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Abstract
Key message  Simultaneous genomic selection for grain yield, protein content and dough rheological traits enables 
the development of resource-use efficient varieties that combine superior yield potential with comparably high end-
use quality.
Abstract  Selecting simultaneously for grain yield and baking quality is a major challenge in wheat breeding, and several 
concepts like grain protein deviations have been developed for shifting the undesirable negative correlation between both 
traits. The protein quality is, however, not considered in these concepts, although it is an important aspect and might facilitate 
the selection of genotypes that use available resources more efficiently with respect to the quantity and quality of the final 
end products. A population of 480 lines from an applied wheat breeding programme that was phenotyped for grain yield, 
protein content, protein yield and dough rheological traits was thus used to assess the potential of using integrated genomic 
selection indices to ease selection decisions with regard to the plethora of quality traits. Additionally, the feasibility of achiev-
ing a simultaneous genetic improvement in grain yield, protein content and protein quality was investigated to develop more 
resource-use efficient varieties. Dough rheological traits related to either gluten strength or viscosity were combined in two 
separate indices, both of which showed a substantially smaller negative trade-off with grain yield than the protein content. 
Genomic selection indices based on regression deviations for the two latter traits were subsequently extended by the gluten 
strength or viscosity indices. They revealed a large merit for identifying resource-use efficient genotypes that combine both 
superior yield potential with comparably high end-use quality. Hence, genomic selection opens up the opportunity for multi-
trait selection in early generations, which will most likely increase the efficiency when developing new and improved varieties.

Introduction

The genetic improvement in grain yield is a major breeding 
goal in bread wheat, whose achievement is, though, often-
times complicated by large genotype-by-environment inter-
action and a complex quantitative inheritance governed by 
many small-to-medium effect quantitative trait loci (QTL) 
(Hoffstetter et al. 2016b; Schulthess et al. 2017). Its low her-
itability and complex inheritance render grain yield, thus an 
interesting target trait for the application of genomic selec-
tion (Crossa et al. 2017). The prediction of genotype perfor-
mance in yet untested years is, however, still challenging, 
even with a genomic breeding approach (Hoffstetter et al. 
2016a; Jarquin et al. 2017; Huang et al. 2018; Juliana 2018) 
and its merit furthermore dependent on the respective breed-
ing programme (Rife et al. 2018). Nevertheless, the applica-
tion of genomic selection has been shown to lead to a similar 
or higher genetic gain in comparison with early-generation 
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phenotypic selection in a conventional breeding scheme (He 
et al. 2016; Michel et al. 2017; Belamkar et al. 2018) and 
has been implemented into many national and international 
breeding programmes (Lado et al. 2016; Cericola et al. 
2017; Fiedler et al. 2017; Guzmán et al. 2017).

The maintenance of or improvement in end-use quality 
is on the other hand mostly a secondary objective in many 
bread wheat breeding programmes, and an indirect selec-
tion for baking quality traits is often conducted by using 
the protein content as a major selection criterion in early 
generations. Aside from the protein content, end-use qual-
ity in wheat is determined by the protein quality that can 
among others be assessed with dough rheological tests 
(Branlard et al. 1992; Anderssen et al. 2004; Schiedt et al. 
2013). The numerous dough rheological traits are generally 
less influenced by genotype-by-environment interactions in 
comparison with the protein content (Williams et al. 2008; 
Hernández-Espinosa et al. 2018) but involve on the other 
hand labour-intensive, time-consuming and costly quality 
analysis. Hence, an early-generation selection for these bak-
ing quality-related traits can either be conducted indirectly 
by using small-scale tests (Knott et al. 2009; Guzmán et al. 
2016; Malegori et al. 2017) or by employing genomic selec-
tion directly targeting the underlying genetic architecture. 
The prediction accuracy of a genomic selection approach 
can be further refined by upweighting known major QTL 
or the inclusion of prior information of correlated traits like 
the protein content or sedimentation value into prediction 
models (Hayes et al. 2017; Lado et al. 2018; Michel et al. 
2018). A plethora of information with regard to baking qual-
ity-related traits is thus made available when implement-
ing genomic selection in early generations. Although this 
might generally be considered as a beneficial feature, it also 
gives rise to the challenging task of identifying the lines with 
the desired combination of these dough rheological traits. 
Additionally, breeders might aim to develop high-quality 
genotypes with acceptable yield potential or develop high-
yielding varieties while maintaining quality characteristics, 
both of which are complicated by the frequently observed 
negative correlation between grain yield and the major qual-
ity criterion protein content (Simmonds 1995).

Notwithstanding, selection for both breeding goals can be 
conducted either by employing grain protein or yield devia-
tions (Rapp et al. 2018; Thorwarth et al. 2018; Michel et al. 
2019; Thorwarth et al. 2019) with the former being closely 
related to yield-adjusted breeding values for protein content 
(Hänsel 2001; Arief et al. 2010). Both concepts can further-
more be seen as an application of restriction indices holding 
either the protein content or grain yield stable and improving 
the other trait. A simultaneous selection for both traits can 
also be based on protein yield that is, though, stronger cor-
related with grain yield than protein content (McNeal 1982; 
Simmonds 1995). Alternatively, the mentioned concepts can 

be combined by high yield and protein indices which aim 
to achieve a high protein yield either via an elevated grain 
yield or protein content (Michel et al. 2019). The derived 
selection indices are moreover associated with nitrogen-use-
efficiency-related traits like post-anthesis nitrogen uptake 
and remobilization (Monaghan et al. 2001; Bogard et al. 
2010) and have shown some potential to mitigate the pro-
tein content/grain yield trade-off by compensating for the 
dilution of the protein content when selecting for higher 
yield potential (Michel et al. 2019). Nevertheless, the pro-
tein quality is not considered in these indices yet, although 
it is an important aspect when breeding for both grain yield 
and baking quality as seen by some wheat hybrids that pos-
sess a lower protein content, though, a higher yield potential 
and similar sedimentation value as line varieties (Thorwarth 
et al. 2018). Genotypes that combine superior grain yield 
with comparably high-quality characteristics putatively 
utilize available resources more efficiently with respect to 
the quantity and quality of the final end product like baked 
breads. Hence, extending the existing concepts for a simul-
taneous selection of grain yield and protein content by the 
inclusion of protein quality seems necessary to facilitate the 
development of varieties with a more effective combination 
of yield potential and end-use quality. The usage of selec-
tion indices has a large potential to ease selection decisions 
in this endeavour with regard to the plethora of involved 
traits (Smith 1936; Hazel and Lush 1942), while genomic 
selection indices (Togashi et al. 2011; Ceron-Rojas et al. 
2015) have in this case the particular advantage that they can 
already be employed in early generations before high-quality 
phenotypic data are available. The aims of this study were 
thus (i) to assess the potential of using integrated selection 
indices to ease selection decisions with regard to protein 
quality traits and (ii) investigate the feasibility to achieve a 
simultaneous genetic improvement in grain yield and baking 
quality-related traits in order to develop more resource-use 
efficient varieties.

Materials and methods

Plant material and phenotypic data

This study focused on the analysis of a diverse population of 
480 F4:6 generation and double haploid winter wheat breed-
ing lines (Triticum aestivum L.) from an applied breeding 
programme that were developed from 394 families and 
tested in multi-environment trials under Central and East-
ern European conditions from 2009 to 2016. The phenotypic 
data comprised information about their grain yield (dt ha−1), 
protein content (%), protein yield (dt ha−1) and multiple 
dough rheological traits dough rheological parameters from 
the Extensograph and Farinograph. The data were obtained 
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from multiple partially connected trial series with a total 
of 156 trials and more than 2000 lines (Table S1). A set of 
480 lines was chosen due to the availability of completely 
orthogonal phenotypic records for the numerous traits of 
interest, where grain yield, protein content and protein yield 
were tested in several series of 136, 86 and 66 preselected 
trials with sufficient data quality, respectively (see next sec-
tion). The trials were on average connected by 57, 90 and 
54 checks as well as F4:6 and F7 breeding lines within years, 
but the connection across years was mainly established by 
around 48, 41 and 46 selected F4:6 lines that were retested 
in the F7 the subsequent year. Each line was on average rep-
licated seven times for grain yield and five times for protein 
content and protein yield.

The dough rheological traits were on the other hand 
available from 29 preselected trials, laid out as completely 
randomized trial designs that were on average connected 
by 43 lines within years and 13 lines across all years. Each 
line was on average replicated three times for the assess-
ment of dough rheology which for most lines corresponded 
to testing in three different trials, while within trials only 
1–3 checks were generally tested in replication. These 
traits were regarded as measures for differentiating lines 
for their protein quality in this study. Their assessment is 
generally costly, labour-intensive as well as time-consum-
ing and involved as a first-step milling the collected grain 
samples with a Quadrumat Junior milling system accord-
ing to method AACC26-50 of the American Association of 
Cereal Chemists (AACC, 2000). Dough mixing properties 
were subsequently determined by a Farinograph (Brabender 
GmbH and Co KG) equipped with a 300-g mixing bowl, in 
which the water uptake of each flour sample was estimated 
in a pretest on a 100-g subsample until it reached an optimal 
dough consistency of 500 farinogram units (FU) according 
to the standard procedure AACCI 54e21 (AACC, 2000). 
The main test with intensive mixing included the measure-
ment of the dough development time as the time frame in 
minutes from the first water uptake until the dough began to 
soften as well as the dough stability that was quantified as 
the time in minutes between the first intersection and leaving 
of the 500 FU reference line by the kneading curve. Addi-
tionally, dough softening was evaluated as the difference in 
observed dough consistency and the 500 FU reference line 
after 12 min of kneading, i.e. lower values are more favour-
able; however, for convenience, for example, to achieve a 
positive correlation with the other dough mixing parameters 
the phenotypic records for dough softening were inverted 
by multiplying them with -1 for all subsequent analysis. 
Viscoelastic properties of the flour samples were thereafter 
determined by the Extensograph (Brabender GmbH and Co 
KG) according to AACCI 54-10.01 (AACC, 2000). Hence, 
the dough rheological profile of each line was completed by 
embedding the extensibility (mm), resistance to extension 

at 50 mm in Extensogram units (EU) and the area under 
the Extensograph curve, i.e. the dough energy (cm2), after a 
135-minute resting time.

Statistical analysis of phenotypic data

Phenotypic data from all original 156 multi-environment 
trials were firstly analysed with various models correcting 
for spatial trends. Briefly, a baseline model without spatial 
correction was compared with all 15 possible combinations 
of random row and/or column effects with/without model-
ling a variance–covariance structure between the plots either 
in row, in column or in both directions by an autoregressive 
spatial model (AR1) (Burgueño et al. 2000) The model with 
the best fit was subsequently chosen by Akaike’s information 
criterion (AIC). Best linear unbiased estimates (BLUE) were 
derived with this model, and the heritability was estimated 
with h2 = �2

G

/(
�2
G
+

1

2
MVD

)
 , where �2

G
 designates the 

genetic variance and MVD the mean variance of a difference 
in the BLUEs (Piepho and Möhring 2007). Multi-environ-
ment trials with a heritability larger than 0.3 were forwarded 
to an across-trial analysis for grain yield, protein content and 
protein yield, while for the rheological traits all trials with a 
heritability smaller than 0.1 instead of 0.3 were excluded 
from further analysis. This liberal threshold was chosen due 
to the costly, labour-intensive as well as time-consuming 
process for assessing these traits. Additionally, when esti-
mating the heritability for dough rheological traits within 
trials, the error variance was estimated based on the repli-
cated checks making the strong assumption that the other 
lines have the same error variance. These estimates were 
thus regarded as a coarse indication about the data quality 
of the individual trials, while the across-trial analysis was 
seen as being the relevant measure of data quality for the 
dough rheological data. Furthermore, in some trials none of 
the lines were tested in replicate for dough rheology; thus, 
the data could not be assessed for its quality in these cases 
but were still integrated into the analysis due to the men-
tioned circumstances. All traits were subsequently analysed 
with a linear mixed model of the form:

where yij are the BLUEs for the respective trait from the first 
stage, � is the grand mean and gi is the effect of the ith line. 
The effect of the jth trial tj was fixed, while the effect rij that 
incorporated both the trial-by-line interaction variance and 
the residual effect was assumed random and followed a nor-
mal distribution with � ∼ N

(
0, ��2

r

)
 . The heritability of the 

across- tr ial  analysis  was again computed by 
h2 = �2

G

/(
�2
G
+

1

2
MVD

)
 . Additionally, a genomic heritabil-

ity was estimated for the entire set of 480 lines that was used 
for genomic prediction in this study with details being 

(1)yij = � + gi + tj + rij
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reported in the following sections. All phenotypic analyses 
were conducted using the statistical package ASReml for the 
R programming environment (R Development Core Team 
2018).

Genotypic data and population structure

Leaf samples were collected from a minimum of ten plants 
from each F4:5 or doubled haploid line and used for DNA 
extraction with the protocol given by Saghai-Maroof et al. 
(1984). The DArT genotyping-by-sequencing (GBS) approach 
(Diversity Arrays Technology Pty Ltd) was used for genotyp-
ing all 480 lines, and quality control was applied by filtering 
with regard to a call rate lower than 90% and removing mark-
ers with a minor allele frequency smaller than 0.05 as well 
as more than 10% of missing data. A subset of 457 lines was 
furthermore screened for their allelic state at the high molecu-
lar weight glutenin subunit loci Glu-A1, Glu-B1 and Glu-D1 
by sodium dodecyl sulphate–polyacrylamide gel electropho-
resis (SDS–PAGE). The allele calls from this analysis were 
recoded into an − 1, 0, + 1 format to facilitate their integration 
into the genomic relationship matrix for genomic prediction. 
The allele less favourable 0 for the Glu-A1 was coded as − 1, 
while the favourable alleles 1 and 2* were both coded as + 1 
due to their similar effect (Payne et al. 1987). The allele 6 + 8 
of the Glu-B1 locus was coded as -1 and the alleles 7 + 8 as 
well as 7 + 9 were coded as +1 again due to their similar effect. 
The alleles 5 + 10 and 2 + 12 of the Glu-D1 locus were finally 
coded as − 1 and + 1, respectively, while heterozygous marker 
alleles were generally coded as 0. The missForest algorithm 
(Stekhoven and Bühlmann 2012) was subsequently used for 
a chromosome-wise imputation of missing data points for the 
remaining 7.3 K SNP markers. The average modified Rogers’ 
distance in the population was calculated as DMR = 0.31 . The 
population structure with the corresponding membership of 
each line to its subpopulation as well as their allelic state at 
the Glu-1 loci was finally investigated by principal component 
analysis (Suppl. Fig. S1; Suppl. Fig. S2).

Single‑trait genomic prediction models

The merit of genomic prediction for grain yield, protein content 
and protein quality as well as possible negative trade-offs was 
investigated in a resampling scheme, where 300 lines were 100 
times randomly sampled in training population and 100 lines in 
validation population. The kinship between lines was for this 
purpose estimated by the genomic relationship matrix, which 
was computed according to the method described by Endelman 
and Jannink (2012) with the M = 7.3 K SNP markers:

(2)� = ��T∕2
∑(

pk − 1
)
pk

where � is a centred NxM marker matrix of the N lines 
with Wik = Zik + 1 − 2pk with pk being the allele frequency 
at the kth locus and Zik the marker allele of the ith line at 
the kth locus. Genomic estimated breeding values (GEBV) 
were afterwards derived by genomic best linear unbiased 
prediction models (GBLUP) including the obtained genomic 
relationship matrix:

where � is an Nx1 vector of BLUEs obtained in the pheno-
typic analysis, �� a random-effect design matrix for additive 
genetic effects and �� is an Nx1 vector of additive effects 
with �� ∼ N

(
0,��2

uG

)
 . The residual effect � followed a nor-

mal distribution � ∼ N
(
0, ��2

r

)
 , and � designates the inter-

cept with 1N being a Nx1 vector where all elements equal 1. 
The potential of exploiting prior information of known 
major QTL for baking quality-related traits was furthermore 
investigated by extending the previous model to a weighted 
genomic best linear unbiased prediction (WBLUP) that 
included the SDS–PAGE markers for the Glu-1 loci as sepa-
rate effects (Bernardo 2014; Zhao et al. 2014; Arruda et al. 
2016; Spindel et al. 2016; Michel et al. 2018a):

where � is an Nx1 vector of BLUEs obtained in the pheno-
typic analysis and �� is an Nx1 vector of additive effects as 
beforehand. The marker effects �A1 , �B1 and �D1 for the Glu-
A1, Glu-B1 and Glu-D1 locus were modelled either as fixed 
or as random, with the latter aiming to achieve a differential 
marker effect shrinkage in concordance with the explained 
variance of each marker for the according dough rheologi-
cal trait. The appropriate coding for the marker alleles at the 
corresponding Glu-1 loci was for this purpose modelled by 
the three Nx1 vectors ��1 , ��1 and ��1 . Hence, in the case 
of the GBLUP model the genomic breeding value of each 
line was estimated by the formula:

which was extended in the WBLUP model to:

with gi being the random genetic effect of the ith line, � 
the grand mean, �j the estimated effect of the jth Glu-1 loci 
marker and mij the marker allele of the ith line at the jth Glu-
1 loci marker. The merit of genomic prediction was addi-
tionally compared with the possibility of a marker-assisted 
prediction using merely the Glu-1 loci either as fixed or as 
random predictors with fitting the additive genetic effect �� 
in model (4). All models for genomic prediction were fit-
ted with the mixed model package sommer (Covarrubias-
Pazaran 2016) for R (R Development Core Team 2018).

(3)� = 1
N
� + ���� + �

(4)� = 1
N
� + ���� +��1�A1 +��1�B1 +��1�D1 + �

(5)GEB Vi = � + gi

(6)GEB Vi = � + gi +

n∑
j=1

mij�j
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Genomic selection indices for grain yield, protein 
content and protein quality

The possibility to summarize the plethora of dough rheo-
logical traits into integrated quality indices to ease selection 
decisions was subsequently investigated by using the same 
resampling scheme with 100 replicates described in the pre-
vious section. Based on the loadings of a principal compo-
nent analysis with the 480 lines, two major groups of cor-
related traits could be identified in accordance with previous 
studies (Maphosa et al. 2015; Marti et al. 2015; Huen et al. 
2018; Lado et al. 2018) (Fig. 1), and they were designated 
as the gluten viscosity and gluten strength groups in this 
study. Although a strict differentiation of the trait variation 
causing gluten strength and viscosity is not feasible using 
dough rheological parameters, especially in the presence of 
interactions (Weipert 2006), two separate indices that aimed 
to largely target these two aspects of protein quality were 
derived from this grouping:

where the gluten strength index ( IndexSTRHi
 ) for the ith 

line was calculated by combining genomic breeding values 
obtained from single-trait genomic predictions using the cor-
responding index weights for the extensogram resistance to 
extension bRES and dough energy bENG as well as for the 
dough stability bSTAB and softening bSOFT from the farino-
gram. These index weights were obtained from a genomic 
selection index of the form:

(7)
IndexSTRHi

= RESibRES + ENGibENG + STABibSTAB + SOFTibSOFT

with � being a vector of index weights, � the vector of 
desired gains and �−1 the inverse of the genomic vari-
ance–covariance matrix based on centred and standardized 
genomic estimated breeding values from single-trait predic-
tions of the respective traits:

with the variances of the genomic estimated breed-
ing values for the dough rheological trait on diag-
onal and covariance between traits on the off-
diagonal. The vector of desired gains was set to 
� =

(
aRES = 1, aENG = 1, aSTAB = 1, aSOFT = 1

)T , which 
corresponded to an equal weighting of the four dough rheo-
logical traits. The gluten viscosity index was analogously 
defined by:

and comprised the combination of the individual genomic 
breeding values by index weights for extensibility bEXT and 
dough development time bDEV derived from (8) with the 
genomic variance–covariance matrix

with the vector of desired gains � =
(
aEXT = 1, aDEV = 1

)T . 
The water uptake showed generally a lower phenotypic cor-
relation with the other dough rheological traits and was 
regarded as standing alone (Suppl. Fig. S3).

The main interest of this study was nevertheless to 
investigate the feasibility to achieve a simultaneous genetic 
improvement in grain yield, protein content and protein 
quality by genomic prediction. Genomic index selection for 
this purpose was firstly based on regression residuals from 
a regression of protein content on grain yield that are com-
monly known as grain protein deviations (Monaghan et al. 
2001; Bogard et al. 2010; Rapp et al. 2018; Thorwarth et al. 
2018, 2019). This protein residual method has been shown 
to be equivalent to a restriction index selection holding grain 
yield stable while increasing the protein content (Michel 
et al. 2019) and was extended in this study to:

which contained aside from the genomic breeding val-
ues based on single-trait predictions for protein content 
PCi and grain yield GYi and also the gluten viscosity 
IndexVISCi

 and strength index values IndexSTRHi
 of the ith 

line. All index weights were again obtained from formula 

(8)� = �−1�

(9)

⎛
⎜⎜⎜⎝

�2
RES

� � �

� �2
ENG

� �

� � �2
STAB

�

� � � �2
SOFT

⎞
⎟⎟⎟⎠

(10)IndexVISCi
= EXTibEXT + DEVibDEV

(11)
(
�2
EXT

�

� �2
DEV

)

(12)
IndexGPDi

= PCibpc + GYibgy + IndexSTRHi
bSTRH + IndexVISCi

bVISC

Fig. 1   Relationship between grain yield and dough rheological traits 
within the set of 480 lines, highlighting the designated gluten strength 
and gluten viscosity groups, where the latter contained only the 
dough development and extensibility
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(8) with appropriate modifications of the genomic vari-
ance–covariance matrix � after centring and standard-
izing the genomic estimated breeding and index values 
of all involved traits, while the desired gains were set to 
���� =

(
apc = 1, agy = 0, aSTRH = �, aVISC = �

)T with � 
and � varying in the interval [0, 1] . The analogous exten-
sion of grain yield deviation that aim to hold the pro-
tein content stable while increasing grain yield (Rapp 
et al. 2018; Michel et al. 2019) gave rise to the mirror-
inverted picture by altering the vector of desired gains to 
���� =

(
apc = 0, agy = 1, aSTRH = �, aVISC = �

)T in order 
to derive an index of the form:

Additionally, a selection for increased protein yield was 
conducted in the form of a high yield index using the devia-
tions from regressing protein yield on protein content, which 
aimed at the identification of lines that show a superior protein 
yield due to a high grain yield potential (Michel et al. 2019):

with PYi being the genomic breeding value for the protein 
yield of the ith line and bpy the corresponding index weight. 
The complementary high protein index of the ith line was 
calculated by:

and was intended to detect outstanding lines that pos-
sess an elevated protein yield due to their perfor-
mance in protein content. Economic weights for 
the high yield and protein indices were given by 
��� =

(
apy = 1, apc = 0, aSTRH = �, aVISC = �

)T  a n d 
��� =

(
apy = 1, agy = 0, aSTRH = �, aVISC = �

)T with � 
and � varying again in the interval [0, 1].

Prediction accuracy and response to selection

The prediction ability was assessed by correlating the genomic 
breeding and index values with observed values for grain yield, 
protein content, protein yield and all dough rheological param-
eters. The prediction accuracy was subsequently calculated as 
the prediction ability divided by the square root of the herit-
ability. For this purpose, a genomic heritability was estimated 
for each trait within each of the 100 times randomly resampled 
validation population by:

where �2
P
 is the phenotypic variance of investigated trait 

and �2
e
 the error variance obtained from a GBLUP model 

that only contained phenotypic data from the validation 

(13)
IndexGYDi

= GYibgy + PCibpc + IndexSTRHi
bSTRH + IndexVISCi

bVISC

(14)
IndexHYi

= PYibpy + PCibpc + IndexSTRHi
bSTRH + IndexVISCi

bVISC

(15)
IndexHPi = PYibpy + GYibgy + IndexSTRHi

bSTRH + IndexVISCi
bVISC

(16)h2
GEN

=
(
�2
P
− �2

e

)/
�2
p

population. It should be mentioned that Eq. (16) was also 
used to compute a genomic heritability to measure the qual-
ity of the phenotypic data for the entire set of 480 lines used 
in this study (Table S2). Aside from assessing the predic-
tion accuracy, it was of further interest to investigate how 
these estimates would translate into a response to selection. 
The 10% best performing lines among the 100 selection 
candidates of each resampling step were therefore selected 
according to the above-described genomic selection indices, 
the phenotypic values within the validation population were 
centred and standardized, and a predicted response measured 
in standard deviations was computed by:

where �i is the average trait performance of an entire valida-
tion population, �Seli

 is the average trait performance of the 
selected lines and h2

GENi
 is the genomic heritability of the ith 

trait. The predicted response of each selection method by 
index combination was finally recorded for all traits that 
were investigated in this study.

Results

Prediction accuracy for single‑trait genomic 
breeding values and quality indices

The prediction accuracy for the dough rheological traits was 
high and varied between r = 0.646 for resistance to exten-
sion up to r = 0.728 for water uptake in the basic GBLUP 
model for genomic prediction (Suppl. Table S2). The aver-
age prediction accuracy for genomic prediction (r = 0.710) 
was moreover substantially higher than a marker-assisted 
prediction using only the three Glu-1 loci (r = 0.449). How-
ever, some gain in average prediction accuracy was real-
ized by integrating the major Glu-1 loci markers as sepa-
rate fixed (r = 0.725) or random (r = 0.727) effects into the 
genomic prediction models. The advantage of such WBLUP 
models with random Glu-1 marker effects was especially 
pronounced for the dough stability (+ 2.3%), dough energy 
(+ 4.8%) and the resistance to extension (+ 9.4%) that are 
well known to be strongly influenced by the Glu-1 loci 
(Oury et al. 2010; Michel et al. 2018). The other major 
agronomic traits were as expected hardly influenced by 
upweighting the Glu-1 marker effects and a generally 
high prediction accuracy could be achieved with a basic 
GBLUP model for grain yield (r = 0.751) and the protein 
content (r = 0.769), while it was lower for the protein yield 
(r = 0.671).

Aiming to ease selection decisions with the plethora 
of dough rheological traits related to protein quality, the 
potential of integrating them into several protein quality 

(17)R̂Seli
= �i + h2

GENi

(
�Seli

− �i

)
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indices was subsequently investigated by introducing a 
grouping according to their phenotypic correlation (Fig. 1; 
Suppl. Fig. S3). The prediction accuracy of the gluten 
viscosity index amounted to r = 0.685 for the extensibil-
ity and r = 0.710 for dough development, while traits like 
the resistance to extension in the gluten strength group 
were on average, as expected, much less accurate predicted 
when employing this index (r = 0.418) (Fig. 2). The mir-
ror-inverted picture could consequently be observed when 
utilizing the gluten strength index for genomic prediction. 
It should, though, be noted that the prediction accuracy 
of single-trait predictions per se instead of genomic index 
combinations was always higher for the dough rheological 
traits. The same observation was made for the selection of 
the best 10% of lines, where the response to index selection 
for the dough rheological traits was, though, always higher 
than using the protein content as an indirect predictor trait 
(Suppl. Fig. S4).

It was evident that the trade-off between grain yield and 
the gluten strength index that encompassed major rheologi-
cal traits like dough energy and stability was much lower 
in terms of prediction accuracy (r = − 0.210) than the grain 
yield/protein content trade-off (r = − 0.578). A similar 
observation was made for the gluten viscosity index albeit 
its trade-off with grain yield was larger (r = − 0.478) in com-
parison with the gluten strength index, suggesting that an 
simultaneous improvement in grain yield and baking quality 
might be more readily achieved by targeting dough rheology, 
i.e. protein quality instead of the protein content.

Simultaneous genomic selection for grain yield, 
protein content and protein quality

The merit of genomic selection for developing high-yield-
ing varieties, while maintaining quality characteristics, was 
subsequently tested by augmenting the previously described 
high yield index (Michel et al. 2019) with the gluten strength 
and viscosity indices. The high yield index generally aimed 
to increase the protein yield while holding the protein con-
tent stable, which led a positive prediction accuracy for 
both grain and protein yield irrespective of the desired gain 
for the protein quality, i.e. gluten strength and viscosity 
(Fig. 3a). Aiming for larger gains in protein quality gener-
ally reduced, though, the prediction accuracy for grain yield 
from r = 0.478 to r = 0.158, i.e. when keeping protein quality 
stable or giving equal weight on both grain yield and protein 
quality. The prediction accuracy for dough rheological traits 
increased analogously, albeit only marginally with desired 
gains larger than σ = 0.5 (Fig. 3b, c). An optimum predic-
tion accuracy for the protein yield was achieved (r = 0.662) 
with ��� =

(
apy = 1, apc = 0, aSTRH = 0.1, aVISC = 0.1

)T , 
at which the prediction accuracy for grain yield (r = 0.478) 
and protein content (r = − 0.004) indicated that the actual 
goal of the high yield index of holding the protein content 
stable could be fulfilled. Noticeably, the prediction accuracy 
of all rheological traits expect water uptake was also posi-
tive at this optimum point, underpinning the previous state-
ment about the simultaneous improvement in grain yield and 
baking quality via targeting the protein quality. Genomic 
selection of high-quality genotypes with acceptable yield 

Fig. 2   Prediction accuracy for grain yield, protein content and protein yield as well as the dough rheological traits when using genomic esti-
mated breeding values of the traits per se, protein content or the gluten strength and viscosity index for prediction
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potential seemed likewise feasible, where the optimal 
prediction accuracy for protein yield was achieved with 
��� =

(
apy = 1, agy = 0, aSTRH = 0.8, aVISC = 0.8

)T 
(Fig. 3d). The prediction accuracy for the protein yield, 
protein content and all dough rheological traits was accord-
ingly positive (r = 0.389–0.565) (Fig. 3e, f), whereas a small 
negative prediction accuracy was found for grain yield 
(r = − 0.024) that still represented a strong adjustment by the 
high protein index given the large negative trade-off between 
protein content and grain yield.

Similar patterns were observed for genomic selection 
indices based on yield and grain protein deviations (Suppl. 
Fig. S5); their optimal prediction accuracy for protein yield 
was, though, slightly lower in comparison with the high 
yield and protein indices. This issue was also reflected by 
the higher response to selection for protein yield by the lat-
ter two indices (Fig. 4), which generally performed better 
for compensating the grain yield/protein content trade-off. 
A direct selection on grain yield resulted in a large posi-
tive response for this trait in terms of standard deviations 
(ΔGY = 0.75) but at the same in a substantial diminishment 
of the protein content (ΔPC = − 0.55) and dough rheological 

quality (ΔRHEO = − 0.32). Selection of the 10% best perform-
ing lines with the high yield index and previously deter-
mined optimal weights mitigated the negative response both 
for the protein content (ΔPC = − 0.10) and dough rheologi-
cal traits (ΔRHEO = 0.05), while a positive response to selec-
tion could be achieved for all latter traits expect the water 
uptake. It went moreover along with a much larger response 
for protein yield (ΔPY = 0.34) than a direct selection on grain 
yield alone (ΔPY = 0.16). Analogously, a direct selection on 
protein content (ΔPC = 1.12) clearly reduced grain yield 
(ΔGY = − 0.54), which was accompanied by a severely lower 
response to protein yield (ΔPY = 0.05) in comparison with a 
genomic selection with the high protein index (ΔPY = 0.30) 
that also facilitated a substantial selection response for all 
dough rheological traits (ΔRHEO = 0.31).

Discussion

This study concentrated on genomic breeding methods for 
conducting a simultaneous selection for grain yield, protein 
content and dough rheological traits related to baking quality 

Fig. 3   Prediction accuracy for major agronomic traits, gluten strength- and gluten viscosity-related dough rheological traits as well as the water 
uptake with varying desired gains for the protein quality in the high yield (a–c) and high protein indices (d–f)
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in an applied winter wheat breeding programme. Integrated 
genomic selection indices were for this purpose compared 
among each other to develop varieties that combine superior 
yield potential with comparably high end-use quality and 
ease selection decisions in general.

Protein quantity and quality

The protein content is currently a major payment criterion 
for wheat farmers and millers and is commonly used as qual-
ity benchmark for precursors of pasta and bakery products 
like flour or semolina (Laidig et al. 2018; Rapp et al. 2018). 
The protein composition is apart from the protein content of 
pivotal importance, as it significantly determines the proper-
ties of bakery product like frozen dough, vital gluten or the 
cooking quality of pasta (Marti et al. 2013; Frauenlob et al. 
2017; Ortolan and Steel 2017). Hence, both the protein con-
tent and composition with respect to the gliadin and glutenin 
protein fractions are of high relevance when developing new 
cultivars as seen by a larger amount of explained variance 
of the loaf volume in baking tests when combining the pro-
tein content with the sedimentation value in a common pre-
diction model (Laidig et al. 2018). It has been accordingly 
suggested to rethink the usage of the protein content as the 
sole quality measure in wheat, especially as numerous varie-
ties with comparably low protein content can produce good 
bread volume and are accordingly severely underrated when 
priced merely by their protein content (Gabriel et al. 2017; 
Zörb et al. 2018).

Various tests are available for assessing traits related to 
protein quality in wheat, among which the assessment of 

viscoelastic dough properties by the Farinograph, Exten-
sograph or Alveograph has gained some popularity and is 
routinely conducted in mills, in bakeries and by breeders. 
Such dough rheological tests are of special interest to the 
latter for conducting a pre-selection for quality character-
istics, as baking tests are most times too costly for a large 
number of breeding lines. Nevertheless, dough rheologi-
cal tests even in small-scale formats can often themselves 
be time-consuming and labour-intensive, and the widely 
used unreplicated testing makes a reliable selection diffi-
cult in early generations due to genotype-by-environment 
interactions (Mkhabela et al. 2018; Sapirstein et al. 2018). 
Implementing genomic selection with a large number of 
genome-wide distributed markers is thus an attractive 
alternative for practical breeding programmes (Batten-
field et al. 2016; Fiedler et al. 2017; Hayes et al. 2017; 
Kristensen et al. 2018; Michel et al. 2018). The effect 
of major QTL associated with gliadins and glutenin and 
their corresponding genetic and biochemical markers is, 
though, largely underestimated in the commonly used 
GBLUP models for genomic selection of quality traits, 
where among others the Glu-1 loci are of specifically high 
importance for bread making (Payne 1987). Including the 
associated markers as separate effects into genomic pre-
diction models resulted consequently in some increase in 
prediction accuracy in the study at hand. Nonetheless, it 
has also to be considered that lines fixed for many seem-
ingly favourably Glu-1 alleles can possess unfavourable 
baking quality characteristics such as too strong and stiff 
dough characteristics causing a low suitability for bread 
baking (Ito et al. 2011, 2015). However, modelling major 

Fig. 4   Response to selection of the 10% best performing lines with 
the high yield and grain yield deviation indices (a) as well as the high 
protein and grain protein deviation indices (b). The desired gains 
that maximized the prediction accuracy and thus putatively also the 

response to selection for protein yield were chosen for the gluten 
strength- and gluten viscosity-related dough rheological traits sepa-
rately for each of the indices
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QTL as separate effects in genomic prediction models 
rapidly increases the frequency of the putatively favour-
able alleles within a few cycles of genomic selection 
(Bernardo 2014) warranting a careful handling of the 
corresponding genomic breeding values for dough rheo-
logical traits in practical applications.

Selection decisions that are supported by genomic 
predictions should thus be appropriately adapted to the 
respective market demands in the target region of a plant 
breeding programme. Finding lines with desired trait com-
binations that satisfy these specific market demands is nev-
ertheless inherently difficult. Selection indices can in this 
respect be valuable tools to ease selection decisions and 
achieve a simultaneous response to selection for multiple 
traits given among others the plethora of dough rheologi-
cal traits related to protein quality. Despite the complex 
relationships that exist between these traits, groups of 
more closely correlated dough rheological traits could be 
identified. This suggests that traits within these groups 
are targeting diverse aspects of protein quality that can be 
partly attributed to different protein fractions. The resist-
ance of extension is, for example, rather associated with 
glutenin and gluten strength, whereas the extensibility has 
a closer connection with the gliadin protein fraction and 
gluten viscosity. The prediction accuracy of the gluten 
strength and viscosity indices varied accordingly depend-
ant on the predicted dough rheological trait. The resistance 
to extension could thus not be predicted by the gluten vis-
cosity index, whereas the dough stability that was assigned 
to the gluten strength group could also be predicted by 
the gluten viscosity index. A clear-cut differentiation into 
protein fractions is consequently not feasible by dough 
rheological traits as several interactions between the glu-
tenin and gliadin protein fractions influence traits like the 
dough stability or development, which are among others 
dependant on the glutenin/gliadin ratio (Weipert 2006). 
Notwithstanding, the particular worth of the suggested 
indices in comparison with traditional single-point meas-
ures like the sedimentation value is given by considering 
aside from the actual index values also the multiple single-
trait predictions. This possibility might give a markedly 
higher confidence to the undertaken selection decisions 
since both the benefits and the deficits of a selection can-
didate can be investigated across an array of diverse traits. 
Lastly, index weights that aim at a general improvement 
in dough rheological traits were computed for simplicity 
in this study, although for some quality traits intermediate 
values might be more desirable to provide a suitable dough 
quality (Lado et al. 2017). Hence, the usage of further 
more sophisticated indices that allow a selection for inter-
mediate trait values should be envisaged (Itoh and Yamada 
1988), which could subsequently be combined with major 
agronomic traits like protein content and grain yield.

Multi‑trait genomic selection for grain yield 
and baking quality

Grain yield is a primary breeding goal in cereals, and a large 
genetic improvement in yield potential has been achieved in 
bread wheat during the last decades (Graybosch and Peter-
son 2010; Cormier et al. 2013; Sanchez-Garcia et al. 2013; 
Laidig et al. 2017), oftentimes by breeding for a higher 
number of grains per unit area for which enhancing spikelet 
fertility, i.e. number of grains per spikelet, has most likely 
played a major role (Würschum et al. 2018). The improve-
ment in quality is on the other hand mostly a secondary 
breeding goal and the protein content as one major bak-
ing quality-related trait suffered on average a reduction by 
continuous wheat breeding (Sanchez-Garcia et al. 2015; 
Laidig et al. 2017) or was at least kept stable in the last 
50 years (Morgounov et al. 2013; Guzmán et al. 2017). The 
strong negative correlation between grain yield and protein 
content represents one possible reason for this trend, which 
led, though, in combination with the mentioned progress 
in grain yield mostly to an increased protein yield, i.e. total 
seed nitrogen yield in modern wheat varieties (Cormier et al. 
2013). Despite this seeming stagnation in quality breeding, 
a large genetic progress for baking quality has been made 
over the years by increasing loaf volume, attaining more 
favourable rheological characteristics and balances between 
rheological parameters (Morgounov et al. 2013; Sanchez-
Garcia et al. 2015; Guzmán et al. 2017).

The observed improvement in baking quality can thus 
mostly be attributed to protein quality that additionally 
showed a much lower trade-off with grain yield than the 
protein content in this study, suggesting that a simultane-
ous improvement in baking quality and grain yield is quite 
feasible. Similar observations have also been made for other 
crop products like tofu where selection of soybean lines with 
acceptable tofu quality and superior seed yield seems feasi-
ble, despite a negative association of the latter trait with the 
protein content (Kurasch et al. 2018). The here presented 
selection strategy that aimed to increase grain yield while 
maintaining quality characteristics reflected accordingly 
the overall long-term trend of phenotypic selection in bread 
wheat breeding. It has furthermore been shown by classical 
studies that the usage of selection indices is more effective 
than either independent culling or tandem selection (Hazel 
and Lush 1942; Pesek and Baker 1969) for such a multi-trait 
selection. Nevertheless, the necessary information for index 
selection is often not available or incomplete in early genera-
tions of variety development in conventional breeding pro-
grammes, which will most likely lead to a higher efficiency

Hence, the implementation of genomic selection into a 
breeding programme opens up the opportunity for index, 
i.e. multi-trait selection in early generations. Given that 
objective index weights for this purpose are difficult to 
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derive, desired gain and especially restriction indices were 
investigated for supporting breeders in a combined genomic 
selection for grain yield, protein content and protein qual-
ity. The suggested high yield index was able to achieve the 
goal of increasing the grain yield while holding the protein 
stable, whereas the simultaneous improvement in dough 
rheological traits associated with gluten viscosity fraction 
like extensibility and dough development turned out to be 
still challenging. These difficulties might be caused by the 
close relationship between the total protein content, gluten 
viscosity and gliadin which can alter the glutenin/gliadin 
ratio in an unfavourable way with regard to dough rheol-
ogy (Wieser and Kieffer 2001). An example in this study 
is given by the dough extensibility that showed the strong-
est negative correlation with grain yield among all dough 
rheological traits, which caused a slight negative response 
to selection in genomic index selection with yield devia-
tions. Obtaining a simultaneous gain for grain yield and 
dough rheological traits in the gluten strength group was on 
the other hand readily feasible. Notwithstanding, as men-
tioned above, traits within the designated groups such as 
dough stability and softening are also strongly influenced by 
interactions between the protein fractions that are conferred 
by disulphide bounds, hydrogen bounds and non-covalent 
interactions between gliadins and glutenins (Dobraszczyk 
2004; Wieser 2007). On the other hand, there is also a mar-
ket demand for high-quality varieties that have an acceptable 
yield potential. This breeding goal can be addressed dur-
ing selection by employing either grain protein deviations 
(Rapp et al. 2018; Thorwarth et al. 2018, 2019) or protein 
yield (McNeal 1982) as selection criteria. Alternatively, a 
combination of the mentioned concepts in an index aiming 
to achieve a high protein yield either via an elevated protein 
content can be beneficial (Michel et al. 2019). This con-
cept was extended by the here suggested gluten strength and 
viscosity indices, and the corresponding high protein index 
was able to mitigate the grain yield/protein content trade-off, 
while it facilitated at the same time a substantial response to 
selection for protein quality and protein yield.

The here presented methods for genomic selection could 
thus enable an earlier and more efficient shifting of the 
undesired correlation between grain yield and baking qual-
ity in bread wheat. They could furthermore be applied in 
both variety development and population improvement in 
general, for example, when using a two-part strategy with 
a rapid recurrent genomic selection and separate product 
development cycle (Gaynor et al. 2017; Gorjanc et al. 2018). 
The index weights for protein quality need, however, to be 
adapted to the respective goals of a wheat breeding pro-
gramme as, for example, aiming to increase both grain yield 
and protein quality could be desirable, but the presented 
results suggested that holding the latter stable might also 
be a convenient option. Finally, it should also be mentioned 

that replacing the two rheological indices for gluten strength 
and viscosity by genomic breeding values for baking volume 
in the combined indices with grain yield, protein content 
and protein yield can also be an interesting alternative given 
that a large enough training population was phenotyped for 
this trait. Such a strategy might be highly desirable, as the 
selection of genotypes that possess a higher baking quality 
relative to their grain yield has recently been proposed as a 
complementing option when breeding for nitrogen use effi-
ciency (Hawkesford 2014; Cormier et al. 2016) aside from 
traits like post-anthesis nitrogen uptake and remobilization 
(Monaghan et al. 2001; Bogard et al. 2010; Lammerts van 
Bueren and Struik 2017).

Conclusions

This study investigated the potential and limits of genomic 
selection indices to facilitate a simultaneous selection for 
grain yield and baking quality-related traits for breeding 
putatively more resource-use efficient varieties. The sug-
gested genomic selection indices revealed a large merit 
for identifying genotypes that combine both superior yield 
potential with comparably high end-use quality and the 
development of varieties with high baking quality while pre-
serving a sufficient amount of grain yield. Genomic selection 
indices could thus be regarded as valuable decision-making 
tools that should, however, be combined with breeders’ 
observations, experience and knowledge about germplasm 
within and beyond a breeding programme. The development 
of resource-use efficient varieties by breeders can further-
more be seen as one important component in finding sustain-
able solutions for the challenges that modern agricultural 
systems are currently facing; to fully harness their potential 
in a wheat-to-bread supply chain including breeders, exten-
sion services, farmers, millers and food processing must, 
though, be involved (Goucher et al. 2017).
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