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Abstract

Admixed populations arise when two or more previously isolated populations interbreed. 

Admixture mapping (AM) methods are used for tracing the ancestral origin of disease 

susceptibility genetic loci in the admixed population such as African American and Latinos. AM is 

different from genome-wide association studies (GWAS) in that ancestry rather than genotypes are 

tracked in the association process. The power and sample size of AM primarily depends on 

proportion of admixture and differences in the risk allele frequencies among the ancestral 

populations. Ensuring sufficient power to detect the effect of ancestry on disease-susceptibility is 

critical for interpretability and reliability of studies using AM approach. However, there is no 

power and sample size analysis tool exist for admixture mapping studies in admixed population. In 

this study, we developed PAMAM to estimate power and sample size for two-way and three-way 

population admixture. PAMAM is the first web-based bioinformatics tool developed to calculate 

power and sample size in admixed population under a variety of genetic and disease phenotype 

models. It is a valuable resource for investigators to design a cost-efficient study and develop grant 

application to pursue AM studies. PAMAM is built on JavaScript back-end with HTML front-end. 

It is accessible through any modern web-browser such as Firefox, Internet Explorer, and Google 

Chrome regardless of operating system. It is a user-friendly tool containing links for support 

information including user manual and examples, and freely available at https://

research.cchmc.org/mershalab/PAMAM/login.html.
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Introduction

A major gene flow episode in the form of population admixture began in the last 400 years 

in the Americans that primarily involved the interbreeding of three geographically separated 

ancestral populations (Smith et al., 2004). The first ancestral population is the Native 

American population, the second is the migrating population from Europe, and the third is 

the transatlantic slave trade movement of West Africans to the North and South Americas. In 

the Americas, interbreeding brought together ancestral genomes from these continental 

populations (Figure 1). African Americans, a two-way admixed population primarily 

admixture between European and African ancestries (Bryc, Auton, et al., 2010), and Latinos, 

a three-way admixed population consisting of primarily genomic admixture from European, 

African, and Native American ancestries (Bryc, Velez, et al., 2010), are the most widely 

studied in disease genetics, population genetics, anthropology and forensics and genetic 

testing (Brown et al., 2017; Cheng et al., 2009; Sofer et al., 2017). Additionally, multi- 

ancestry admixed populations such as those in Brazil and South Africa are under intensive 

admixture mapping (AM) studies (Kehdy et al., 2015; Petersen et al., 2013; Turner & Houle, 

2018). An admixed samples from recently admixed individuals have genomes that are a 

mosaic of segments each originating from different ancestral populations. The goal of AM 

study is to identify the risk-associated allele (for a given disease) based on the likelihood of 

observing an association between a given ancestral allele(s) with disease risk (Mersha, 

2015). The general hypothesis of AM is that among the affected samples of admixed 

individuals, the disease-causing genetic variants are transmitted in higher proportion from 

the ancestral population(s) with the higher frequency of risk allele than non-affected 

sample’s variants (McKeigue, 2005; Montana & Pritchard, 2004; Zhu, Cooper, & Elston, 

2004).

Because of genetic heterogeneity within an individual due to genetic admixture, power and 

sample size calculation methods developed for GWAS of European descent that assume 

genetic homogeneity (e.g., Genetic Power Calculator (Purcell, Cherny, & Sham, 2003), 

CaTS (Skol, Scott, Abecasis, & Boehnke, 2006), and GAS Power Calculator (Johnson & 

Abecasis, 2017)), are not applicable for mixed ancestry samples including African 

Americans and Latinos. While admixed populations can be challenging for GWAS due to 

population stratification which can lead to spurious associations (Baye, 2011; Freedman et 

al., 2004; He et al., 2011; Marchini, Cardon, Phillips, & Donnelly, 2004; Price et al., 2006). 

AM has many advantages over GWAS because admixture tests: 1) are not affected by 

population structure since the excess of ancestry is being tested at each marker position 

(Montana & Pritchard, 2004) and, 2) allow for the efficient detection of genomic regions 

with an exponentially smaller sample size and increased power in detecting disease signals 

because of reduced number of independent tests in comparison to GWAS (Shriner, 

Adeyemo, & Rotimi, 2011).
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With the advances in high-throughput technologies and access to low-cost sequencing and 

genotyping data from diverse populations, the relevance of AM is ever increasing and so is 

the necessity of easily accessible analytical tools for power and sample size. The underlying 

power to detect the true effect on the disease under investigation determine the 

interpretability and replicability of a given study. Theoretically, a larger sample size may 

provide power to detect smaller effect, but in reality, clinical samples are often limited 

and/or the cost of sampling is high. On the other hand, larger sample results in wastage of 

resources and the researchers’ time. Studies with low power have poor translation and would 

likely results in failure of the research projects and loss of resources. Such situations can be 

avoided by “a priori” power and sample size study design (Turner & Houle, 2018). Granting 

agencies often require the power analysis to demonstrate the interpretability, viability, and 

success of the proposed research projects (Purcell et al., 2003). Thus, striking a balance 

between sample size and statistical power is an essential part of a study design.

Multiple online tools exists to calculate power and sample size for homogeneous populations 

(Johnson & Abecasis, 2017; Purcell et al., 2003). These methods are not applicable for 

mixed ancestry samples such as African Americans or Latinos. The objective of this study 

was to develop a freely available online tool called Power Analysis for Multi-ancestry 

Admixture Mapping (PAMAM) for power and sample size calculation for two-and three-

way ancestry admixed populations. For admixture analysis, PAMAM performs the power 

and/or sample size calculation based on flexible user specified parameters for dichotomous 

as well as quantitative traits. For dichotomous trait, PAMAM performs power and sample 

size analysis under both case-only and case-control study designs. Case-only study design 

reduces the need for a large control sample size, which can be particularly difficult to 

ascertain in admixed populations. Even though the approach is currently implemented for 

two- and three-way admixture events, the analytical framework can be generalize and 

extended to more than three-way admixture analysis. To our knowledge, PAMAM is the first 

online tool developed to determine power and sample size calculation for admixed 

populations and freely available for the research community including investigators planning 

a priori and post-hoc power calculations to report expected and observed power, 

respectively.

Implementation

Architecture overview

PAMAM is a web accessible, graphical user interface application tool that can run on any 

modern browsers in any operating system. The web interface is built using HTML in the 

front-end while the back-end analytical and graphical algorithms are implemented in 

JavaScript. The web interface allows user to either display the information on the browser or 

to download to the client-side local hard drive.

PAMAM work flow

Figure 2 describes the work flow of PAMAM implementation. The entire process is divided 

into input and output sections. The input section constitutes four different stages: admixture 

level, model building, parameter specifications, and statistical analysis as described below.
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Admixture level: The power analysis using PAMAM starts with selection of admixture 

level of the samples where users will select one of the two options: ‘two-way admixture’ or 

‘three-way admixture’ event. Two-way admixture option is applicable if the data constitutes 

the admixture samples with two ancestral population, such as African Americans. If the data 

represent samples from the admixture of three ancestral populations, such as Latinos, then 

the power analysis can be performed with ‘three-way admixture’ option.

Model building: The ‘model building’ step is the second step of the PAMAM 

implementation where users will select the phenotype category as ‘Dichotomous’ or 

‘Continuous’ to initiate the analysis. Following the selection, the system will prompt to 

provide required input information for model building. For two-way admixture under the 

dichotomous phenotype, users will select one of the risk factors – ancestral odds ratio 

(AOR), genotype risk ratio (GRR), or the parental risk ratio (PRR) followed by the 

admixture process. Hybrid-isolation (HI) is the default choice for AOR and GRR while for 

PRR, it could be selected between the HI or CGF. Next, a case-only or a case-control study 

design will be selected. For AOR risk factor, only case-control design is applicable. The last 

input for ‘Model Building’ is the selection of mode of disease inheritance. Again, the default 

is multiplicative mode for all the risk factors. Additionally, four different modes: 

multiplicative, additive, recessive, and dominant are available under PRR. However, for the 

three-way admixture, only the GRR based model is implemented in PAMAM and 

accordingly, only the GRR-based input options available for the analysis. Under the 

continuous phenotype, users will select model based on one of the two effect statistics: 

‘Slope’ or ‘R2’. In PAMAM, slope-based model is only applicable for two-way admixture 

whereas the R2 based model is available for both two-way and three-way admixture 

analyses. The slope-based method is appropriate for post-hoc analysis when the estimates of 

the required parameters are available from the sample.

Parameter specification: Under the discrete phenotype, the set of parameters depends on 

the risk factors. The required set of input parameters under each risk factors are listed in the 

Figure 1. Under the continuous phenotype and ‘Slope’ statistics, the required inputs include 

slope, the standard deviation of the ancestry proportion (SD Ancestry), the standard 

deviation of the error (SD Error), and inflation factor (the multiple R2 between the ancestry 

variables and other covariates). For the R2 statistics, the multiple R2 under the null and 

alternate model, # of ancestries for the admixed samples, and # of covariates are required.

Statistical analysis: In this step, users select desired power or sample size. Type I error 

rate is required for all type of analysis. Type I error is the probability of a false positive 

result, that is, the probability of rejecting a null hypothesis that is true, usually set at 0.05. 

For the power analysis, sample size is required while for the sample size calculation, power 

is required. By default, all the analyses will be carried out as one-sided test, but it can be 

changed to two-sided by choosing the option available under the tab ‘Side’. In accordance 

with the study hypothesis, one can employ directional or non-directional tests of statistical 

significance as one-sided or two-sided, respectively. The selection of side will only affects 

the results for two-way admixture because the power analyses for two-way admixture is 
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approximated using the standard normal distribution (see the Analytical Approach section 

for detail).

The output section constitutes the numerical and graphical display and results. Once the 

input information from all the four input stages are submitted, the tool will perform the 

appropriate analysis and generate output tables and graphs. One of the output tables provides 

the summary information from user’s input. Other tables correspond to the output graph of 

the power vs sample size. For a case-control study, two power graphs will be generated - one 

for power vs cases with fixed control and other for power vs control with fixed cases. Data 

tables can be further exported as a comma separated text file or as an excel file.

PAMAM application

PAMAM begins with the web interface that constitutes the input section of webpage (Figure 

3). As detailed above, users will select admixture level of the sample data or target 

population, build the admixture analysis model suitable for the available information, and 

provide the model-specific set of parameters and select the statistical analysis. Data will be 

inputted into the system in real-time and calculation is carried out on-the-fly. Data are 

entered by simple clicking on the tab, selecting the options from drop-down menu, or 

keyboarding the numerical values such as type I error, sample size or power. Optionally, the 

sample size and the power can be inputted through the associated sliding ruler. Once all the 

input information are provided, a single click of the ‘Submit’ button will generate the results 

on the output section. The ‘Summarize’ button will then be activated and can be used to 

generate the summary table of input information. The ‘Reset’ button will nullify all input 

information and return users to the homepage. The computation time depends on whether 

we are conducting a 2-way or 3-way admixture analysis. Though the power analysis can be 

computed within 1-2 seconds, the sample size analysis for three-way quantitative trait may 

take longer time than other analyses. For example, .the sample size calculation for two-way 

admixture takes about 0.1 seconds, while similar analysis for three-way admixture takes 

about 6-10 seconds, which is based on the computer with following configuration - 

processor: inter(R) Core (TM) i5-7300U CPU @ 2.60 GHz; RAM = 8.00 GB; Operating 

system: 64-bit Windows 10 Enterprise.

Examples for power and sample size analyses

a) Two-way admixed populations: Dichotomous trait—Suppose a study is 

planned for admixture mapping for discrete phenotype on samples from two-way admixed 

populations X and Y, with X being the high risk population. Previous studies on the similar 

target population have found the 80% of the genomes in the admixed population is 

contributed from X. The investigators want to collect enough samples to detect the ancestral 

risk variants with genotype risk ratio = 2.5 and 80% power under the significance level of α 
= 2.5 × 10−5 (type I error rate). This level of significance is equivalent to 5 false positive 

discovery among the 2000 independent test (0.05/2000). Note that, for admixture mapping, 

the genome wide significance level is much larger than that for the association mapping 

(Shriner et al., 2011). As an example, let us say from prior reference data on an admixed 

population between X and Y, an investigator found that the risk allele frequencies were 0.4 

and 0.1, respectively, and a 70% genomic contribution from the population X. Let us assume 
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the risk ratio of interest is genotype risk ration (GRR). The investigator start building the 

admixture mapping model by selecting the discrete phenotype then GRR risk factor, the 

default HI process followed by case-only study design with multiplicative mode (default). 

Once this stage is complete, investigator will input the parameters – GRR = 2.5, Admixture 

proportion = 0.70, Risk Allele Freq = (0.4, 0.1) (comma separated). On the ‘Statistical 

Analysis’ stage, investigator selects ‘Sample size’ and enter type I error = 0.000025, Side = 

‘One-sided’, and power = 0.80. On the output window, the case-only sample size is shown as 

n = 590. The accompanying graph shows the sample size required for different powers for 

the model with the inputted information (Figure 4A). This allows users to recognize the 

sample size needed to achieve specified power. By switching to the case-control design, the 

investigator find the required total sample as n = 2392 with assumption of equal cases and 

controls (so 1196 cases and 1196 controls).

b) Two-way admixed populations: Quantitative trait—Suppose an admixture 

mapping analysis is carried out for a quantitative trait using 750 samples from a two-way 

admixed population X and Y with admixture proportion from population for X is 0.80. 

Using this information, the investigators may want to perform the post hoc power analysis at 

type I error rate 0.000025 (adjusted for multiple testing). From the analysis, following 

information are derived: Slope (α1) = 0.30, Standard error (σ) = 0.72, SD of ancestry (σu) = 

0.40, Sample size = 750. Assume an inflation (ru
2 ) of 0.1 due to single covariate ‘age’ in the 

model is expected.

Using PAMAM, the investigator can obtained an estimate of power. For example, under the 

‘Model Selection’ section of ‘Quantitative’ trait would be selected for the ‘Phenotype 

Category’ and ‘Slope’ as the effect statistics. Then, the following parameters can be entered: 

Slope = 0.35, SD Ancestry = 0.40, SD Error = 0.72, Inflation = 0.1. In the ‘Statistical 

Analysis’ section, “Type I Error” = 0.000025; Side = ‘One-sided’; ‘Analysis Type’ = 

‘Power’, and ‘Sample Size’ = 750 can be entered. After submitting these information, the 

investigator will find that the power of the study is 0.84. Further comparison of power for 

different sample sizes can be performed from the accompanying graph (Figure 4B).

c) Three-way admixed populations: Dichotomous trait—For an AM study with 

three ancestries, say X1, X2, X3, an investigator first want to determine sample size. Suppose 

that the estimated admixture proportions of X1, X2, X3, ancestries of the target admixed 

population can be well approximated with 0.67, 0.20, and 0.13, respectively. In addition, risk 

allele frequencies for X1, X2, X3 were 0.4, 0.2, and 0.1, respectively. The investigators want 

to collect enough samples to detect the ancestral risk variants with genotype risk ratio = 2.5 

and 80% power under the significance level of α = 2.5 × 10−5 (type I error rate). On the 

PAMAM window, the investigator could select “Three-way admixture” option and proceed 

to the model building stage with following inputs: GRR = 2.5, Admixture Proportion = 

(0.67, 0.20, 0.13), Risk Allele Freq = (0.4, 0.2, 0.1). On the ‘Statistical Analysis’ stage, 

investigator selects ‘Sample size’ and enter type I error = 0.000025, tail = 1, and power = 

0.80. For the case-only study, the sample size required for this study is 1035 cases. Figure 

4C shows the accompanying power graph for various sample size for case-only study. Under 
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the case-control study design, the investigator will find the sample sizes needed for this 

study would be 1950 cases and 1950 controls.

d) Three-way admixed populations: Quantitative trait—Suppose we plan a three-

way admixture mapping study of a quantitative trait. The environmental and demographic 

covariates explained 10% of the phenotype variation. We would like to have enough samples 

in the study to detect loci whose ancestry could explain additional 5% (or more) of the 

phenotype variation beyond that of the covariates with at least 80% power at type I error rate 

(α) = 0.000025 (after adjusting for multiple testing). We can use the PAMAM tool to 

estimate the sample size needed to achieve the desired power of the study. The required 

input information are multiple R2 under null and alternate hypotheses, which are equal to 0.1 

and 0.15 respectively, type I error rate (α) = 0.000025, and power = 0.80. The total sample 

size needed for this study with 80% power is N = 500. Figure 4D shows the output power 

graph for varying sample sizes.

Power comparison between theoretical and simulation studies

To estimate sample size and statistical power for admixture mapping theoretically, we 

assume that the true ancestry at each marker is known and all individuals have the average 

ancestry equal to the global admixture proportion. In practice, the ancestry information need 

to be estimated and the above theoretical assumptions do not meet. The power calculated 

from the PAMAM is expected to be in the upper bond compared with power achieved from 

real datasets (Montana & Pritchard, 2004). To illustrate the actual power vs estimated/

theoretical power scenarios, we performed an admixture mapping analysis on simulated 

case-control data for a two-way admixed population with ancestral populations X and Y. The 

simulation approaches is described as follow-

Step 1: Set the disease prevalence for X and Y as k1 = 0.2 and k2 = 0.1, respectively. 

Population X is the high risk population.

Step 2: Estimate the population specific risk allele frequencies p1 and p2. Assuming a 

multiplicative mode of inheritance with genotype risk ratio (λ) = 2.5, and the penetrance (f0) 

= 0.05, the risk allele frequencies can be estimated solving the following equation for pj, j = 

1, 2.

f 0(1 − p j)
2 + 2λ f 0p j(1 − p j) + f 0λ2p j

2 = k j .

Step 3: Assuming Hardy-Weinberg Equilibrium (HWE), generate M individuals from each 

population X and Y. We set M = 10,000.

Step 4: Generate the first generation of admixed population. We generated a set of 5,000 

individuals, 60% of the samples carrying the genotype from population X and 40% carrying 

admixed genotype with 1 allele from each population at random. This ensured the total 

contribution of alleles from population X among the set of individuals was 80% (global 

admixture proportion).
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Step 5: Simulate nth generation of admixed population. Following the hybrid-isolation 

model, we allowed random mating within the individuals generated from Step 4 with no 

additional genomic contribution from either ancestral population until 8th generation. We 

allowed population growth per generation (approximate 1.5 times) and simulated the 

genotype for 100,000 admixed individuals.

Step 6: Assign the case-control status for the admixed individuals. The case-control status 

for the admixed samples were assigned based on the penetrance function (f0) = 0.05 and the 

genotype risk ratio (λ) = 2.5.

Step 7: Assign the global ancestry for each individual. The global ancestry of each 

individual was sampled from the beta distribution, Beta(α = 12, β = 3) with mean ancestry = 

0.8.

Step 8: Compute the ancestral odds ratio. The estimated ancestral odds ratio was 1.636.

Step 9: Estimate actual and theoretical power of admixture mapping for different sample 

size. We randomly sampled n (= 300, 400,…,1000) cases and equal controls and perform the 

case-control admixture mapping test at type I error rate = 0.000025. We performed 10,000 

resampling for each n, and computed the power as the proportion test with significance p-

value ≤ 0.000025. Similarly, theoretical power was computed for each n, using the PAMAM 

tool with estimated ancestral adds ratio = 1.636, admixture proportion = 0.8, type1.error = 

0.000025 and side = 1 (one-sided test).

Based on our simulation, power in simulated data is slightly lower but highly comparable 

with the theoretical results (Figure 5), indicating that the underlying theoretical assumptions 

has only small effect on the actual power of the admixture mapping.

Conclusion

Multi-parental admixed populations, such as the African American or Latino populations, 

are increasingly being used for genetic studies via admixture mapping. However, there were 

no specialized analytic software to determine power and sample size in admixed population 

limited, which limits the utility of mixed ancestry population in genetics/genomics studies. 

To overcome analytic limitations, we have developed a web-based tool, PAMAM, for power 

and sample analysis in admixed populations. PAMAM is built on JavaScript, run on most of 

the modern browsers independent of operating system and no installation is needed. To our 

knowledge, PAMAM is the first online tool to implement power and sample size analysis for 

admixed populations with two and three ancestral populations. There is widespread 

applicability and importance of admixture mapping in studies with samples from admixed 

populations. We hope the tool serve as convenient platform for such analysis which will 

benefit the scientific communities and clinicians working on admixed samples. We welcome 

user’s feedbacks to improve the PAMAM features.

In summary, we developed PAMAM, which is powered by the back-end computational 

pipeline for various power and sample size calculation algorithms. The front-end user 

interfaces provide a wealth of user-specified settings including model selection for study 

design, genetic inheritance, and visualization and downloading results. In this study, we 

Gautam et al. Page 8

Genet Epidemiol. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



achieved the following three goals: (1) Develop power and sample size calculator for 

mapping risk loci in two-way and three-way admixed populations in discrete traits; (2) 

Develop power and sample size calculator for mapping risk loci in two-way and three-way 

admixed populations in quantitative traits; and (3) Develop an online tool for power and 

sample size calculation tool and make freely available at https://research.cchmc.org/

mershalab/PAMAM/login.html.

Analytical Approach

PAMAM is developed for power analysis of two-way and three-way admixture mapping 

studies for both dichotomous and quantitative trait outcomes. Analytical approaches are 

presented below:

Two-way admixture: For dichotomous traits, both case-only and cases-control study 

designs were analyzed under the framework of one-sample and two-sample binomial test of 

proportion and for quantitative traits, linear regression models with and without covariates 

were implemented. In case-only study design, the average ancestry proportion at a marker, 

say Π1, will be compared with global ancestry proportion Π0 for the significant differences. 

The power (1 – β) and sample size (n1) were computed as:

1 − β = P Z >
V0Zα − ∣ Π1 − Π0 ∣

V0V1
, n1 = 1

2
zβ Π1(1 − Π1) + zα Πo(1 − Π0)

Π1 − Π0

2
, (1)

Where β is the type II error rate, α is the type I error rate (potentially adjusted for the 

multiple testing if required), V0 =
Πo(1 − Π0)

2n1
, and V1 = 1

V0

Π1(1 − Π1)
2n1

=
Π1(1 − Π1)
Π0(1 − Π0)  are 

variance under the null and alternate model. In the case-control study design, the average 

ancestry proportion at a marker among cases, say Π1, will be compared with average 

ancestry proportion at the same marker among controls, say Π0, for the significant 

differences. Then, the power (1 – β) and sample size (n) for the case-only design were 

computed as:

1 − β = P Z >
V0Zα − ∣ Π1 − Π0 ∣

V0V1
, n

= 1
2

zβ Π1(1 − Π1) + Π0(1 − Π0) + zα 2Π0(1 − Π0)
Π1 − Π0

2
,

(2)

where β is the type II error rate, α is the type I error rate (potentially adjusted for the 

multiple testing if required), V0 =
Π0(1 − Π0)

2n1
+

Π0(1 − Π0)
2n2

, V1 = 1
V0

Π1(1 − Π1)
2n1

=
Π0(1 − Π0)

2n2
are the variance under null and alternate model. The sample size in equation (2) is computed 

by assuming equal sample size for both case and control i.e. n = n1 = n2.
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Additionally, the power analysis of quantitative traits is based on the linear regression model

v = β0 + β1u + ζW + ϵ,

where v be the (normalized) phenotype measurement, u be the excess ancestry proportion, 

W is a vector of the covariates, β0is the intercept, β1is the coefficient of ancestry effect, ζ is 

a vector of covariates effect, and ϵ~N(0, σ2) is the residual. For type I error rate α (adjusted 

for the multiple testing) and the type II error rate β, the power and sample size of the test are 

estimated using normal approximation which are derived to be as

1 − β = P Z > zα −
β1

SE(β1)
, n =

σ2(zα + zβ)2

α1
2σu

2(1 − ru
2)

. (3)

Here, β1 is the estimate of β1 and SE(β1) = σ

σu n(1 − ru
2)

 is the standard error of β1 with σ = 

standard error of the model, σu= standard deviation of the variable u, and ru
2 = multiple R2 

from the linear model regressing u against the rest of the covariates in the model. When 

there is no covariates on the model, then ru
2 = 0 can be used in equation (3).

In general, the power and sample size analysis given by (1) and (2) depend on the 

approximation of admixture proportion Π1. We have implemented the genotype risk ratio 

based approach (Montana & Pritchard, 2004), parental risk ratio based approach (Zhu et al., 

2004), and ancestral odds-ratio based approaches under different disease inheritance mode 

as detailed in Gautam et al. (Gautam, Altaye, Xie, & Mersha, 2017). For details of the 

analytical approaches for admixture mapping under various disease outcomes and models 

please refer Gautam et al (Gautam et al., 2017).

Three-way admixture: Similar to two-way admixture, the analyses for dichotomous trait 

can be performed in the framework of case-only and case-control study design. For the case-

only study, the analysis will be performed under a Chi-square goodness of fit test, comparing 

the expected population distribution of multinomial admixture proportion with an expected 

distribution under a disease model. For the case-control studies, the association between the 

trait and ancestry is modeled under a Chi-square test of independence. For quantitative trait, 

a linear multinomial regression model will be used to access the association between the 

phenotype and ancestries and the power and sample size analyses will be performed for a 

desired level of association as measured by the multiple correlation (R2). Suppose we have a 

recently admixed population resulting from an admixture of three ancestral populations X1, 

X2, and X3 with admixture proportions θ1, θ2, and θ3, respectively, the proportion of alleles 

from the population Xi at given marker locus is θi.

Dichotomous Trait

In dichotomous traits, an admixture mapping analysis would measure a significance 

deviation in the admixture proportion in the study samples from the expected population 
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proportions of X1, X2, and X3, which can be achieved by either case-only or case-control 

study design.

Case-only admixture mapping: Suppose M cases were selected from an admixed 

population. We further assume that at disease-susceptibility marker L with risk allele 0, the 

risk allele frequencies were f1, f2, and f3 in the populations X1, X2, and X3, respectively. We 

assume that the ancestry at marker L is known without error, and the number of ancestral 

alleles from X1, X2, and X3 are given by (n1, n2, n3) with n1+ n2 + n3 = N (= 2M). The 

estimated ancestry proportion at L are θ1 =
n1
N , θ2 =

n2
N , θ3 =

n3
N , respectively. We can use a 

Chi-square goodness of fit test to compare the expected distribution (θ1, θ2, θ3) and 

observed distribution (θ1, θ2, θ3) under a large sample assumption. The null and alternate 

hypotheses for the goodness of fit test –as follows:

H0: (θ1, θ2, θ3) = (θ1, θ2, θ3)
H1: (θ1, θ2, θ3) ≠ (θ1, θ2, θ3), i.e. at least one of the θ j ≠ θ j .

The test statistics under the null hypothesis is computed as:

T = N∑ j (θ j − θ j)
2 ∕ θ j .

Under the H0, T ∼ χ2
2 distribution with 2 degree of freedom. Under some local alternate 

hypothesis (p1, p2, p3), T ∼ χ2
2(δ), a non-central chi-square distribution with non-central 

parameter δ with 2 degree of freedom where δ = limN ∞ N∑ j
(p j − θ j)

2

θ j
 exists and finite 

(Chow, Shao, & Wang, 2008; Drost, Kallenberg, Moore, & Oosterhoff, 1989).

Let α be the type I error rate after multiple testing correction and β be the type II error rate. 

Let C = P(χ2
2(0) > 1 − α) be the critical value under the null. When the sample size N is large, 

N∑ j
(p j − θ j)

2

θ j
 is a reasonable approximation of the δ (Drost et al., 1989). Using 

δ = N∑ j
(p j − θ j)

2

θ j
, the power of the Chi-square goodness of fit test can be computed as:

1 − β = P(χ2
2(δ) > C) . (4)

The sample size to achieve power = (1- β) will be estimated using

N = δ ∕ w2 (5)
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where w = ∑ j
(p j − θ j)

2

θ j
 is the effect size, and δ is the non-central parameter estimated by 

solving the equation P[X2
2(δ) ≤ C] = β (Chow et al., 2008). Finally, the sample size to achieve 

the power is given by M = N/2.

Case-control admixture mapping: In the case-control admixture mapping, the access 

ancestry in the cases and the access ancestry in the control are compared. We assume that 

the control is the ideal sample representing the population, so the test becomes equivalent to 

comparison of ancestry proportions in cases and controls. We use a chi square test of 

independence between the disease status (case, control) and ancestry (X1, X2, X3) to 

estimate the power or sample size of the case-control mapping.

If M1 and M2 be the number the sample sizes for cases and controls, then the number of 

alleles in cases and controls are N1 = 2M1 and N2 = 2M2. The observed count of ancestry 

alleles at a locus in cases and controls can be summarized in 2×3 table as follows:

X1 X2 X3 Total

Case n11 n12 n13 N1

Control n21 n22 n23 N2

N.1 N.2 N.3 N

The chi-square test statistics for independence is T = ∑i = 1
2 ∑ j = 1

3
(ni j − N

. j∗
Ni)

2

N
. j∗

Ni
. Under the 

null hypothesis of no association between disease and ancestry, T ∼ χ2
2, a chi square 

distribution with degree of freedom 2. Under some alternative hypothesis, T ∼ χ2
2(δ), a non-

central chi-square distribution with non-central parameter δ with 2 degree of freedom where 

δ = limN ∞ N∑i = 1
2 ∑ j = 1

3
(pi j − p

. j∗
pi .)

2

p
. j∗

pi .
, where pij, p.j, and pi. cell and marginal 

probabilities respectively, provided the limit exists (Chow et al., 2008).

Let α be the type I error rate after multiple testing correction and β be the type II error rate. 

Let C = P(χ2
2(0) > 1 − α) be the critical value under the null. Then, the power of the Chi-

square test of independence is computed as:

1 − β = P(χ2
2(δ) > C) (6)

The non-centrality parameter δ in (6) will be estimated using the following equation:

δ = N∑i = 1
2 ∑ j = 1

3
(pi j − p

. j∗
pi)

2

p
. j∗

pi
, under some alternate hypothesis.
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For sample size estimation to achieve power = (1- β), the non-centrality parameter δ will be 

estimated by solving the P[X2
2(δ) ≤ C] = β for δ. The total sample size N will be estimated as 

follow:

N = δ

∑i = 1
2 ∑ j = 1

3
pi j − p

. j∗
pi

2

p
. j∗

pi

(7)

We assume equal cases and controls to compute the sample size for cases and controls.

Next, we describe the approach of estimating the admixture proportion under the alternate 

hypothesis for a diseased-susceptibility marker with a given genotype risk ratio and under 

the multiplicative mode of inheritance. Similar approach was used for two-way admixture in 

Montana and Pritchard (Montana & Pritchard, 2004).

Estimating the ancestry proportion under alternate hypothesis: The power and 

sample size computations using equations (4) - (7) required the admixture proportion/joint 

distribution under some alternate hypothesis. An appropriate alternate hypothesis can be 

constructed from the population specific parameters such as disease risk, allele frequencies, 

population admixture proportions, and disease inheritance.

Let f1, f2, and f3 risk allele frequencies at disease-susceptibility marker L in the three 

ancestral populations X1, X2, X3 respectively. Let (θ1, θ2, θ3) be the admixture proportion at 

the marker under null model. Let γ be the genotype relative risk, assumed to be constant 

across all three populations. Under multiplicative mode of inheritance, the ancestry 

proportion under the disease model, (p1, p2, p3), can be computed as:

pi = θi
1 + f i(γ − 1)
1 + f‒(γ − 1) ,

where f‒ = p1 f 1 + p2 f 2 + p3 f 3 is the allele frequency in the admixed population.

For the case-only study, (p1, p2, p3) will be used as the alternate hypothesis for power and 

sample size estimation. However, for the case-control study, we further need to construct the 

alternate hypothesis, which is the joint distribution of disease status and ancestry, using the 

ancestry estimates (p1, p2, p3) for cases and (θ1, θ2, θ3) for controls. If M1 and M2 are the 

number of cases and number of controls and N1 = 2M1 and N2 = 2M2 be the respective 

allele counts, then the joint distribution can be tabulated as follow:

X1 X2 X3 Total

Case N1p1 N1p2 N1p3 N1

Control N2θ1 N2p2 N2p3 N2

N.1 N.2 N.3 N
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For the power analysis using equation (3), the non-central parameter δ can be estimated 

using equation (4) with cell probabilities from the table above. For sample size estimation, 

we assume equal cases and control (i.e. N1 = N2 ➔ M1 = M2) and cell probabilities can be 

recalculated and the sample size can be estimated using equation (5). Note that N is the total 

alleles count from cases and controls, so we will have M1 = M2 = 0.25N.

Quantitative Trait

The association between the quantitative trait and the multiple ancestry can be studied in the 

framework of the linear multiple regression analysis. Let yi be the phenotype measurement 

and θi = (θ1i, θ2i, θ3i) be the admixture proportion of i-th individual at a disease 

susceptibility marker locus. Since θ1i + θ2i + θ3i = 1, without loss of generality, we use θ1i 

and θ2i be the independent component on the model. If Wi be the vector of covariates, then a 

multiple regression model between the phenotype and the ancestry can be expressed as

yi = a + b1θ1i + b2θ2i + ζW i + ϵi, (8)

where a is the intercept, b1 and b2 are the slope parameters, ζ be the vector of the covariates 

effect, and ϵi ∼ N(0, σϵ
2) is the residual. Covariates may include age, gender, age of disease 

onset, medication status, individual’s average ancestry, and other clinical genotypes and 

environmental exposure factors. A significant nonzero b1 or b2 or both indicate a possible 

association between the phenotype and the ancestries. The null and alternate hypotheses of 

the test can be expressed as -

H0:b1 = b2 = 0 vs. H1: at least one of the b1 or b2 is non‐zero.

During the planning stage of analysis, the sample information, and hence b1 and b2, are 

unknown. So, it is practical to perform the power analysis unconditional to data by setting 

some desired level of relationship such as the multiple R2 between phenotype and 

independent variables (Gatsonis & Sampson, 1989). Cohen proposed an approximation for 

power and sample size analysis using multiple R2 from linear multiple regression based on 

the approximate non-central F-distribution (Cohen, 1988). Gatson and Sampson further 

suggested that the approximation of Cohen is highly accurate for power and sample size 

approximation for linear multinomial regression (Gatsonis & Sampson, 1989). In this article, 

we performed the power and sample size analysis of (8) using the multiple R2 as proposed 

by Cohen (Cohen, 1988).

Let R1
2 and R0

2 be the multiple correlation of (8) with and without the ancestry information, 

then the null and alternate hypotheses can be equivalently expressed as-

H0:R2 = R0
2 vs. H1: R2 > R0

2( = R1
2) . (9)
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The model (9) provides a test for non-zero gain in proportion of explained variation of Y 

(phenotype) by using the ancestries in the model. The Cohen’s measure of effect size (f2) 

based on the model (9) is given by f 2 =
R1

2 − R0
2

1 − R1
2 . Under the null hypothesis f2~Fu,v, a central 

F-distribution with numerator degree of freedom (u) and the denominator degree of freedom 

(v). If k = # of ancestries and w = # of covariates in the model (8), we will have the 

numerator degree of freedom (u) = k −1 (= 2 for three-way admixture), the denominator 

degree of freedom (v) = N - u - w - 1. Under the alternate hypothesis, f2 is approximated as 

non-central F-distribution with the con-centrality parameter (δ) = f2(u + v + 1). If α be the 

level of significance, C = P(Fu,v ≥ α) is the critical value, and β be type II error rate, then the 

power of the test (9), 1 – β, can be estimated as

1 − β = P(Fu, v(δ) ≥ C) . (10)

On the other hand, if β be the type II error rate, for the sample size estimation, we first 

estimate the non-centrality parameter δ by solving the equation P(Fu,v(δ) < C) – β = 0 for δ. 

Note that both δ and C in the equation are functions of v. So, the equation (10) will be, in 

turn, solve for the denominator degree of freedom (v) = δ

f 2 − u − 1, and the approximated 

sample size is

N = u + v + w + 1 . (11)

The post-hoc power analysis of the test (10) depends on the f2, the number of the variables 

under the null and alternate models, the sample size, and the type I error rate. Alternately, 

for the sample size analysis, one can provide f2, the number of the variables under the null 

and alternate models, the type I error rate, and the power or the type II error rate (β).

When there is no covariates in the model, we can set R0
2 = 0, and w =0 in the above 

computation. Accordingly, the effect size becomes f 2 =
R1

2

1 − R1
2 . The power and sample size 

are again computed as before using (10) and (11).

In PAMAM, the power and sample size approximations are performed using equations (10) 

and (11) when covariates are present, and using (11) when no covariate presents.

Generalize model for multi-ancestry power and sample size analysis

The power and sample size estimations described for the three-way admixture mapping in 

equations (4) - (7) can be generalized for multi-ancestry admixture populations with more 

than three ancestries. For a case-only admixture mapping on admixed population consisting 

of k ancestries (k ≥ 3), the computation of δ = N∑ j
(p j − θ j)

2

θ j
 in (4) and w = ∑ j

(p j − θ j)
2

θ j
 in 
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(5) hold with summation over j = 1 to k. Similar generalization of the equations (6) and (7) 

can be applied for case-control admixture mapping. In either scenario, the underlying chi-

square distribution has degree of freedom k −1. Additionally, the power and sample size 

analysis of quantitative traits using (10) and (11) can be generalized for multi-way admixture 

analysis with more than three-way admixture by simply adjusting the numerator degree of 

freedom (u). Note that if k = # of ancestries, then u = k-1.

Tool and Code Availability

We have implemented the proposed PAMAM method in JavaScript. PAMAM tool is freely 

available from https://research.cchmc.org/mershalab/PAMAM/login.html. A user manual is 

available to download from the website. We have further developed R codes implementing 

the PAMAM algorithm for two-way and three-way power and sample size analyses. The R 

codes are freely available under the GNU General Public License on the Mersha Lab GitHub 

page: https://github.com/MershaLab/PAMAM
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Figure 1: Schematic view of population admixture in America.
Figure shows an overview of admixture process of three ancestral populations, African, 

European, and Native American in the American continent. African Americans (AA) are 

two-way admixture of African and European; Latinos are three-way admixture of African, 

European, and Native American.
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Figure 2: Workflow of PAMAM Summarizing the Study Design and Approach.
AOR = Ancestry Odds Ratio, GRR = Genotype Risk Ratio, PRR = Parental (ancestral) risk 

ratio; HI = Hybrid Isolation, CGF = Continuous Gene Flow; CC = Case-Control; Mul = 

Multiplicative, Add = Additive, Rec = Recessive, Dom = Dominant, R2 = (multiple) squared 

correlation.
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Figure 3: PAMAM web interface.
It is designed as an architecture consisting of four layers where a user selects admixture 

level, build the model, specific the parameter and conduct the statistical analysis in a single 

click. The web interface allows user to either display the information on the browser or to 

download to a local hard drive.
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Figure 4: Power vs sample size plots.
Figure shows the power vs sample size plots of different admixture mapping models. A) 

Two-way admixture mapping for discrete trait with following inputs - admixture process = 

hybrid-isolation, study design = case-only, inheritance mode = multiplicative, grr = 2.5, 

admixture proportion = 0.8, allele frequencies = (0.4, 0.1), type I error rate = 0.000025, side 

= one; B) Two-way admixture mapping for quantitative trait with inputs - effect statistics = 

slope, slope = 0.35, SD error = 0.72, SD ancestry = 0.4, type I error rate = 0.000025, side = 

one; C) Three-way admixture mapping for discrete trait with inputs - admixture process = 

hybrid-isolation, study design = case-only, inheritance mode = multiplicative, grr = 2.5, 

admixture proportion = (0.67, 02, 0.13), allele frequencies = (0.4, 0.2, 0.1), type I error rate 

= 0.000025; D) Three-way admixture mapping for quantitative trait with inputs - multiple R2 

= (0.1,0.15), type I error rate = 0.000025.
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Figure 5. Power comparison between theoretical and simulation studies.
Figure shows the comparison of theoretical power computed based on PAMAM and the 

power from simulation. X-axis shows the total sample size with equal cases and controls. 

Power is computed for the ancestral odds ratio = 1.636, admixture proportion = 0.8, 

type1.error = 0.000025 and side = 1.
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