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SYNOPSIS

The incidence of melanoma continues to increase even as advances in immunotherapy have led to 

survival benefits in advanced stages. Vaccines are capable of inducing strong, anti-tumor immune 

responses with limited toxicity. Some vaccines have demonstrated clinical benefit in clinical trials 

alone; however, others have not despite inducing strong immune responses. Recent advancements 

have improved vaccine design, while combining vaccines with other immunotherapies offers 

promise. This review highlights the underlying principles of vaccine development, common 

components of vaccines, the remaining challenges and future directions of vaccine therapy in 

melanoma.
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Introduction

The development of vaccines against cancer has driven significant advancements in the field 

of tumor immunology, leading to a better understanding of the immune response against 

cancer. There is new expertise on the nature of tumor-associated antigens, making it possible 

to even genetically engineer immunogenic antigens for melanoma vaccines. This has been 
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achieved through advances in sequencing and manipulating genomes, development of 

algorithms to define putative T cell antigens, identification of different immune cell types, 

and unraveling complexities of the tumor microenvironment.

The promise of cancer vaccines is that vaccines induce targeted, tumor-specific immune 

responses with long-term memory in cases of recurrence or metastasis, with low risk of 

toxicity overall. There has been renewed focus on the potential of immunotherapy due to the 

recent success of checkpoint blockade therapy in advanced melanoma. When patients lack a 

pre-existing immune response to their cancer, they are unlikely to respond to checkpoint 

blockade; so, there is renewed interest in vaccines to induce antitumor immune responses 

that did not arise spontaneously. There is potential value of combining vaccine therapy with 

other immunotherapies to improve tumor control. Clinical trials implementing these 

combination therapies are currently underway. In this review, we summarize the current 

antigen and vaccine adjuvant strategies under investigation, and highlight the progress made 

with recent melanoma vaccine therapies in clinical trials.

Background on Tumor Antigenicity and Immune Activation

Cancer vaccines contain tumor-associated antigens and vaccine adjuvants to elicit the 

activation of dendritic cells and antigen-specific T cells. Initiation of the immune response 

against tumor cells occurs through recognition of tumor-associated antigens that must be 

processed and presented on MHC complexes by antigen-presenting cells (APCs) (Figure 1). 

Specific T cells recognize these MHC-antigen complexes leading to their activation and 

proliferation. Antigen presentation on MHC class I generally activates cytotoxic CD8 T cells 

(TCD8), whereas presentation on MHC class II activates CD4 helper T cells (TCD4). 

Elements of both CD8 and CD4 T cells are likely needed to mount an optimal response for 

tumor control and long-term memory.

Cancer vaccine formulations also incorporate ‘vaccine adjuvants’ to increase T cell 

stimulation by activating APCs, thereby enhancing antigen presentation and co-stimulation. 

Many vaccine adjuvants stimulate pattern-recognition receptors (PRRs) on APCs. These 

PRRs recognize PAMPs (pathogen- associated molecular patterns) or DAMPs (damage-

associated molecular patterns), heat shock proteins, or reactive oxygen intermediates1. 

PAMPs include Toll-like receptor (TLR) agonists, such as CpG sequences. Introducing a 

tumor-associated antigen with vaccine adjuvants allows for an improved antigen-specific 

immune response to enhance tumor control.

Vaccine Strategies: Antigen

Antigens used in melanoma vaccines may be shared across patients or may be neoantigens 

that are uniquely expressed. Different types of antigens have been identified in melanoma 

(Figure 2), and are summarized below. The type of antigen that is selected can determine the 

tumor-specificity, type, and strength of the ensuing immune response.

Shared melanoma antigens

Melanocytic differentiation antigens—Melanocytic differentiation antigens are 

expressed by most melanoma tumors and induce T cell responses2,3. The shared aspect of 
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these antigens enables broad application and generalization of shared antigen-targeting 

vaccines across multiple patients. Tyrosinase, TRP-2, Melan-A/MART-1, and gp-100 are 

common source proteins that are also expressed on normal melanocytes and on a few other 

pigmented cells. Thus, successful immune targeting of melanocytic antigens has the 

potential to induce autoimmunity to melanocytes. Additionally, since these antigens are 

present in some normal tissues, responses to them may be limited by pre-existing central 

tolerance4. Regardless, some vaccine and adoptive therapies targeting these antigens have 

been successful5,6.

Shared mutated antigens—Mutated antigens arise from acquired somatic mutations or 

single-nucleotide polymorphisms (SNPs) in melanoma cells and are often unique to a given 

patient tumor, although some are present in a fraction of patients. Because mutated antigens 

arise through tumorigenesis, they are absent in normal cells. BRAF, KIT, and NRAS 

mutations are common mutated antigens in melanoma. Antigenic BRAF peptides 

encompassing the V600E driver mutation of melanoma have been reported7–10, inducing 

BRAF-specific immune responses in humans9,10 and tumor control in mice7,8. These data 

support further clinical investigation of these mutated antigens in vaccines.

Cancer germ line antigens—Cancer germ line antigens are expressed in the placenta or 

testis as immune privileged sites11, while also being uniquely expressed in some malignant 

tumors. The immunogenicity and unique expression of these antigens in cancers, rather than 

in normal cells, provides an opportunity to elicit an antitumor immune response using 

vaccines. Their restricted expression justifies considering them a form of neoantigen. 

MAGE-A1, MAGE-A3, BAGE, GAGE, and NY-ESO-1 are a few examples of cancer germ 

line antigens that have been identified. Adoptive T cell therapy using T cells expressing a T 

cell receptor (TCR) transduced with NY-ESO-1 induced objective clinical responses in 55% 

of patients with advanced melanoma12. Thus, cancer germ line antigens can be effective 

tumor regression antigens. On the other hand, a MAGE-A3 vaccine failed to enhance 

survival in a phase III trial13; so, the use of cancer germ line antigens in vaccines remains to 

be optimized. Although some cancer germ line antigens are solely expressed on tumor cells, 

a few studies using adoptive T cell therapies have shown cross-reactivity with normal tissues 

when very high affinity TCRs are used14. Interestingly, some cancer germ line antigens may 

be sequestered and thus not subject to preexisting tolerance, whereas others may not be 

sequestered15. Understanding this phenomenon may improve selection of cancer germ line 

antigens for cancer vaccines.

Phosphopeptides—Phosphorylation of oncogenic proteins supports malignant 

transformation; thus, targeting them is a promising strategy. Phosphorylated peptides derived 

from those proteins can be presented by both MHC class I and II molecules, which induces 

an immune response to the phosphorylated peptide sequence specifically16–19. Identification 

of tumor-specific phosphopeptide antigens may provide opportunities for personalized 

immune vaccine therapies20. A first-in-humans clinical trial has recently been completed 

(NCT01846143).
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Mutated neoantigens—The term ‘neo-antigen’ refers to newly expressed or acquired 

antigens, as in genomic mutations found within tumors but not in normal somatic cells. Due 

to its unique genetic sequence, the transcribed DNA, RNA, or translated peptide fragments 

can be used as a unique source of tumor-associated antigens. The advantage of these mutated 

neoantigens in vaccines is that it may avoid pre-existing central tolerance that is expected 

with shared antigens4 and should reduce risks of on-target autoimmune reactivity. Data also 

suggests that therapeutic T cells may respond more strongly to mutated neoantigens than to 

shared antigens21,22. Newer approaches have developed algorithms to predict and select 

advantageous immunogenic features of the mutanome. These mutated epitopes can be 

engineered into vaccines using a personalized approach23. A disadvantage of this 

personalized technique is the time required for the synthesis of personalized vaccines. 

Methods to predict immunogenic neoantigens were applied to patients and successfully 

showed immunogenicity of predicted neoantigens with promising clinical outcomes in a 

small number of patients23–25. However, much research still needs to be done to expand 

these preliminary results and to optimize immune responses to neoantigens.

Antigen Type and Adjuvants

Selection of an appropriate antigen type can influence the immune response following 

treatment. Vaccines may use antigen as whole tumor cells, RNA or DNA, single or multiple 

peptides, or APCs displaying the target antigen. Both efficacy and toxicity can be related to 

intrinsic immunologic potency, cross-reactivity of vaccine targets to antigen on normal cells, 

and associated adjuvants.

Peptide Vaccines—Peptide vaccines can be synthesized as short or long with single- or 

multi-peptide mixtures. Peptides are weakly immunogenic when naked peptide is used26,27; 

however, their use in combination with vaccine adjuvants or immune therapies induces 

potent, and frequently durable, T cell responses28–33.

Short Peptide Vaccines—Short peptide vaccines representing minimal CD8 epitopes 

(usually 9 amino acids long) thus elicit a cytotoxic TCD8 response by binding MHC class I. 

Their effects on TCD8 are advantageous as it activates effector cells directly, thus negating 

the need for further antigen processing by APCs. Immune response rates may approach 

100% in humans, of which 1–5% of the TCD8 population are peptide-specific effector 

TCD8
28,29,31. Minimal epitope vaccines can induce strong TCD8 responses alone29. One 

study designed minimal epitope vaccines based on individual patient mutated neoantigens 

and generated neoantigen-specific T cell responses in all three patients, affecting 23–89% of 

the TCD8 population; memory T cells were present for up to 4 months34,24,35. Short peptide 

vaccines may be limited by proteolytic degradation36, tolerance due to suboptimal antigen 

presentation, and less sustained immune responses37.

Extensive work has been done with a modified gp100 peptide (gp100 209–217;209–2M) that 

is a modified form of peptide naturally presented by HLA-A2 to TCD8. Vaccination with 

gp100 209–2M alone increased peptide-specific T cells in 97% of patients31. Addition of 

gp100 to IL-2 in a clinical trial involving patients with advanced melanoma significantly 

increased clinical response rates and improved progression-free survival38,39. However, 
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combination of gp100 peptide with checkpoint blockade therapies such as ipilimumab 

showed no therapeutic benefit compared to ipilimumab alone40. Mechanisms underlying this 

limitation have been explored in mice and suggest the addition of gp100 peptide vaccine in 

an antigen-depot vaccine with ipilimumab may lead to sequestration and destruction of non-

gp100-specific effector T cells, particularly those effector T cells that are induced by 

ipilimumab41. This finding needs to be studied further in patients.

Helper Peptide Vaccines—Helper TCD4 are activated by recognition of peptide 

presented on class II MHC molecules and induce a multifaceted immune response by 

supporting APC, TCD8 effector function, and T cell memory formation. Thus, immune 

therapies targeting helper TCD4 offer promise for tumor control32. A peptide vaccine 

composed of a mixture of 6 melanoma helper peptides (6MHP) that are recognized by TCD4 

has been used in clinical trials and induces a Th1 TCD4 response without increasing the 

proportion of Tregs (regulatory T cells). TCD8 responses also occurred via epitope 

spreading27. Sixty-five percent of 6MHP- treated patients with stage IV melanoma 

developed an immune response, and treatment with vaccine significantly improved overall 

survival compared to matched controls27. Patient survival was associated with antibody 

response rates and the formation of memory TCD4 immune responses26.

Long Peptide Vaccines—Long peptide vaccines refer to lengths of 20–30 amino acids 

and carry the potential benefit of activating both TCD8 and TCD4 responses. Murine work 

demonstrated more efficient internalization and processing of long peptides by APCs 

compared to protein, resulting in more sustained TCD8 activation42. A phase I clinical trial of 

NY-ESO-1-derived long peptide (30 amino acids) combined with adjuvant induced antigen-

specific T cells only when peptide was used in combination with adjuvant, but not with 

peptide alone32. Vaccination with long peptide targeting up to 20 predicted personal 

neoantigens successfully induced neoantigen-specific TCD4 responses to 60% of antigens, 

while TCD8 responses were limited to only 16% of unique neoantigens, suggesting 

preferential activation of TCD4 by long peptides25. Additionally, 4 of 6 patients had no 

recurrence 25 months after vaccination, suggesting the potential for clinical benefits and 

long-lasting effects of long peptide vaccines25.

RNA, DNA, and Protein Vaccines—RNA or DNA encoding genes for tumor antigens or 

immune enhancers can be introduced into APCs or myocytes through bacterial or viral 

vectors to synthesize peptides and mediate a vaccine effect. Some RNA vaccines involve 

electroporation of APCs to enable incorporation of mRNA encoding melanoma- associated 

antigens or immunostimulatory ligands to facilitate antigen-specific T cell responses. In such 

studies, TCD8 responses were detected in 57–80% of patients, but no objective clinical 

responses were observed43,44. Some recent RNA vaccines are designed and personalized 

based on mutations expressed and identified by RNA sequencing and selected for predicted 

high affinity binding to MHC class I and II. These are engineered into synthetic RNA and 

delivered using a vaccine vehicle. The majority of responses induced were TCD4 

responses23, comparable to personalized neoepitope vaccines based on mutated peptides25. 

Neoepitope vaccination also resulted in a broadened repertoire of T cells23. A phase I 

clinical trial of DNA vaccine-encoding genes for immunogenic epitopes for gp100 and 
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TRP2 demonstrated an immune response rate of 84%, comparable to other peptide vaccines 

using gp10045,38. Despite induction of an immune response, DNA vaccines evoke limited 

objective clinical responses45.

Whole Cell Vaccines—Whole cancer cells can be integrated into vaccines and serve as a 

source of antigen for APC presentation. They contain numerous mutated neoantigens that 

are inherent to the tumor, which does not mandate that they be identified prior to designing 

and manufacturing the vaccine. Whole cells can be modified to express particular tumor 

antigens or immune enhancers to further potentiate immune responses. This type of vaccine 

is typically more proficient at inducing expansion of TCD4 than TCD8, resulting in an 

attenuated antitumor immune response. Despite whole cell vaccines showing initial promise 

to prolong survival with high clinical response rates, a large randomized phase III clinical 

trial showed no significant clinical benefit46. There is currently a phase 3 clinical trial 

underway (NCT01546571) using a cell-based vaccine derived from cell line supernatants 

containing antigens shed by tumor cells, which significantly improved disease-free survival 

in vaccine-treated patients in a prior phase 2 trial47.

Vaccine Strategies: Vaccine Adjuvants

Vaccine adjuvants are aimed at producing more robust immune responses by increasing 

antigen uptake and presentation, recruiting other immune cells, and/or forming a depot effect 

for sustained release of antigen48,49.

Incomplete Freund’s Adjuvant (IFA)

A common adjuvant used in peptide vaccines for melanoma is Montanide ISA 51 (Seppic, 

Inc), a form of Incomplete Freund’s Adjuvant (IFA). This is an oil-based agent where 

droplets of aqueous peptide are contained within a surrounding oil phase. This facilitates a 

depot effect at the vaccine site, allowing for continued antigen exposure in a stabilized oil 

emulsion48. In humans, immune responses to peptides in IFA were greater than peptides 

pulsed on APCs50,51. In mice, the depot effect of IFA may also lead to vaccine-site 

sequestration of activated T cells against antigen52 that may prevent T cell homing to tumor. 

There are data suggesting the added immunologic benefit of other adjuvants such as CD40 

stimulating antibody and TLR agonists instead of IFA to avoid these concerns. Human 

studies have not yet been done to determine whether CD40 antibody plus TLR agonists can 

induce a much stronger T cell response than IFA alone; however, our studies continue to 

support the addition of IFA to TLR agonists in melanoma vaccines with short peptides53.

Dendritic Cell Vaccines

Dendritic cell (DC) vaccines use autologous DC to present antigen and to stimulate immune 

cells by releasing pro-inflammatory cytokines. In preparation for vaccine synthesis, DCs are 

isolated from peripheral blood. The vaccine can then be packaged using various adjuvants to 

induce DC activation, or autologous DCs can be pulsed with antigen ex-vivo and 

administered in the same patient. Vaccination route may determine the tissue site where the 

DCs will migrate54. A randomized phase II trial using autologous DC vaccines with GM-

CSF in patients with advanced melanoma showed longer survival compared to a tumor cell 
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vaccine, with 70% reduction in risk of death55. However, this trial had low patient numbers 

and unequal prognostic factors. Other trials demonstrated lower T cell responses with DC 

vaccines when compared to peptide vaccines with adjuvant50,51.

Another potential method of further stimulating DCs in murine models is an in-vivo method 

using viral vectors and CD40 stimulating antibodies. CD40 is a co-stimulatory receptor on 

DCs that adds to DC maturation and TCD8 activation56,57. The addition of CD40 antibody to 

a combination of TLR3 agonists and a neoantigen vaccine against colon adenocarcinoma in 

mice showed improved survival compared to either agonist alone, with expansion of 

neoantigen-specific T cells in both the periphery and in the tumor microenvironment58. 

These preclinical results show promise in the strength of CD40 for DC activation but still 

need to be evaluated in humans.

Toll-like Receptor (TLR) Agonists—TLR agonists stimulate PRRs on DCs to promote 

antigen processing and presentation to T cells. A common TLR agonist used in melanoma 

vaccine adjuvants is the TLR3 agonist poly-ICLC (polyinosine-polycytidylic acid). This 

agonist matures DCs to generate TCD8 and NK cells with higher cytotoxic capacity59,60. The 

combination of IFA and poly-ICLC with long NY-ESO-1 peptides showed that both 

adjuvants had different but beneficial effects on antigen-specific activation of TCD4: 

emulsification of the antigen in IFA increased antigen-specific TCD4, while poly-ICLC 

induced a Th1 phenotype, leading to increased cell-mediated immunity and inflammatory 

response61.

CpG is an oligodeoxynucleotide fragment rich in cytosine and guanine, similar to bacterial 

DNA that is an agonist for TLR9 and induces DC maturation62,63. With DC maturation, 

CpG has also been shown to increase co-stimulatory surface marker expression with 

increases in proinflammatory cytokines needed for cytotoxic TCD8 co-stimulation62,63, and 

possibly B cell stimulation64. Addition of CpG to IFA has dramatically enhanced T cell 

responses to a short peptide vaccine62. Despite its effectiveness in TCD8 promotion, a mouse 

model suggests it may require decreased levels of immunosuppressive Tregs and multiple 

booster vaccinations to maximize its effect65. On the other hand, resiquimod (R848) is an 

agonist for TLR7 and TLR8 that has been found to decrease the immunosuppressive 

function of Tregs
66 and myeloid-derived suppressor cells (MDSC)67, supporting increased T 

cell proliferation.

Systemic Cytokines

Other types of vaccine adjuvants involve the use of immune cell cytokines. GM-CSF 

(granulocyte- macrophage colony-stimulating factor) is used to attract and activate DCs to 

further promote peptide antigen-specific responses68,69. GM-CSF enhanced immunogenicity 

of a cell-based vaccine in mice68, and combined with a peptide vaccine, increased T cell 

responses when compared to DCs pulsed with the same peptide antigen51. However, in a 

large randomized clinical trial, the addition of GM-CSF to a peptide vaccine significantly 

decreased responses in both TCD8 and TCD4 compared to peptide vaccine alone70. Also, 

another large randomized clinical trial revealed that adding GM-CSF to a melanoma cell 
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vaccine resulted in worse survival and early melanoma-related death71. The use of GM-CSF 

as a vaccine adjuvant is cautionary and requires further investigation.

Systemic IL-2 infusions have also been used as a vaccine adjuvant in melanoma due to its 

overall stimulatory effect on T cells, and its clinical activity as high-dose monotherapy. 

When I L-2 was combined with the peptide vaccine gp-100, clinical responses were 

significantly higher than with I L-2 alone, with associated longer progression-free survival72. 

Peptide-specific immunogenicity occurred in 19% of patients who received both gp100 and I 

L-2, but this antigen specificity did not correlate with clinical response. Other studies have 

failed to show immunologic or clinical benefit of I L-2, GM-CSF, or interferon-alpha in 

combination with melanoma vaccines73,74.

Current Melanoma Vaccine Trials

There are many ongoing clinical trials studying the impacts of various antigen formats and 

adjuvants on immune responses and clinical outcomes (Figure 3A). Among these, DC and 

peptide vaccines predominate. Peptide vaccines use a variety of adjuvants, the most common 

of which is IFA (Figure 3B). DC vaccines, as an adjuvant on their own, do not frequently 

utilize additional adjuvants (Figure 3C). Combination therapy with vaccines provides an 

opportunity to target the immune system through another mechanism to augment anti-tumor 

effects and potentiate clinical benefits. The most common combination therapy for peptide 

vaccines is checkpoint blockade, while IL-2 is most common among combination therapies 

used with DC vaccines, though DC vaccines utilize more combination therapies overall 

(Figure 3B, C).

Novel approaches

Prophylactic melanoma vaccine

With the success of the generation of a prophylactic vaccine for virus-induced cervical 

cancer, the idea of prophylactic vaccines against melanoma regains interest. Preclinical in 

vivo studies have shown potential of this approach, regardless of whether a DC-, RNA-, 

whole cell- or peptide-based antigen vehicle was used75–78.

Stem cell-based vaccines

Induced pluripotent stem cells (Ipsc’s) are immunogenic pluripotent stem-like cells that can 

be generated from a patient’s cells. Their gene expression is similar to embryonic stem cells 

and includes expression of many tumor antigens. In preclinical models of melanoma and 

other solid tumors, immunization and therapeutic vaccination of iPSC’s induced robust TCD4 

and TCD8 responses, as well as a reduction in tumor burden79. Though these studies are still 

in the preclinical phase, they show potential for generating effective, personalized vaccines.

Conclusions

Melanoma vaccine research has shown the potential for vaccines to elicit antigen-specific T 

cells as well as provide some tumor control. Understanding the importance of specific 

immunologic effects of antigen vehicle and adjuvant is vital to the progression of vaccine 
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strategy. As our knowledge base expands through preclinical studies and results from recent 

clinical trials are finalized, we will be able to better optimize our approach for sustained 

tumor control.

Current therapies that involve vaccines alone have limitations due to discordance between 

antigen-specific T cell expansion and tumor control. Despite cancer vaccines showing 

lasting immune response rates up to 100%28,31, vaccines alone have led to clinical response 

rates below 10% in most studies80. This low clinical response may be due to insufficient T 

cell priming, poor homing to tumor, dysfunction of T cells in the tumor microenvironment, 

or progressive loss of function. Some of these may be due to defects in antigen presentation, 

or immunosuppressive changes in the tumor microenvironment that could lead to anergic T 

cells or interference with T cell homing to tumor81. The advancement of neoantigen 

technology, along with newer adjuvant strategies, are all promising additions to increase 

clinical response. There are other preclinical methods of inhibiting immunosuppressive 

effects currently under investigation, as well. Therefore, the combination of vaccines with 

other immunotherapies has clear theoretical advantages as we await results of ongoing 

clinical trials.

Appendix
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KEY POINTS

• Cancer vaccines are formulated with tumor-associated antigens and vaccine 

adjuvants to elicit a targeted immune response for tumor control.

• The elicited T cell response to tumor-associated antigens may be discordant 

with tumor control; current strategies of vaccine antigens and adjuvants are 

under investigation to improve clinical response rates.

• Many clinical trials are currently underway to determine the optimal 

combinations for the different types of tumor-associated antigens, vaccine 

adjuvants, and other immunotherapies such as checkpoint blockade therapy.
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Figure 1: Mechanism of immune response induction following vaccination.
Step 1. Vaccination allows tumor antigen to be taken up by antigen-presenting cells (APCs). 

Step 2. Adjuvant stimulation supports activation and maturation of APCs. Step 3. APCs 

present antigen to CD8 T cells via MHC class I and to CD4 T cells through MHC class II, 

resulting in their activation and proliferation and thereby launching an antitumor immune 

response.
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Figure 2: 
Different types of tumor-associated antigens in melanoma
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Figure 3: Current vaccine trials in melanoma.
The number of active clinical trials for each melanoma vaccine vehicle as of July 2018 on 

ClinicalTrials.gov are shown in A. Number of active trials using combination therapies and 

adjuvants are quantified for peptide vaccines in B and dendritic cell vaccines in C.
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