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Most human cancers develop from stem and progenitor cell populations

through the sequential accumulation of various genetic and epigenetic alter-

ations. Cancer stem cells have been identified from medulloblastoma (MB),

but a comprehensive understanding of MB stemness, including the interac-

tions between the tumor immune microenvironment and MB stemness, is

lacking. Here, we employed a trained stemness index model based on an

existent one-class logistic regression (OCLR) machine-learning method to

score MB samples; we then obtained two stemness indices, a gene expres-

sion-based stemness index (mRNAsi) and a DNA methylation-based stem-

ness index (mDNAsi), to perform an integrated analysis of MB stemness in

a cohort of primary cancer samples (n = 763). We observed an inverse trend

between mRNAsi and mDNAsi for MB subgroup and metastatic status. By

applying the univariable Cox regression analysis, we found that mRNAsi

significantly correlated with overall survival (OS) for all MB patients,

whereas mDNAsi had no significant association with OS for all MB patients.

In addition, by combining the Lasso-penalized Cox regression machine-

learning approach with univariate and multivariate Cox regression analyses,

we identified a stemness-related gene expression signature that accurately

predicted survival in patients with Sonic hedgehog (SHH) MB. Furthermore,

positive correlations between mRNAsi and prognostic copy number aberra-

tions in SHH MB, including MYCN amplifications and GLI2 amplifica-

tions, were detected. Analyses of the immune microenvironment revealed

unanticipated correlations of MB stemness with infiltrating immune cells.

Lastly, using the Connectivity Map, we identified potential drugs targeting

the MB stemness signature. Our findings based on stemness indices might

advance the development of objective diagnostic tools for quantitating MB

stemness and lead to novel biomarkers that predict the survival of patients

with MB or the efficacy of strategies targeting MB stem cells.
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1. Introduction

Medulloblastoma (MB) is the most commonly diagnosed

embryonal tumor of the central nervous system (CNS) in

children. Despite being initially characterized based on his-

tological features, it is now clearly accepted that MB

mainly comprises four distinct molecular subgroups: wing-

less (WNT)-activated, Sonic hedgehog (SHH)-activated,

group 3, and group 4, as reflected in the 2016 World

Health Organization (WHO) classification of tumors of

the CNS (Louis et al., 2016; Ramaswamy et al., 2016a,b).

These four subgroups have divergent transcriptional pro-

files, somatic mutations, copy number aberrations, and

clinical outcomes (Morrissy et al., 2016; Northcott et al.,

2012; Ramaswamy et al., 2013, 2016a,b). WNT and SHH

MBs are clearly separable and identifiable across the

majority of studies based on transcriptional and DNA

methylation profiling data, demonstrating minimal over-

lap with other MB subgroups (Taylor et al., 2012). Group

3 and 4 MBs share several copy number alterations such

as enrichment of isochromosome 17q, and the transcrip-

tomes of group 3 and group 4 MBs are more similar to

each other (Ramaswamy et al., 2016a,b; Taylor et al.,

2012). The 2016 WHO classification of CNS tumors

includes group 3 and group 4 MBs as provisional variants

under the umbrellas of non-WNT/non-SHH MB (Louis

et al., 2016). The survival rate of patients with MB largely

depends on the molecular and clinical features of the can-

cer, varying from > 90% 5-year overall survival (OS) for

WNT MB patients to < 50% 5-year OS for patients with

metastatic group 3 or SHH MB with a TP53 mutation

(Ramaswamy et al., 2016a,b). Aggressive yet nonspecific

multimodal therapies (surgery, radiation therapy, and

chemotherapy) have significantly improved the survival of

MB patients, but survivors experience severe late-onset

cognitive and neurological side effects, including sec-

ondary malignancies (Crawford et al., 2007; Diller et al.,

2009; Packer and Vezina, 2008; Packer et al., 2013). The

cause of most MB-related deaths is leptomeningeal metas-

tases (Ramaswamy and Taylor, 2017). The relapse of MB

is an almost uniformly fatal event, with no significant sal-

vage rate (Ramaswamy and Taylor, 2017). It is essential

to define the mechanisms of MB growth, metastasis, and

recurrence to develop tailored therapies to selectively erad-

icate tumor cells responsible for MB expansion, metasta-

sis, and relapse while sparing the developing brain

(Vanner et al., 2014).

Stemness is defined as the potential for self-renewal

and differentiation from the cell of origin and was origi-

nally attributed to normal stem cells that have the abil-

ity to give rise to all cell types in the adult organism

(Malta et al., 2018). Cancer stem cells (CSCs) are can-

cer cells that possess characteristics related to normal

stem cells, specifically the ability to give rise to all tumor

cell types (Bjerkvig et al., 2005). CSCs are considered to

be responsible for tumor growth and maintenance, are

often resistant to conventional chemotherapy and radi-

ation therapy, and are involved in tumor metastasis and

recurrence. Tumors are composed of a diverse, com-

plex, integrated ecosystem of relatively differentiated

tumor cells, CSCs, infiltrating immune cells, tumor-as-

sociated fibroblasts, and endothelial cells, among other

cell types (Malta et al., 2018). The tumor immune envi-

ronment plays an important role in prognosis and

response to therapy in various cancer types (Thorsson

et al., 2018). MBs are cancers in which the majority of

cells possess an undifferentiated stem- or progenitor-

like appearance (Fan and Eberhart, 2008), and CSCs

have been identified from MB (Read et al., 2009; Singh

et al., 2004; Ward et al., 2009). However, an integrated

understanding of MB stemness, including the interface

between the tumor immune environment and MB stem-

ness, is lacking.

In this study, we analyzed cancer stemness in a cohort

of primary MB samples (n = 763). First, we applied a

trained stemness index model based on the previously

existing one-class logistic regression (OCLR) machine-

learning method (Malta et al., 2018; Sokolov et al.,

2016), which includes a mRNA expression-based signa-

ture and a DNA methylation-based signature, to quan-

tify MB stemness to acquire two independent stemness

indices. One index [gene expression-based stemness

index (mRNAsi)] was reflective of gene expression; the

other index (mDNAsi) was reflective of epigenetic fea-

tures. Second, we assessed correlations between the two

stemness indices and clinical and molecular features and

identified a stemness molecular signature that might be

helpful in guiding the prognostic status of MB patients.

In addition, by applying CIBERSORT (Gentles et al.,

2015) to profile immune cell types in MB, we gained

insight into the interaction of the immune system with

cancer stemness. Finally, using the Connectivity Map

(CMap) (Subramanian et al., 2017), we discovered can-

didate compounds targeting the MB stemness signature.

2. Materials and methods

2.1. Data collection and processing

In this study, we collected 763 primary MB samples,

which all had genome-wide methylation and expression

array data deposited in Gene Expression Omnibus

(GEO) under the accession number GSE85218 (Cavalli

et al., 2017), to analyze MB stemness. Microarray data

from GSE85218 dataset were downloaded from GEO
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(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE85218). Demographic and clinical information for

the GSE85218 dataset is summarized in Table S1. For

gene expression array data, background correction was

carried out using the ‘backgroundCorrect’ function of

the R package ‘limma’ with default parameters (Ritchie

et al., 2015), and normalization was implemented with

the ‘normalizeBetweenArrays’ function of the R pack-

age ‘limma’ with default parameters (Ritchie et al.,

2015). The log2-transformed normalized values of gene

expression data were used to generate the mRNAsi. The

DNA methylation level was represented using b values

ranging from zero (no DNA methylation) to one (com-

plete DNA methylation). For DNA methylation data,

we excluded probes located on the sex chromosome and

probes containing known single nucleotide polymor-

phisms. We performed normalization utilizing the

SWAN method as part of the R package ‘minfi’ with

default parameters (Maksimovic et al., 2012). b values

were used to generate the mDNAsi.

2.2. Calculation of gene expression- and DNA

methylation-based stemness indices for MB

To calculate the mRNAsi and the DNA methylation-

based stemness index (mDNAsi), Malta et al. (2018)

built a predictive model using an OCLR algorithm on

pluripotent stem cell samples from the Progenitor Cell

Biology Consortium dataset (Daily et al., 2017; Salo-

monis et al., 2016) to train two stemness signatures.

The mRNA expression-based signature contains a gene

expression profile comprising 11 774 genes, and the

DNA methylation-based signature contains a set of

151 differentially methylated CpG sites. The work flow

to generate the stemness indices (mRNAsi and

mDNAsi) is available on https://bioinformaticsfmrp.

github.io/PanCanStem_Web/. We applied the stemness

index model to score the 763 MB samples using the

same Spearman correlation (RNA expression data) or

linear model (DNA methylation data) operators. The

stemness indices were subsequently mapped to the [0,1]

range via utilizing a linear transformation that sub-

tracted the minimum and divided by the maximum.

The MB samples stratified by the stemness indices

were utilized for the integrative analyses.

2.3. Evaluation of associations between

stemness indices and clinical outcomes in MB

We regarded the stemness index (mRNAsi or mDNAsi)

as a single continuous covariate. The associations

between the two stemness indices and OS in MB were

assessed in three phases. First, we applied univariate

Cox proportional hazard regression to calculate hazard

ratios (HRs) for OS. The variables we included were

mRNAsi, mDNAsi, age, sex, subgroup, tumor histol-

ogy, metastatic status, and immune score. Immune

score was calculated from gene expression data using

the ESTIMATE algorithm (Yoshihara et al., 2013) and

represents the level of infiltrating immune cells in any

given MB sample. We found that only mRNAsi signifi-

cantly correlated with OS for all MB patients. There-

fore, mRNAsi was retained for subsequent analyses.

Second, each subgroup of patients was split into low-

and high-risk groups based on the optimal cutoff value

for mRNAsi, which was determined by using the ‘cutp’

function of the R package ‘survMisc’ (https://cran.r-pro

ject.org/web/packages/survMisc) with default parame-

ters, and the survival difference between patients with

high mRNAsi and low mRNAsi was compared by

Kaplan–Meier (K-M) survival plots. Finally, the statis-

tically significant survival difference between patients

with high mRNAsi and low mRNAsi was limited to

SHH subgroup patients. We split the SHH MB dataset

randomly into a 70% training set and 30% validation

set splits by using the ‘createDataPartition’ function of

the R package ‘caret’ (https://cran.r-project.org/web/

packages/caret). The following nondefault parameters

for the ‘createDataPartition’ function were used:

P = 0.7 and list=FALSE. Distribution of clinical char-

acteristics between the training and validation sets was

compared with the Kruskal–Wallis test for continuous

parameters and the chi-square test for categorical

parameters. In the training set, the differentially

expressed genes (DEGs) between SHH subgroup sam-

ples with high mRNAsi and low mRNAsi were com-

puted using the ‘lmFit’ function of the R package

‘limma’ with default parameters (Ritchie et al., 2015).

In total, 3800 DEGs with an adjusted P value of < 0.05

were considered for the univariate Cox regression. The

adjusted P value for multiple testing was computed uti-

lizing the Benjamini–Hochberg (BH) correction. The

univariate Cox regression analyses were performed to

investigate the association between the OS of SHH MB

patients in the training set and the expression level of

each DEG. By performing the univariate Cox regres-

sion, 83 genes whose parameter P values were less than

0.001 were selected for subsequent analyses. In the

training set, we employed Lasso-penalized Cox regres-

sion analysis (Tibshirani, 1997) to further reduce genes

for SHH MB patients. For the Lasso-penalized Cox

regression analysis, we subsampled the training set at a

ratio of 7 : 3 with 1000 replacements and selected the

genes with repeat occurrence frequencies of more than

200. A 23-mRNA-based risk score staging model was

built based on a linear combination of the regression
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coefficient derived from the multivariate Cox regression

(coefi) multiplied by its expression level (expri). The for-

mula for calculating risk scores is described as follows:

Risk score ¼
Xn

i¼1

ðcoefi � expriÞ

Sonic hedgehog subgroup samples were split into

low- and high-risk score groups according to the opti-

mal cutoff value generated by using the ‘cutp’ function

of the R package ‘survMisc’ with default parameters,

and the two patient cohorts were compared by K-M

curves. To determine whether the predictive power of

the 23-mRNA-based prognostic model could be inde-

pendent of other clinical variables (including age, gen-

der, histology, and metastatic status) for SHH MB

patients, the multivariate Cox regression analyses were

conducted. In the validation set, we applied the same

risk score formula and cutoff point and divided the

SHH MB patients into low- and high-risk groups to

test the robustness of the 23-mRNA-based prognostic

model. We also employed the 23-mRNA-based prog-

nostic model to predict survival of patients with other

MB subgroups. Furthermore, we used a random

model that was built by a random subset of 23 genes

using the multivariate Cox regression analysis to pre-

dict survival of patients with SHH MB, and construct-

ing the random model in the training set was also

repeated 1000 times. The area under the curve (AUC)

of the time-dependent receiver operating characteristic

(ROC) analysis was used to evaluate the predictive

accuracy of the models.

2.4. Evaluation of associations between

stemness indices and prognostic copy number

alterations in SHH MB

The prognostic copy number alterations in SHH MB,

including MYCN amplifications, GLI2 amplifications,

and PTEN deletions, were calculated from DNA

methylation arrays utilizing the R package ‘conumee’

with default parameters (http://bioconductor.org/pac

kages/conumee) (Capper et al., 2018). P values for the

associations between stemness indices and the prognos-

tic copy number alterations of SHH MB were com-

puted using Pearson’s correlation coefficient tests

followed by multiple testing using the BH method.

2.5. Evaluation of relationships between

stemness indices and the MB immune

microenvironment

By using CIBERSORT (a gene expression-based

deconvolution algorithm) (http://cibersort.stanford.ed

u/) (Gentles et al., 2015), we scored 22 immune cell

types for their relative abundance in the MB samples.

For any given MB sample, we computed the associa-

tions between mRNAsi/mDNAsi and the estimated

fractions of individual immune cell types. By applying

ESTIMATE (Yoshihara et al., 2013), we calculated

the individual immune score to predict the level of

infiltrating immune cells in any given MB sample. We

calculated the correlations between mDNAsi/mRNAsi

and immune score or PD-L1 expression.

2.6. Identification of potential compounds

targeting the MB stemness signature

We employed the recently updated CMap (September

2017) (Subramanian et al., 2017), a data-driven, sys-

tematic approach for discovering correlations among

genes, chemicals, and biological conditions, to search

for candidate compounds that might target pathways

correlated with MB stemness. In the CMap database,

a total of 42 080 perturbagens were profiled to gener-

ate 473 647 reference signatures. The CMap workflow

involves interrogating the CMap dataset of reference

signatures with a query (a list of DEGs related to a

biological state of interest) utilizing the pattern-match-

ing algorithms. The query results are scored ranging

from �100 to 100. The molecule compounds are

ranked according to their scores to yield most similar

and opposing compounds. The CMap data and tools

are available on https://clue.io. The DEGs between

SHH subgroup samples with high mRNAsi and low

mRNAsi were calculated using the ‘lmFit’ function of

the R package ‘limma’ with default parameters

(Ritchie et al., 2015). A list of genes differentially

expressed between SHH subgroup samples with high

mRNAsi and low mRNAsi was obtained, and the top

300 genes (150 upregulated and 150 downregulated)

were selected to query the CMap database. Com-

pounds with an enrichment score ≤ �95 were recorded

as potential therapeutic agents for SHH MB.

2.7. Statistical analysis

R software version 3.4.4 (R Core Team, R Foundation

for Statistical Computing, Vienna, Austria) was used

for all statistical analyses. The OCLR method was

implemented with the R package ‘gelnet’ with default

parameters (Sokolov et al., 2016). P values for the

associations between stemness indices and the MB

immune microenvironment were computed using Pear-

son’s correlation coefficient tests followed by multiple

testing using the BH method. P < 0.05 was considered

statistically significant.
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3. Results

3.1. mRNA expression- and DNA methylation-

based stemness indices in MB

We ranked the MB samples according to their mRNAsi

or mDNAsi values (from low to high stemness index) and

tested whether any demographic/molecular/clinical feature

was correlated with either a low or high stemness index

(Fig. 1A,B). We observed an inverse trend between

mRNAsi and mDNAsi for subgroup and metastatic status

(Fig. 1C–L). Group 3 and group 4 samples had higher

mRNAsi values than WNT and SHH samples (Fig. 1C),

while WNT and SHH samples had higher mDNAsi values

than group 3 and group 4 samples (Fig. 1H). Similarly,

patients with metastatic MB had higher mRNAsi values

than patients with nonmetastatic MB (P = 0.025,

Fig. 1G), whereas the mDNAsi value was higher in

patients with nonmetastatic MB than in patients with

metastatic MB (P = 4.6 9 10�6, Fig. 1L). In patients with

group 3 MB, patients with nonmetastatic MB had higher

mDNAsi values than patients with metastatic MB

(P = 0.014, Fig. 1I). In addition, in patients with non-

metastatic MB, the mRNAsi value was higher in patients

with group 3 MB and patients with group 4 MB

(Fig. 1F), while the mDNAsi was highest in patients with

SHH MB (Fig. 1K). In patients with metastatic MB, the

mDNAsi was highest in patients with SHHMB (Fig. 1J).

3.2. Correlations of stemness indices with

clinical outcome in MB

By using the univariable Cox regression analyses, we

found that mRNAsi had a statistically significant effect

on OS for MB (HR, 11.43; 95% CI, 2.79–46.76;
P = 7.03 9 10�4), whereas mDNAsi had no significant

association with OS for MB (Table 1). For each sub-

group of MB patients, the statistically significant OS

difference between patients with high mRNAsi and

low mRNAsi was restricted to SHH MB patients [HR,

2.36; 95% CI, 1.2–4.6; P = 0.0086; P (cutoff) = 0.0193]

(Fig. 2). Distribution of clinical characteristics [age

(P = 0.24), gender (P = 0.66), histology (P = 0.21),

metastatic status (P = 0.83)] was balanced between the

training and validation sets (Table S2). The genes dif-

ferentially expressed between SHH MB samples with

high mRNAsi and low mRNAsi were screened, and

univariate, Lasso, and multivariate Cox analyses were

conducted to construct a 23-mRNA-based prognostic

model. The gene expression-based prognostic model

was characterized by the linear combination of the

expression values of the 23 genes weighted by their

relative coefficients in the multivariate Cox regression

analysis. Table S3 shows the multivariate Cox regres-

sion coefficients of the genes in the 23-mRNA-based

prognostic model. In this 23-mRNA-based prognostic

model, higher expression levels of ADAMTSL3, CPE,

EFEMP2, FAM214A, FKBP4, FRZB,

HIST1H2APS4, ITIH2, KCNG1, LPCAT3, MTRR,

NLGN4Y, and TIMM50 were related to a lower risk

of death (coefficient < 0). In contrast, higher expres-

sion levels of COLGALT1, KIAA0825, LDB3,

PIP4K2A, PROSER1, TMEM185B, TMEM38B,

TOMM40, TRIM28, and TRMT1 were associated

with worse OS (coefficient > 0). By applying this prog-

nostic model, each patient with SHH MB was given a

risk score in connection with individual prognosis.

Then, patients with SHH MB in the training set were

classified into a high-risk group (n = 22) and a low-

risk group (n = 99) by the cutoff value for the 23-

mRNA-based risk scores. The K-M OS curves of the

two groups in the training set, based on the 23 genes,

were significantly different (HR, 20.93; 95% CI, 7.5–
58; P < 0.0001; Fig. 3A). The predictive capacity of

the 23-mRNA-based prognostic model was assessed by

calculating the AUC of an ROC curve. The AUCs of

the 23-gene biomarker prognostic model in the train-

ing set were 0.769, 0.842, and 0.862 for the 1-, 3-, and

5-year survival times, respectively (Fig. 3B). We incor-

porated age, gender, histology, metastatic status, and

the 23-mRNA-based prognostic model into the multi-

variate Cox regression analysis. Based on the multi-

variate Cox regression analysis, the 23-mRNA-based

prognostic model was an independent prognostic fac-

tor correlated with OS (Table 2). Ultimately, in the

validation set, patients with SHH MB were classified

into a high-risk group (n = 9) and a low-risk group

(n = 42). The K-M OS curves of the two groups in the

validation set were significantly different (HR, 3.2;

95% CI, 1.2–8.7; P = 0.0159; Fig. 3C). The AUCs of

the 23-gene biomarker prognostic model in the valida-

tion set were 0.827, 0.763, and 0.753 for the 1-, 3-, and

5-year survival times, respectively (Fig. 3D). When we

applied the 23-mRNA-based prognostic model to pre-

dict the survival of patients with other MB subgroups,

we found that there were no statistically significant dif-

ferences in OS between the high-risk group and the

low-risk group (Fig. 3E–G), indicating that the 23-

mRNA-based signature is not applicable to other MB

subgroups. The 23-mRNA-based signature had a

much higher predictive accuracy than a random model

based on a random subset of 23 genes (Table S4).

Moreover, we found the positive correlations between

mRNAsi and the prognostic copy number alterations

in SHH MB, including MYCN amplifications and
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GLI2 amplifications (Fig. 4A,C). However, we found

no significant correlations between mDNAsi and the

prognostic copy number alterations in SHH MB,

including MYCN amplifications (Fig. 4B), GLI2

amplifications (Fig. 4D), and PTEN deletions

(Fig. 4F), and there was no statistically significant

association between mRNAsi and PTEN deletions in

SHH MB (Fig. 4E).

3.3. Association of the stemness indices with

the MB immune microenvironment

To assess the relationships between MB stemness

and the tumor microenvironment, we computed corre-

lations between individual types of immune cells and

mRNAsi (Fig. 5A,B and Table 3) and mDNAsi

(Fig. 5C,D and Table 4). For WNT subgroup MBs

(Fig. 5A and Table 3), the mRNAsi was correlated

positively with the fraction of activated natural killer

(NK) cells [R = 0.318, P (adjusted) = 0.036] and nega-

tively with the fractions of M2 macrophages

[R = �0.468, P (adjusted) = 0.001] and activated mast

cells [R = �0.396, P (adjusted) = 0.004]. For the SHH

subgroup MBs (Fig. 5A and Table 3), mRNAsi was

positively associated with the fraction of activated NK

cells [R = 0.192, P (adjusted) = 0.0496] and negatively

associated with the fraction of M2 macrophages

[R = �0.184, P (adjusted) = 0.0496]. Group 3 subgroup

MBs exhibited a positive correlation between mRNAsi

and the fraction of activated NK cells [R = 0.257, P

(adjusted) = 0.024] (Fig. 5A and Table 3). For group 4

MBs (Fig. 5A and Table 3), the mRNAsi was related

positively to the fractions of activated NK cells

[R = 0.300, P (adjusted) = 4.52 9 10�7) and resting

mast cells [R = 0.202, P (adjusted) = 0.001] and was

related negatively to the fractions of na€ıve B cells

[R = �0.237, P (adjusted) = 0.0001], M2 macrophages

[R = �0.184, P (adjusted) = 0.004], and activated mast

cells [R = �0.213, P (adjusted) = 0.001]. Except for the

positive association between mDNAsi and M2

macrophages for SHH subgroup MBs (R = 0.248, P

(adjusted) = 0.005) (Fig. 5C and Table 4), there were

no significant associations between mDNAsi and the

fractions of 22 immune cell types in any of the four

subgroups. In addition, we found no significant correla-

tions between the stemness indices and PD-L1 expres-

sion in any of the subgroups (Fig. 5A,C and Table 3–
4). The mRNAsi (Fig. 5A and Table 3) had an inverse

correlation with immune score for the WNT subgroup

[R = �0.695, P (adjusted) = 6.43 9 10�10], SHH

subgroup [R = �0.474, P (adjusted) = 1.89 9 10�12],

group 3 subgroup [R = �0.398, P (ad-

justed) = 1.99 9 10�5], and group 4 subgroup

[R = �0.587, P (adjusted) = 3.70 9 10�30], and

mDNAsi (Fig. 5C and Table 4) had only a positive

Table 1. Univariate Cox regression analyses of clinical and

molecular features associated with OS of MB patients. LC/A, large

cell/anaplastic; MBEN, medulloblastoma with extensive odularity.

Variable HR (95% CI) P

mRNAsi

Increasing mRNAsi 11.43 (2.79–46.76) 7.03E-04

mDNAsi

Increasing mDNAsi 0.65 (0.20–2.07) 0.468

Immune score

Increasing immune scores 1.0000 (0.9996–1.0005) 0.822

Age

Increasing years 0.98 (0.96–1.00) 0.092

Gender

Male vs female 1.17 (0.83–1.63) 0.368

Metastatic status

Metastatic vs nonmetastatic 1.65 (1.18–2.30) 0.004

Subgroup

SHH vs WNT 5.26 (1.62–17.05) 0.006

Group 3 vs WNT 10.87 (3.38–34.92) 6.2E-05

Group 4 vs WNT 6.02 (1.90–19.11) 0.002

Histology

LC/A vs MBEN 4.23 (1.01–17.82) 0.049

Desmoplastic vs MBEN 1.06 (0.24–4.74) 0.939

Classic vs MBEN 1.77 (0.43–7.19) 0.426

Fig. 1. Clinical and molecular features associated with the mRNA expression-based stemness index (mRNAsi) and the mDNAsi in MB. (A)

An overview of the association between known clinical and molecular features (histology, subgroup, gender, and metastatic status) and

mRNAsi in MB. Columns represent samples sorted by mRNAsi from low to high (top row). Rows represent known clinical and molecular

features. (B) An overview of the association between known clinical and molecular features (histology, subgroup, gender, and metastatic

status) and mDNAsi in MB. Columns represent samples sorted by mDNAsi from low to high (top row). Rows represent known clinical and

molecular features. (C) Boxplots of mRNAsi in individual samples stratified by subgroup. (D) Boxplots of mRNAsi in individual samples from

each MB subgroup, stratified by metastatic status. (E) Boxplots of mRNAsi in individual samples of patients with metastatic MB, stratified

by subgroup. (F) Boxplots of mRNAsi in individual samples of patients with nonmetastatic MB, stratified by subgroup. (G) Boxplots of

mRNAsi in individual samples stratified by metastatic status. (H) Boxplots of mDNAsi in individual samples stratified by subgroup. (I)

Boxplots of mDNAsi in individual samples from each MB subgroup, stratified by metastatic status. (J) Boxplots of mDNAsi in individual

samples of patients with metastatic MB, stratified by subgroup. (K) Boxplots of mDNAsi in individual samples of patients with

nonmetastatic MB, stratified by subgroup. (L) Boxplots of mDNAsi in individual samples stratified by metastatic status. L/CA, large cell/

anaplastic; MBEN, medulloblastoma with extensive nodularity; F, female; M, male; MetStatus, metastatic status.
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correlation with immune score for the SHH subgroup

[R = 0.236, P (adjusted) = 0.005].

3.4. Connectivity Map analysis identifies novel

candidate compounds targeting the MB

stemness signature

To identify potential compounds capable of targeting

the pathways associated with MB stemness, we queried

the CMap database using the mRNA expression signa-

tures by applying differential expression analysis to

SHH subgroup samples with high mRNAsi and low

mRNAsi values. The top 96 compounds that were able

to repress the above gene expression profile of SHH

MB are shown in Fig. 6 and Table S5. CMap mode of

action (MoA) analysis of the 96 compounds revealed

58 mechanisms of action shared by the above com-

pounds. Thirteen compounds (APHA-compound-8,
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Fig. 2. K-M curves showing the OS of each subgroup of MB patients with high or low mRNAsi. The K-M survival curves show the OS

based on the high and low mRNAsi patients divided by the optimal cutoff point. (A) K-M curve showing the OS of WNT MB patients with a

high or low mRNAsi. (B) K-M curve showing the OS of SHH MB patients with a high or low mRNAsi. (C) K-M curve showing the OS of

group 3 MB patients with a high or low mRNAsi. (D) K-M curve showing the OS of group 4 MB patients with a high or low mRNAsi.

Fig. 3. Prognostic value of the 23-mRNA-based prognostic model in patients stratified by MB subgroup. The K-M survival curves show the

OS based on the high- and low-risk groups divided by the optimal cutoff point. (A) K-M curves for the training set of SHH MB patients. (B)

Time-dependent ROC curves showed the predictive efficiency of the 23-mRNA-based prognostic model in the training set of SHH MB

patients. (C) K-M curves for the validation set of SHH MB patients. (D) Time-dependent ROC curves showed the predictive efficacy of the

23-mRNA-based prognostic model in the validation set of SHH MB patients. (E) K-M curves for the WNT MB patients. (F) K-M curves for

the group 3 MB patients. (G) K-M curves for the group 4 MB patients.
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apicidin, droxinostat, entinostat, givinostat, ISOX,

Merck60, mocetinostat, NCH-51, NSC-3852, tacedi-

naline, vorinostat, and WT-171) shared the MoA of

HDAC inhibitors, and 12 compounds (amonafide,

camptothecin, daunorubicin, doxorubicin, etoposide,

irinotecan, mitoxantrone, pidorubicine, pirarubicin,

SN-38, teniposide, and topotecan) shared the MoA of

topoisomerase inhibitors. We found that alvocidib,

aminopurvalanol-a, AT-7519, bisindolylmaleimide-ix,

CGP-60474, JNJ-7706621, palbociclib, PHA-793887,

and purvalanol-a shared the MoA of CDK inhibitors,

and dactolisib, GDC-0941, PI-103, PI-828, PIK-75,

PIK-90, and wortmannin shared the MoA of PI3K

inhibitors. Moreover, 6 compounds (AZD-8055, dac-

tolisib, KU-0063794, PI-103, WYE-125132, and WYE-

354) shared the MoA of MTOR inhibitors.

4. Discussion

Leveraging a large cohort of primary MBs profiled

based on combined DNA methylation and gene expres-

sion, we performed a comprehensive analysis of MB

stemness. By employing a stemness index model-based

OCLR machine-learning algorithm to the MB samples,

we obtained two distinct molecular metrics of stemness

and then applied these metrics to assess the epigenomic

and transcriptomic stemness features of MBs based on

their molecular and clinical information. Moreover, we

identified a 23-mRNA-based prognostic model that

could effectively predict the survival of SHH MB

patients and revealed the positive correlations between

mRNAsi and the prognostic copy number changes in

SHH MB, including MYCN amplifications and GLI2

amplifications. Using CIBERSORT, we obtained

insight into the interaction of MB stemness and the

immune microenvironment. Taking advantage of

CMap, we identified potential drugs targeting SHH MB

stem cells. With regard to the association between stem-

ness indices and prognosis in MB patients, we showed

that mRNAsi had a positive correlation with MB sub-

group and a significant association with OS, while

mDNAsi had a negative correlation with MB subgroup

and no significant association with OS, suggesting that

mRNAsi could recapitulate prognostic molecular sub-

groups of MB. According to mRNAsi, only patients

with SHH MB could be divided into two groups with

distinct prognoses, indicating that the SHH subgroup

might have a higher degree of intrasubgroup hetero-

geneity than other subgroups with respect to the stem-

ness phenotype. Previous studies have shown that

WNT, SHH, and group 4 MBs have different cellular

origins (Gibson et al., 2010; Lin et al., 2016; Sch€uller

et al., 2008; Yang et al., 2008). Given that the cancer

methylome can reflect the cell of origin (Fernandez

et al., 2012; Hovestadt et al., 2014), different mDNAsi

of MB subgroups may provide additional evidence for

distinct cellular origins for MB subgroups.

Stem cell signatures shared by leukemia and

hematopoietic stem cells predict clinical outcomes in

acute myeloid leukemia patients (Eppert et al., 2011).

Similarly, in colon, breast, and non-small-cell lung can-

cer, stem cell signature expression correlates inversely

with patient survival (Liu et al., 2007; Merlos-Su�arez

et al., 2011; Zheng et al., 2013a,b). Moreover, a medul-

loblastoma-propagating cell signature defines SHH MB

patients with a poor prognosis (Vanner et al., 2014).

These studies revealed that for multiple tumors, includ-

ing MB, patients whose cancer exhibits higher expres-

sion levels of stem cell genes experience significantly

worse clinical outcomes. In the present study, we built

and validated a 23-mRNA-based prognostic model

associated with stem cell genes. To our knowledge, all

predictive genes in this 23-mRNA signature have not

been reported for MB and may provide some clinical

indications for the development of novel prognostic fac-

tors for MB. One of the advantages of predictive genes

is that they do not require the identification of somatic

mutations in patients and reduce the cost of sequencing,

which may make the application of panel testing based

on specific mRNAs more routine. Additionally, when

applied to single-cell transcriptomic profiles of MB, the

stemness indices could reveal intratumor heterogeneity

for the stemness of individual MB cells and identify the

MB cells that exhibit greater proliferation and tumor-

propagating potential.

We found that mRNAsi had a negative association

with the immune score for all of the MB subgroups,

suggesting that immune cells in MB may repress MB

Table 2. Multivariate Cox regression analysis of the 23-mRNA-

based prognostic model and clinical features associated with OS of

SHH MB patients. LC/A, large cell/anaplastic; MBEN,

medulloblastoma with extensive nodularity

Variables HR (95% CI) P

Age

Increasing years 1.00 (0.97–1.04) 0.858

Gender

Male vs female 0.51 (0.23–1.12) 0.095

Histology

Desmoplastic vs classic 0.31 (0.10–0.98) 0.046

LC/A vs classic 0.45 (0.16–1.25) 0.123

MBEN vs classic 0.00 (0–Inf) 0.997

Metastatic status

Metastatic vs nonmetastatic 3.40 (1.36–8.48) 0.009

23-mRNA-based prognostic model

Increasing risk scores 1.80 (1.45–2.24) 1.10E-07
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Fig. 4. Associations of stemness indices with the prognostic copy number alterations in SHH MB. (A) Correlation between mRNAsi and
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stem cells by affecting the transcriptome of MB stem

cells. In addition, the excellent prognosis of WNT MB

may be explained in part by the result that the nega-

tive correlation between mRNAsi and immune score

was stronger in the WNT subgroup than in the other

subgroups. The absence of PD-L1 expression in MB

(Aoki et al., 2016; Majzner et al., 2017; Vermeulen

et al., 2018) might explain in part why the stemness

indices had no significant associations with PD-L1

expression, indicating that the therapeutic potential of

immunotherapy with PD-L1 inhibitors seems limited

in MB. For all of the MB subgroups, the mRNAsi

was associated positively with the fraction of activated

NK cells, suggesting that NK cells may promote MB

stem cell-associated phenotypes and that the added

value of NK cell-based therapies in MB may be lim-

ited. We observed that the fractions of M2 macro-

phages in WNT, SHH, and group 4 MBs were
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negatively associated with mRNAsi, indicating that

M2 macrophages might suppress MB stem cells by

impacting the transcriptome of MB stem cells. A

recent study showed that M1 rather than M2 macro-

phages correlate more strongly with worse clinical out-

come in SHH MB (Lee et al., 2018). These two results

contradict the common view of tumor-promoting M2

macrophages and tumor-suppressing M1 macrophages.

In many cancer types, M2 macrophage counts are

associated with adverse outcomes (Hu et al., 2016;

Jensen et al., 2009; Kawachi et al., 2018; Medrek

et al., 2012), and M1 macrophage infiltration is

correlated with better prognosis (Ma et al., 2010; Mei

et al., 2016). However, several studies suggest that the

dichotomous M1/M2 classification of macrophages is

oversimplified, and the role of tumor-associated

macrophages is still controversial (Martinez and Gor-

don, 2014; Van Overmeire et al., 2014). Furthermore,

our analyses showed only weak associations between

mDNAsi and immune cells in MB. This result suggests

that immune cells in MB are likely to have a weak

effect on the methylome of MB stem cells.

We interrogated CMap utilizing the gene expression

signatures from SHH MB samples with high and low

Table 3. Correlations of mRNAsi with immune microenvironment in each subgroup MB.

Immune cell

WNT SHH Group 3 Group 4

r P Pa r P Pa r P Pa r P Pa

B cells (naive) �0.030 0.807 0.840 �0.083 0.214 0.557 �0.068 0.420 0.709 �0.237 0.000 0.0001

B cells (memory) 0.063 0.605 0.796 0.162 0.015 0.100 �0.031 0.711 0.912 0.135 0.014 0.056

Plasma cells 0.066 0.586 0.796 0.015 0.821 0.928 0.046 0.584 0.872 0.072 0.195 0.330

T cells (CD8) 0.064 0.600 0.796 �0.021 0.751 0.928 0.100 0.231 0.691 0.012 0.828 0.828

T cells (CD4 naive) �0.070 0.567 0.796 0.154 0.022 0.113 0.003 0.971 0.993 0.075 0.179 0.322

T cells [CD4 memory

(resting)]

�0.042 0.728 0.834 0.006 0.932 0.932 �0.086 0.306 0.691 �0.060 0.278 0.416

T cells [CD4 memory

(activated)]

0.089 0.464 0.796 0.091 0.177 0.511 �0.042 0.620 0.872 0.025 0.657 0.705

T cells (follicular

helper)

0.158 0.191 0.478 0.051 0.450 0.782 0.003 0.967 0.993 0.117 0.035 0.104

T cells (regulatory

(Tregs))

0.245 0.041 0.113 �0.131 0.051 0.188 0.067 0.425 0.709 0.026 0.634 0.705

T cells (gamma delta) 0.089 0.109 0.245

NK cells (resting) �0.041 0.734 0.834 0.046 0.493 0.801 0.082 0.329 0.691 �0.045 0.417 0.563

NK cells (activated) 0.318 0.007 0.036 0.192 0.004 0.0496 0.257 0.002 0.024 0.300 0.000 4.52E�07

Monocytes 0.145 0.232 0.527 0.117 0.082 0.265 �0.084 0.320 0.691 �0.033 0.556 0.683

Macrophages (M0) 0.041 0.733 0.834 0.069 0.304 0.659 �0.200 0.016 0.137 �0.030 0.584 0.686

Macrophages (M1) �0.275 0.021 0.076 �0.072 0.282 0.659 �0.029 0.729 0.912 �0.087 0.119 0.246

Macrophages (M2) �0.468 0.000 0.001 �0.184 0.006 0.0496 �0.041 0.627 0.872 �0.184 0.001 0.004

Dendritic cells

(resting)

Dendritic cells

(activated)

0.034 0.779 0.840 0.009 0.892 0.928 0.081 0.332 0.691 0.105 0.058 0.155

Mast cells (resting) 0.090 0.460 0.796 0.056 0.401 0.782 0.155 0.064 0.361 0.202 0.000 0.001

Mast cells (activated) �0.396 0.001 0.004 0.011 0.876 0.928 �0.150 0.072 0.361 �0.213 0.000 0.001

Eosinophils 0.081 0.504 0.796 �0.009 0.891 0.928 0.001 0.993 0.993 0.035 0.531 0.683

Neutrophils �0.277 0.020 0.076 �0.142 0.034 0.149 �0.122 0.144 0.600 �0.127 0.022 0.075

Immune score �0.695 0.000 6.43E-10 �0.474 0.000 1.89E-12 �0.398 0.000 1.99E-05 �0.587 0.000 3.70E-30

PD-L1 0.109 0.369 0.768 �0.015 0.824 0.928 0.084 0.315 0.691 �0.098 0.078 0.190

Macrophages (M1 vs

M0)

�0.255 0.039 0.113 0.013 0.882 0.928 0.014 0.866 0.993 �0.067 0.256 0.407

Macrophages (M2 vs

M0)

�0.407 0.001 0.004 �0.016 0.862 0.928 �0.007 0.932 0.993 �0.084 0.156 0.300

NK cells (activated vs

resting)

0.087 0.870 0.870 �0.095 0.630 0.928 �0.362 0.425 0.709 �0.073 0.679 0.705

T cells (CD4 activated

vs resting)

0.062 0.451 0.782 0.050 0.414 0.563

aA false discovery rate (FDR) correction using the BH method is applied to P values.
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mRNAsi levels. The CMap analysis precisely identified

some compounds that have been shown to specifically

impact CSCs in other tumor types (Angeletti et al.,

2016; Batsaikhan et al., 2014; Battula et al., 2017;

Bonuccelli et al., 2017; Bozok Cetintas et al., 2016;

Chen et al., 2015, 2016; Cheng et al., 2017; Domin-

guez-Gomez et al., 2018; Garulli et al., 2014; Hong

et al., 2011; Hou et al., 2018; Malkomes et al., 2016;

Xiang et al., 2017; Xu et al., 2016; Yeh et al., 2013;

Yin et al., 2018; You et al., 2009; Zhang et al., 2013;

Zheng et al., 2013a,b). These compounds include the

CDK inhibitors palbociclib and alvocidib, the AMPK

inhibitor dorsomorphin, the IKK inhibitor BMS-

345541, the smoothened receptor antagonist cyclopa-

mine, the topoisomerase inhibitors topotecan and dox-

orubicin, the GABA receptor agonist ivermectin, the

NF-jB pathway inhibitor auranofin, the MTOR inhi-

bitor dactolisib, the AKT inhibitors MK-2206 and

pyrvinium-pamoate, the HMGCR inhibitor simvas-

tatin, the HDAC inhibitors apicidin, vorinostat, and

givinostat, and the DNA synthesis inhibitor

anisomycin. In addition, the survivin inhibitor YM155

(Brun et al., 2015), the AKT inhibitor pyrvinium (Li

et al., 2014), and the RNA polymerase inhibitor trip-

tolide (Zhang et al., 2018) have been shown to exert

anticancer effects on MB cells, although there were no

results regarding effects on MB stem cells. More

importantly, the CMap analysis identified the PI3K

inhibitor GDC-0941, which has been demonstrated to

target CD133-positive stem cell-like MB subpopula-

tions (Ehrhardt et al., 2015). The mentioned com-

pounds may present an avenue for the implementation

of targeting MB stem cells. Given that the survival

rates of MB patients treated with nonspecific multi-

modal therapies have reached a plateau (Ramaswamy

and Taylor, 2017), targeting MB stem cells in parallel

to nonspecific multimodal therapies may yield the

most durable SHH MB remission.

However, several limitations should be acknowl-

edged for the current study. First, the ethnicities of

populations in the GSE85218 dataset are primarily

limited to Caucasian and African American, and the

Table 4. Correlations of mDNAsi with immune microenvironment in each subgroup MB.

Immune cell

WNT subgroup SHH subgroup Group 3 subgroup Group 4 subgroup

r P Pa r P Pa r P Pa r P Pa

B cells (na€ıve) �0.002 0.989 0.989 0.121 0.071 0.372 0.118 0.159 0.796 �0.044 0.424 0.828

B cells (memory) 0.005 0.968 0.989 �0.010 0.877 0.981 �0.004 0.961 0.974 0.063 0.256 0.828

Plasma cells 0.231 0.055 0.484 0.030 0.652 0.808 0.019 0.824 0.974 0.031 0.581 0.828

T cells (CD8) 0.205 0.089 0.557 �0.046 0.492 0.723 0.040 0.630 0.893 �0.017 0.758 0.861

T cells (CD4 naive) �0.172 0.154 0.637 �0.018 0.788 0.931 �0.084 0.318 0.880 0.001 0.992 0.992

T cells (CD4 memory (resting)) �0.077 0.526 0.949 �0.037 0.583 0.758 �0.167 0.045 0.376 �0.024 0.664 0.828

T cells (CD4 memory (activated)) �0.061 0.617 0.964 0.061 0.362 0.723 0.071 0.398 0.880 0.119 0.032 0.236

T cells (follicular helper) �0.151 0.211 0.637 �0.106 0.116 0.439 �0.078 0.356 0.880 0.024 0.665 0.828

T cells (regulatory (Tregs)) 0.228 0.058 0.484 0.041 0.539 0.738 0.085 0.313 0.880 0.002 0.968 0.992

T cells (gamma delta) �0.075 0.177 0.797

NK cells (resting) 0.015 0.900 0.989 �0.081 0.229 0.587 0.015 0.854 0.974 0.049 0.380 0.828

NK cells (activated) �0.076 0.531 0.949 �0.147 0.029 0.247 �0.057 0.499 0.892 0.093 0.094 0.507

Monocytes 0.005 0.968 0.989 �0.058 0.385 0.723 0.023 0.782 0.974 0.058 0.293 0.828

Macrophages (M0) �0.258 0.031 0.484 �0.083 0.216 0.587 �0.051 0.546 0.893 0.024 0.668 0.828

Macrophages (M1) �0.140 0.246 0.637 0.045 0.501 0.723 0.069 0.414 0.880 �0.024 0.672 0.828

Macrophages (M2) �0.037 0.764 0.989 0.248 0.000 0.005 0.142 0.090 0.563 �0.058 0.294 0.828

Dendritic cells (resting)

Dendritic cells (activated) 0.003 0.981 0.989 0.078 0.248 0.587 �0.171 0.041 0.376 0.011 0.840 0.907

Mast cells (resting) �0.118 0.331 0.752 �0.056 0.408 0.723 0.086 0.304 0.880 �0.025 0.648 0.828

Mast cells (activated) 0.022 0.856 0.989 �0.105 0.118 0.439 �0.011 0.899 0.974 �0.030 0.589 0.828

Eosinophils �0.010 0.934 0.989 �0.002 0.981 0.981 0.039 0.643 0.893 �0.140 0.012 0.236

Neutrophils �0.064 0.600 0.964 0.049 0.468 0.723 0.010 0.901 0.974 0.045 0.419 0.828

Immune score �0.151 0.213 0.637 0.236 0.000 0.005 0.003 0.974 0.974 �0.117 0.035 0.236

PD-L1 �0.138 0.255 0.637 0.003 0.960 0.981 �0.202 0.015 0.376 �0.027 0.629 0.828

Macrophages (M1 vs M0) �0.089 0.479 0.949 0.123 0.175 0.569 0.064 0.457 0.880 0.025 0.675 0.828

Macrophages (M2 vs M0) 0.150 0.229 0.637 �0.069 0.449 0.723 0.040 0.639 0.893 �0.018 0.765 0.861

NK cells (activated vs resting) 0.160 0.762 0.989 0.005 0.978 0.981 0.355 0.435 0.880 0.129 0.461 0.828

T cells (CD4 activated vs resting) 0.157 0.054 0.351 0.131 0.030 0.236

aA false discovery rate (FDR) correction using the BH method is applied to P values.
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extrapolation of our findings to other ethnic groups

needs to be further substantiated. Second, the 23-

mRNA-based signature was not subjected to external

validation because the appropriate independent

cohorts with survival data were not available, and a

robust signature should be validated externally in dif-

ferent datasets; thus, the prospective multicenter clini-

cal trials are required to further validate the findings.

Finally, the mechanisms underlying our findings have

not been clearly elucidated here, and experimental

studies on our findings should be carried out to facili-

tate our understanding of their functional roles in MB

and their clinical application.

5. Conclusions

Taken together, our results provide a comprehensive

characterization of MB stemness. The prognostic sig-

nature based on mRNAsi may contribute to personal-

ized prediction of SHH MB prognosis and act as a

potential biomarker for SHH MB prognostication and

response to differentiation therapies in clinical practice.

Our study also provides strategies based on machine-

learning methods for the systematic identification of

biomarkers that stratify MB in terms of MB stemness

and drugs targeting MB stem cells. Our analysis

regarding the interactions of tumor-infiltrating immune

cells with MB stemness may help predict the efficacy

of immunotherapies targeting MB stem cells and con-

tribute to the identification of patients who will

respond to such therapies. Future investigations should

concentrate on the functional explanation of our

results and the validation of our findings in planned

clinical trials.
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Fig. 6. Heatmap showing each compound (perturbagen) from the CMap that shares a MoA (rows), sorted by descending number of

compounds with a shared MoA. The above compounds have an enrichment score ≤ �95 and might be capable of targeting the MB

stemness signature.
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Data Accessibility

Source codes used for our data analysis are available

at https://github.com/richie2019/MBpanel.
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