f  si j = − 1

(5)

The negative interaction function approaches zero as a function of nj whereas the positive 

interaction approaches (1 + aij)/aij as a function of nj. The values of aij and rdiv,i are 

constrained such that Pdiv,i ≤ 1 (Equation 6). The self-interaction function Iii(ni, sii, kii, aii) is 

less than one (sii = −1) and approaches zero as a function of ni leading to saturation of the 

number of cells of strain i. The interaction function Iij, is equal to 1 when nj = 0, 

representing the absence of an interaction between strain i and j. In the absence of an 

interaction between strain i and j, Pdiv,i is not dependent on strain j, (sij = −1,kij = 0, aij = 0). 

The outgoing interaction from the partner strain j, Iij(nj, sij, kij, aij), can be positive or 

negative depending on the value of the parameter sij. The parameters aij and kij determine the 

interaction sensitivity defined as the number of partner cells at the half-maximum of the 

Hsu et al. Page 17

Cell Syst. Author manuscript; available in PMC 2020 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interaction function, n j, (Equation 6), and the rate of change of the interaction as a function 

of the number of partner cells (Equation 7).

n j = 1
ki j

ln 1
ai j

+ 2 (6)

dIi j
dn j n j

=

ki j
1

ai j
+ 2

4 ai j + 1
,  i f  si j = 1

−ki j
1

ai j
+ 2 ai j

4 ai j + 1
,  i f  si j = − 1

(7)

At each time step, the state transition of a cell is independent of all other cells and the cell’s 

prior history. The state transitions were simulated by sampling from a trinomial distribution 

determined by the probabilities Pdiv,I, Pdeath,I, and Pstatic,i. Communities were simulated for 

100 time-steps wherein each time-step corresponded to 10.8 minutes of experimental time. 

Variables were constrained such that the cell populations reached a steady state within the 

simulation time. The initial conditions for the simulations were sampled from a Poisson 

distribution with λ=1.5. Communities that did not contain both strains were discarded and 

resampled. Model parameters are listed in Table S4.

Quantification and Statistical Analysis

All statistical analysis was performed using NumPy version 1.13.1 (van Der Walt, et al., 

2011, Python 2 or 3 distributed through Anaconda). Statistical significance (p-value) 

between cell counts within droplets was computed using the two-sided Mann-Whitney U 

test. Error bars represent the 95% confidence interval of the mean.

Data and Code Availability

The droplet image analysis code and stochastic model are accessible on a GitHub repository 

at: https://github.com/ryanusahk/MINI-Drop-Supplementary-Code. The raw image files are 

available through Mendeley Data (doi10.17632/g5ch5r7d6m.1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Inference of microbial interaction networks in microfluidic droplets

• Insight into synthetic microbial communities across different environments

• Stochastic model of community assembly to study variability in community 

states

• Elucidation of a complex web of interactions between antibiotics and a 

consortium
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Figure 1. Overview and characterization of microbial interaction network inference in 
microdroplets (MINI-Drop).
(a) Overview schematic of the MINI-Drop method. A mixed microbial culture and oil are 

loaded into a droplet-forming microfluidic device. Cells are randomly encapsulated into 

droplets based on a Poisson distribution. The droplets are incubated for a period of time to 

allow cell growth and division and then imaged using fluorescent microscopy. A computer 

vision workflow rapidly identifies droplets and determines the number of each fluorescently 

labeled strain within each droplet (Fig. S1). A microbial interaction network is inferred 

based on the difference in the mean number of cells in the absence and presence of a partner 

strain. (b) Representative fluorescent microscopy images of droplets containing three 

bacterial strains labeled with YFP (ST Lac*), RFP (EC WT) or CFP (EC Met-) (see Tables 

S9–10). (c) Scatter plot of the dilution factor of the mixed culture vs. the log2 transform of 

the mean number of cells per drop (cell count distribution shown in Fig. S2a and analysis of 

mean fluorescence in Fig. S2b). Each data point represents the mean of 400–600 droplets 

and lines denote linear regression fits to the data excluding the highest dilution factor 

(indicated by empty circles to emphasize divergence from the linear trend). Red, yellow and 

blue data points correspond to EC WT, ST Lac* and EC Met-, respectively.
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Figure 2. Investigating positive and negative microbial interaction networks using MINI-Drop.
(a) Schematic of the expected network for a synthetic consortium composed of an RFP-

labeled E. coli methionine auxotroph (EC Met-) and a GFP-labeled B. subtilis tryptophan 

auxotroph (BS Trp-) (Table S1, E1). (b) Fluorescence microscopy image of representative 

single-species (EC Met- or BS Trp-) or two-member droplets. (c) Categorical scatter plot 

showing the number of BS Trp- or EC Met- cells in each droplet. The black horizontal line 

represents the mean and the error bars denote bootstrapped 95% confidence intervals for the 

mean. Gray lines denote statistically significant difference in means based on the Mann-

Whitney U test (n=87, p=1.5e-6, left and n=372, p=3.8e–26, right). (d) The inferred 

interaction network for the EC Met-, BS Trp-consortium. The edge width is proportional to 

the log2 ratio of the average cell count in the presence of a partner to the average cell count 

Hsu et al. Page 24

Cell Syst. Author manuscript; available in PMC 2020 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in single strain droplets. Node size is proportional to the average cell count of each strain in 

single strain droplets. (e) Schematic of the expected network of an E. coli community that 

exhibits a strong unidirectional negative interaction. A GFP-labeled strain (sender) expresses 

LuxI, a synthetase for the quorum-sensing signal C6 acyl homoserine lactone (AHL). AHL 

binds to the receptor LuxR in an RFP-labeled strain (receiver) and activates the expression 

of a toxin MazF, generating a strong negative interaction (Table S1, E2). (f) Fluorescence 

microscopy image of representative droplets containing the sender strain, receiver strain or 

community. (g) Categorical scatter plot of the number of sender or receiver cells in each 

droplet in the presence or absence of a partner. The black line represents the mean and the 

error bars denote bootstrapped 95% confidence intervals for the mean. Gray lines denote 

statistically significant differences in the means (n=1512, p=2.2e–4, left, n=421, p=3.8e–14, 

right). (h) The inferred interaction network for the quorum sensing regulated toxin 

consortium.
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Figure 3. The molecular composition of the environment shapes the interaction network of a 
three-member consortium.
(a) Schematic of the expected microbial interaction network of a three-member consortium 

consisting of RFP-labeled E. coli (EC WT), CFP-labeled E. coli methionine auxotroph (EC 

Met-), and YFP-labeled S. Typhimurium deficient in lactose metabolism (ST Lac*) in 

lactose minimal media lacking supplemented methionine (Table S1, E3). Secreted carbon 

byproducts (acetate) and methionine are represented by a triangle and rectangle, 

respectively. Node colors and green arrows denote the type of fluorescent reporter and 

positive interactions, respectively. (b) Schematic of the expected microbial interaction 
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network in lactose minimal media supplemented with methionine (Table S1, E4). (c) 
Schematic of the expected microbial interaction network in glucose minimal media lacking 

supplemented methionine (Table S1, E5). (d) Schematic of the expected microbial 

interaction network in glucose minimal media supplemented with methionine (Table S1, 

E6). (e) Cell count distributions in lactose minimal media for EC WT (top), ST Lac* 

(middle) or EC Met- (bottom). The black line represents the mean and the error bars denote 

the bootstrapped 95% confidence intervals for the mean. The gray horizontal bars indicate a 

statistically significant difference (p < 0.05, Table S2) based on the Mann-Whitney U test. 

(f) Cell count distributions in lactose minimal media supplemented with methionine for EC 

WT (top), ST Lac* (middle) or EC Met- (bottom). (g) Cell count distributions in glucose 

minimal media for EC WT (top), ST Lac* (middle) or EC Met- (bottom). (h) Cell count 

distributions of EC WT (top), ST Lac* (middle) or EC Met- (bottom) in glucose minimal 

media supplemented with methionine. (i) Inferred interaction network in lactose minimal 

media lacking supplemented methionine. The edge width is proportional to the log2 ratio of 

the average cell count in the presence of a partner to the average cell count in the absence of 

the partner. Node size is proportional to the average cell count of each strain grown in 

isolation. (j) Inferred network in lactose minimal media supplemented with methionine. (k) 
Inferred interaction network in glucose minimal media lacking supplemented methionine. (l) 
Inferred interaction network in glucose minimal media supplemented with methionine.
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Figure 4. Investigating higher-order interactions using MINI-Drop.
(a) Schematic showing an example of a higher-order interaction. Droplets containing two 

strains X and Z or Y and Z do not exhibit interactions. In three-member droplets, a negative 

or positive interaction from X and Y to Z is present and is defined as a higher-order 

interaction. (b) Categorical scatter plots of the number of EC Met- Lac* cells in droplets 

containing the single strain EC Met- Lac* (self), pairs of strains including EC Met- Lac* 

and EC Met- or ST Lac* or all three strains (EC Met- Lac*, EC Met- and ST Lac*). Black 

horizontal bars denote the mean number of cells per droplet and error bars represent the 

bootstrapped 95% confidence interval for the mean. The horizontal bar (gray) represents a 
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statistically significant difference in means based on the Mann-Whitney U test (p = 1.2e–3, n 

= 703, Table S3). (c) Schematic showing the higher-order inferred network for the data 

shown in panel (b). The line width represents the inferred strength of the higher-order 

interaction. Node size is proportional to the average cell count of each strain grown in 

isolation. (d) Categorical scatter plots of the number of EC WT cells in droplets containing 

the single strain EC WT, two strains including EC WT and ST Lac* or EC Met- or all three 

strains (EC WT, ST Lac* and EC Met-) in lactose minimal media. The horizontal bar (gray) 

represents a statistically significant difference in means based on the Mann-Whitney U test 

(p = 2.9e–10, n = 296, Table S3). (e) Schematic showing a higher-order interaction inferred 

using the data shown in (d). The line width represents the strength of the inferred higher-

order interaction. Node size is proportional to the average cell count of each strain grown in 

isolation.
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Figure 5. Discrete-time Markov model of cell growth modified by microbial interactions can 
recapitulate cell count distributions in microfluidic droplets.
(a) Schematic of variability in community assembly in small populations. Stochasticity in 

intracellular molecular concentrations can alter the strength of microbial interactions, 

generating different community states (high blue cells, low yellow cells or the reciprocal). 

(b) Schematic of the discrete-time Markov model of cell growth modified by microbial 

interactions. At each time step, each cell can undergo cell division, cell death or remain 

static according to the probabilities Pdiv, Pdeath or Pstatic, respectively. (c) Inferred network 

topology using MINI-Drop (left) for the EC WT, ST Lac* consortium in glucose minimal 

media (Table S1, E5). Scatter plot of experimentally measured cell counts (blue circles, 
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n=257) of EC WT and ST Lac* or model steady-states (red circles, n=200). This 

bidirectional negative interaction network generated qualitatively different community 

compositions corresponding to (1) low and high EC WT and ST Lac*, respectively, (2) high 

EC WT and ST Lac*, (3) low EC WT and ST Lac*, (4) high EC WT and low ST Lac*. 

Fluorescence microscopy images (right) of a representative droplet in each community state 

1–4 are shown (right). (d) Inferred network for the EC Met-, ST Lac* consortium (top) in 

lactose minimal media supplemented with methionine (Table S1, E4). Scatter plot of 

experimentally measured cell counts (blue circles, n=118) of EC Met- and ST Lac* or model 

steady-states (red circles, n=200). (e) Inferred interaction network for the EC Met-, ST Lac* 

consortium in lactose minimal media (top, Table S1, E3). Scatter plot of experimentally 

measured cell counts (blue circles, n=141) of EC Met- and ST Lac* or model steady-states 

(red circles, n=200). (f) Inferred interaction network for the sender, receiver consortium (top, 

Table S1, E2). Scatter plot of experimentally measured cell counts (blue circles, n=93) of the 

sender and receiver strains or model steady-states (red circles, n=200).
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Figure 6. Combinatorial effects of antibiotics on community interactions and assembly.
(a) Overview schematic of the experimental design. A three-member community containing 

ST Lac*, ME, and EC Met- in modified Hypho medium was encapsulated with no 

antibiotics and with each individual and pairwise combination of carbenicillin (CRB), 

erythromycin (ERY), and streptomycin (STR). Droplets were incubated at 30°C or 37°C 

prior to imaging and inte raction network inference. (b) Inferred interaction network after 

incubation at 30°C for 36 hr. The edg e width is proportional to the log2 ratio of the average 

cell count between two conditions of interest (Tables S6–8). Only those edges with p<0.05 

and log2 ratio magnitude greater than 0.5 are shown (all interactions are listed in Tables S7–

8). Node size is proportional to the mean number of cells in single strain droplets in the 

absence of antibiotics. The arrows have a sign modifier based on the level of interaction as 

summarized in Table S6. For example, species-antibiotic-species interactions with a value 

greater than 1 are visualized as an inhibitory edge pointing to an inhibitory edge, with the 

net result being an increase in growth of the target species. This network representation was 

chosen such that each edge represents the ratio between two populations of droplets 

differing only by the presence of one variable (i.e. species or antibiotic) and is not meant to 
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imply mechanisms of interaction. (c) Inferred interaction network after incubation at 37°C 

for 18 hr.
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