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AMPA Receptor Channels with Long-Lasting Desensitization in
Bipolar Interneurons Contribute to Synaptic Depression in a Novel
Feedback Circuit in Layer 2/3 of Rat Neocortex
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Heidelberg, Germany

A novel, local inhibitory circuit in layer 2/3 of rat somatosensory
cortex is described that connects pyramidal cells reciprocally
with GABAergic vasoactive intestinal polypeptide-immuno-
reactive bipolar interneurons. In paired whole-cell recordings,
the glutamatergic unitary responses (EPSPs or EPSCs) in bipo-
lar cells evoked by repetitive (10 Hz) stimulation of a pyramidal
cell show strong frequency-dependent depression. Unitary
IPSPs evoked in pyramidal cells by repetitive stimulation of
bipolar cells, on average, maintained their amplitude. This sug-
gests that the excitatory synapses on bipolar cells act as a
low-pass filter in the reciprocal pyramid-to-bipolar circuit. The
EPSCs in bipolar cells are mediated predominantly by AMPA

receptor (AMPAR) channels. AMPARs desensitize rapidly and
recover slowly from desensitization evoked by a brief pulse of
glutamate. In slices, reduction of AMPAR desensitization by
cyclothiazide (50-100 um) or conditioning steady-state desen-
sitization induced by application of extracellular AMPA (50 nwm)
or glutamate (50 um) strongly reduced synaptic depression. It is
concluded that in the local circuits between pyramidal and
bipolar cells the desensitization of AMPARs in bipolar cells
contributes to low-pass feedback inhibition of layer 2/3 pyra-
midal neurons by bipolar cells.

Key words: neocortex; interneurons; neuronal circuit; synap-
tic depression; AMPA receptors; desensitization

Neurons with a bipolar dendritic arbor constitute a morphologi-
cally identified type of GABAergic inhibitory interneurons in the
neocortex. These cells control the excitability of pyramidal cells
via GABAergic synapses. One subtype of interneurons of layer
2/3, designated as “bitufted” interneurons, express the neuropep-
tide somatostatin. In these interneurons the unitary EPSPs
evoked by pyramidal cell stimulation show frequency-dependent
facilitation (Markram et al., 1998; Reyes et al., 1998). Other
subtypes of inhibitory neurons with bipolar dendritic morphology
express vasoactive intestinal polypeptide (VIP) or cholecystoki-
nin (CCK). They respond with different patterns of action poten-
tials (APs) during depolarizing current injection (Kawaguchi,
1993, 1995; Kawaguchi and Kubota, 1996, 1997; Porter et al.,
1998). How the “bipolar” cells are connected to other neocortical
neurons and what determines the efficacy and frequency-
dependent short-term modulation of these connections is not well
understood.

By making simultaneous dual recordings from bipolar and
other neocortical neurons, we describe one subtype of bipolar
VIP-immunopositive interneurons that are located in layer 2/3 of
the somatomotor cortex that show strong frequency-dependent
depression of the unitary EPSPs evoked by repetitive stimulation
of layer 2/3 pyramidal cells. These bipolar interneurons form a
feedback loop with pyramidal cells in layer 2/3 via GABAergic
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synapses. They express AMPAR channels characterized by fast
inactivation and desensitization in response to short pulses of
glutamate. However, the time course of recovery from desensiti-
zation of these channels is comparatively slow. This local
pyramid-to-bipolar circuit is the first example in the neocortex
where the effectiveness of a feedback loop is dominated by the
desensitization properties of postsynaptic AMPAR channels.

MATERIALS AND METHODS

Brain slices. Transverse neocortical slices of the somatosensory cortex of
300 wm thickness were prepared from the brains of 14-d-old Wistar rats
killed by decapitation. During recordings, slices were maintained at room
temperature (22-24°C) in extracellular solution consisting of (in mm):
125 NaCl, 2.5 KCl, 25 glucose, 25 NaHC O;, 1.25 NaH,PO,, 2 CaCl,, and
1 MgCl, (pH 7.2 when bubbled with carbogen). Neurons were visualized
via a 40X water immersion objective using infrared differential interfer-
ence contrast (IR-DIC) video microscopy (Stuart et al., 1993).
Electrophysiology. Whole-cell voltage or/and current recordings were
performed simultaneously from two neurons using pipettes with resis-
tance of 5-7 MQ when filled with (in mm): 105 K gluconate, 30 KCI, 4
Mg-ATP, 10 phosphocreatine, 0.3 GTP, and 10 HEPES, pH 7.3, KOH,
293 mOsm. In synaptically connected neurons, suprathreshold intracel-
lular stimulation of presynaptic cells evoked depolarizing EPSPs and
IPSPs. In some experiments low-chloride intracellular solution was used
so that the IPSPs hyperpolarized. This solution contained (in mm): 130
K gluconate, 10 Na gluconate, 4 NaCl, 4 Mg-ATP, 4 phosphocreatine, 0.3
GTP, and 10 HEPES, pH 7.3, KOH, 305 mOsm. Both depolarizing and
hyperpolarizing IPSPs were analyzed. Presynaptic cells were stimulated
with a 10 Hz train of two or three suprathreshold current pulses. Trains
were delivered at intervals of >7 sec. Voltage and current traces shown
are averages of 50-100 sweeps. Stimulus delivery and data acquisition
was performed using Pulse software (Heka Elektronik, Lambrecht, Ger-
many). All analyses were performed using IgorPro software (WaveMet-
rics, Lake Oswego, OR). After paired recordings were made, nucleated
patches (Sather et al., 1992) were pulled from the target cell, and
glutamate (1 mm) was applied using a piezo-controlled (piezo P 245.70;
Physik Instrumente, Waldbronn, Germany) fast application system with a
double-barrel application pipette (Colquhoun et al., 1992). Durations of
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the glutamate pulses were 2 or 50 msec. AMPAR-mediated currents in
patches were recorded in the presence of 100 uM D-AP-5. Relative Ca®*
to Na " permeability was determined as in Brusa et al. (1995). In these
experiments the standard extracellular solution was (in mm): 135 NacCl,
5.4 KCl, 1.8 CaCl,, 1 MgCl,, and 10 HEPES, pH 7.2, NaOH. High Ca?*
extracellular solution contained (in mm): 105 N-methyl-D-glucamine
(NMDG), 30 CaCl,, 5 HEPES, pH 7.2, HCIL. Intracellular solution
contained (in mm): 135 CsCl, 0.5 EGTA, 4 Mg-ATP, 5 HEPES, pH 7.2,
NaOH. In other experiments with nucleated patches intracellular solu-
tion was the same as for synaptic recordings.

Morphological reconstructions. Cell pairs were filled with biocytin
(2%) added to the intracellular pipette solution. Morphological recon-
struction of labeled cells after fixation and processing (Markram et al.,
1997) was subsequently made using the Neurolucida tracing program
(MicroBrightField, Colchester, VT).

Immunocytochemistry. After individual cells had been filled with bio-
cytin, slices were post-fixed with 4% paraformaldehyde overnight at 4°C.
Slices were embedded in 4% agar (Fluka, Buchs, Switzerland), subsliced
into 50 wm thin sections on a vibratome (VT1000S; Leica, Heidelberg,
Germany), and transferred into 50 mm Tris-HCI, pH 7.4, and 1.5% NaCl
(TBS). Sections were permeabilized in TBS and 0.4% Triton X-100
(Sigma, Steinheim, Germany) for 30 min followed by preincubation in
TBS, 4% normal goat serum (NGS), and 0.2% Triton X-100 for 30 min,
and incubation in 2% NGS and 0.1% Triton X-100 at 4°C overnight with
VIP rabbit antiserum (1:100; Incstar, Stillwater, MN). Sections were
washed three times for 10 min with cold TBS and incubated for 2.5 hr in
goat anti-rabbit Cy3-conjugated secondary antibody (1:200) and
fluorescein-isothiocyanate (FITC)-conjugated avidin (1:100). Sections
were washed twice for 10 min in TBS and 1% NGS and twice in TBS.
After a brief rinse in 10 mMm Tris-HCI, pH 7.4, sections were air-dried
and mounted in Mowiol (Polysciences, Warrington, PA). Immunostained
sections were visualized under epifluorescent illumination with an Ax-
ioplan 2 microscope (Zeiss, Jena, Germany).

Data in the graphs, tables, and text are given as the mean * SD.

RESULTS

Anatomical and functional signature of reciprocal
pyramid to bipolar cell connections

Figure 1A4 (right panel) shows the appearance in the IR-DIC
video image in layer 2/3 of the soma and the proximal portions of
both the apical and basal dendrites of a bipolar interneuron that
received strongly depressing glutamatergic excitatory input from
a layer 2/3 pyramidal neuron (Fig. 14, left panel). These bipolar
interneurons were distinguished from the bitufted interneurons
that receive facilitating input from pyramidal neurons by the
different pattern of action potentials (APs) that developed during
depolarizing somatic current injection. Typically at resting mem-
brane potentials (approximately —70 mV) the AP pattern was
characterized by an initial fast burst of three APs (average inter-
spike intervals, 12 = 4 msec and 26 * 4 msec; n = 5) followed by
a regular spike pattern at lower frequency (interspike interval,
75 = 15 msec; n = 5). In most cells a long interval (117 = 44 msec;
n = 5) between the initial burst and the regularly spiking part of
the AP train was apparent (Fig. 1B, fop trace). With the same
current injection (100 pA) into the cell that was depolarized to
—60 mV the interval after the burst was no longer apparent or
became less pronounced (Fig. 1B, bottom trace), and the fre-
quency of the regular spikes became somewhat higher (interspike
interval, 63 = 8 msec; n = 6). These bipolar cells thus show an AP
pattern similar to those designated as irregular spiking (IS) cells
(Porter et al., 1998). This type of bipolar neurons was postsyn-
aptic to pyramidal cells and was further characterized by the
marked frequency dependent depression of unitary EPSPs,
evoked by repetitive pyramidal cell stimulation (Fig. 1C).

Dendritic and axonal morphology
To correlate the functional and morphological properties of this
type of interneurons, we filled both presynaptic and postsynaptic
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Figure 1. Morphological and functional signature of bipolar interneu-

rons. A, Representative IR-DIC image of a pyramidal cell (leff) and a
bipolar cell (right) in layer 2/3 region of rat neocortex. Scale bar, 10 pwm.
B, Action potential patterns of a bipolar cell after depolarizing current
injection of the same value (100 pA) at resting potential (—70 mV; top
trace) and at —60 mV (bottom trace). C, Short-term depression of EPSPs
(bottom trace) in response to three action potentials (10 Hz; top trace)
evoked in synaptically connected pyramidal cell.

neurons with biocytin. We reconstructed the dendritic and the
axonal arbors of these neurons and found that in all bipolar
neurons analyzed (n = 5) the AP pattern, and depressing EPSPs
were associated with a bipolar vertically oriented dendritic ar-
borization (Fig. 24, Table 1). The axonal arbor of these cells also
span primarily in the vertical field in the granular and infragranu-
lar layers (down to layer 6) of the cortex (Fig. 24, Table 1). Ten
of eleven bipolar interneurons identified by these morphological
and physiological properties were immunopositive for VIP, pro-
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Figure 2. Anatomical and immunocytochemical identification of bipolar
interneurons. A, Dendritic (red) and axonal (blue) arbor morphology of a
biocytin-labeled bipolar interneuron. B, Digital micrograph of a biocytin-
labeled bipolar interneuron visualized by FITC-labeled avidin (left). VIP
immunoreactivity of the same cell shown by CY-3 immunofluorescence
(right). Scale bar, 10 wm.

Table 1. Quantification of dendritic and axonal length of bipolar
interneurons in layer 2/3 of rat neocortex

Soma Vertical diameter (wm) 202 (m= 5)
Horizontal diameter (um) 10£1(n= 95)

Dendrites
Apical Vertical field span (um) 240 = 64 (n=5)
Horizontal field span (um) 125 =26 (n=5)
Basal Vertical field span (um) 251 =89 (n=5)

Horizontal field span (um)
Total vertical field span (um)
Horizontal field span (um)

110 + 53 (n= 5)
929 + 243 (n=5)
418 + 225 (n=5)

Axon collaterals

viding an additional cytochemical marker for their identification
(Fig. 2B).

Reciprocal connections with pyramidal neurons

Figure 3, A and B, illustrates a biocytin-filled and reconstructed
pair of a pyramidal cell and a bipolar cell. In this pair of cells the
axon of the pyramidal cell made four putative contacts with the
dendrites of bipolar interneuron. Axons of bipolar interneurons
also were connected to dendrites of pyramidal cells. Figure 3, C
and D, shows a biocytin-filled pair of a bipolar and a pyramidal
cell. Here the axon collaterals of the bipolar cell made three
putative contacts with the basal dendrites of the pyramidal cell.
This feedback projection of bipolar to pyramidal neurons was via
GABAergic synapses. Bipolar cell APs evoked unitary postsyn-
aptic potentials in pyramidal neurons that were hyperpolarizing
in low CI1 ™ intracellular solution (Fig. 4B). Application of bicu-
culline (10 um) completely blocked the postsynaptic potentials,
indicative of GABA ,-mediated IPSPs (data not shown).

We also examined frequency-dependent changes in EPSPs and
IPSPs by measuring paired-pulse ratio after pyramidal and
bitufted cell stimulation, respectively. At 10 Hz stimulation the
EPSPs recorded from bipolar cells showed synaptic depression
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(EPSP2/EPSP1 was 43 = 10%; n = 18), whereas the pattern of
IPSPs evoked in pyramidal neurons differed in different pairs
with an average ratio of IPSP2/IPSP1 of 102 = 36% (n = 13)
(Fig. 4C). From 13 cell pairs tested for GABA ,-mediated IPSPs,
seven individual pairs were connected reciprocally. Averaged
EPSPs and IPSPs recorded from such a pair are shown in Figure
4B. Thus, in layer 2/3 of the rat somatosensory cortex along with
the previously described GABAergic bitufted and multipolar in-
terneurons (Reyes et al., 1998), bipolar cells form an additional
local circuit (Fig. 44) with neighboring pyramidal neurons.

Functional properties of GIuR channels in
bipolar interneurons
To characterize further the function of bipolar interneurons, we
compared the properties of glutamate receptor (GluR) channels
in these cells with those present in bitufted and multipolar inter-
neurons. Paired whole-cell recordings were first performed to
characterize properties of the connection and for identification of
the postsynaptic target cell. We then pulled a nucleated patch
from the target cell for rapid application of glutamate. Applica-
tion of brief (2 msec) glutamate (1 mm) pulses to nucleated
patches in Mg?*-free extracellular solution evoked dual compo-
nent currents in all three cell types. The slow component was
blocked by 50 uM D-AP-5, a selective blocker of NMDAR chan-
nels. The remaining fast component was blocked by 5 um NBQX.
The non-NMDAR current recorded during long application (50
msec) of glutamate showed strong desensitization that was com-
pletely removed by 100 uM cyclothiazide (CTZ) (see Fig. 84,B)
but not by Concanavalin A (0.3 mg/ml). Moreover, currents
activated in these patches by kainate did not desensitize (data not
shown). Taken together these observations indicate that AMPAR
but not kainate receptor channels mediate the fast component of
glutamate-evoked current in all three types of interneurons.
Because under physiological conditions at rest, NMDAR chan-
nels are mostly blocked by Mg?™", currents through AMPAR
channels mediate the main component of EPSC. To determine
the possible cell-specific functional properties of AMPAR chan-
nels in bipolar cells, we first measured their Ca®" permeability.
In contrast to multipolar and bitufted cells the relative Ca®* to
Na* permeability in a bipolar cell AMPARs was low, as indi-
cated by more negative shift of reversal potentials (—60.6 = 8.8
mV;n = 5) in high Ca®* solution (Fig. 5, Table 2). In multipolar
and bitufted cells the shifts in reversal potentials were —16 * 6.8
mV (n = 6) and —12.1 = 4.6 mV (n = 10), respectively.
Second, the deactivation and desensitization kinetics of the
glutamate-mediated current was compared when nucleated
patches were exposed to a brief (2 msec) or a long (50 msec) pulse
of glutamate. The deactivation time course was not significantly
different for all three cell types (Table 2). However, in both
bipolar and multipolar cells the desensitization time course was
significantly faster than that in bitufted cell, in fact it was almost
as fast as the time course of deactivation (Fig. 5, Table 2). Thus,
in bipolar and in multipolar cells of the neocortex, the fast
synaptic current might be in part terminated by desensitization of
AMPAR:s.

Recovery from receptor desensitization

To dissect a possible contribution of AMPAR desensitization to
synaptic depression, we compared the time course of recovery of
glutamate-activated currents from desensitization in nucleated
patches with the recovery from depression of evoked EPSPs.
Nucleated patches were exposed to brief pulses (2 msec) of 1 mm
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Figure 3. Synaptic connections between bipolar and pyramidal neurons. 4, Dendritic and axonal arbor morphology of a biocytin-labeled pyramidal
neuron (left) making excitatory synaptic connection to bipolar interneuron (right). Two cells are shown separately for clarity. B, Four excitatory synaptic
connections ( green circles) between the axon of the pyramidal neuron ( green) and dendrites of the bipolar interneuron (red). The same cells as in 4
shown on expanded scale. C, Dendritic and axonal arbor morphology of a biocytin-labeled bipolar interneuron (leff) making inhibitory synaptic
connection to pyramidal neuron (right). D, Three inhibitory synaptic connections (blue circles) between the axon of the bipolar interneuron (blue) and
dendrites of the pyramidal neuron (black). The same cells as in C shown on expanded scale.

glutamate separated by various time intervals (Fig. 6). In bipolar
cells AMPAR channels recovered from desensitization only after
5 sec, whereas in multipolar and bitufted cells the recovery time
was much shorter within 1 sec and 200 msec, respectively (Fig. 6,
Table 2). In bipolar and multipolar cells, both receiving inputs
from pyramidal cells, the time course of recovery from paired-
pulse depression (PPD) measured by unitary EPSPs, was almost
identical (Fig. 7) with the complete recovery time of 4-5 sec. This
time course is much slower than the time of recovery from
desensitization of AMPARs in multipolar cells, but in bipolar
cells it is comparable. At 100 msec time interval (Fig. 6) only
~30% of AMPARs recovered from desensitization in bipolar

cells, whereas almost 70% in multipolar cells recovered. Thus, at
a given stimulation frequency, desensitization of postsynaptic
AMPAR channels may contribute more to synaptic depression in
bipolar cells than in multipolar cells.

AMPAR desensitization and synaptic depression

We investigated the possible contribution of AMPAR desensiti-
zation to synaptic depression by two approaches. In two classes of
synaptic connections we tested first effects on synaptic depression
of the reduction of AMPAR desensitization by CTZ and second,
the effects of conditioning (increasing) steady-state AMPAR de-
sensitization by low concentrations of either AMPA or glutamate.
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Figure 4. Reciprocal innervation in layer 2/3 pyramid-bipolar-pyramid.
A, Schematic diagram of reciprocal connections between pyramidal (P)
and bipolar (BP) cells. B, Dual simultaneous recordings from reciprocally
connected pyramidal and bipolar cells: EPSPs evoked by pyramidal cell
terminals in postsynaptic bipolar cell (P — BP; top traces) and IPSPs
evoked by bipolar cell terminals in postsynaptic pyramidal cell (BP — P;
bottom traces). Presynaptic cells were stimulated at 10 Hz. C, Distribution
of amplitude ratios of EPSP2/EPSP1 (top histogram) and 1PSP2/IPSP1
(bottom histogram). Stimulation frequency, 10 Hz. Symbols above histo-
grams give the mean (* SD) amplitude ratios [bipolar cells, 43 = 10%,
n = 18 (diamond); pyramidal cells, 102 = 36%, n = 13 (triangle)].
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Figure 5. Ca®" permeability, deactivation, and desensitization time
course of AMPAR channels. A, Top panel, Current—voltage relations for
the glutamate-evoked currents recorded from nucleated patches pulled
from bipolar cells in normal rat Ringer’s solution (NRR; closed circles)
and high Ca?* (30 mm [Ca?"],; open circles) solutions. Arrow indicates
Ca?"/Cs ™" reversal potential. Bottom panel, Currents recorded from nu-
cleated patch in response to 2 and 50 msec glutamate pulses. Membrane
potential, —60 mV. Extracellular solution contained 10 uM D-AP-5. B,
Same as in 4 for multipolar cells.

Effects of cyclothiazide

In nucleated patches pulled from either bipolar or multipolar
cells, 50 um of CTZ almost completely prevented AMPAR
desensitization as revealed from experiments with 50 msec pulses
of glutamate. Elevation of CTZ concentration to 100 um did not
significantly change the shape of the currents (Fig. 84,B). Thus,
AMPAR channels in both types of interneurons have essentially
the same sensitivity to CTZ. With 2 msec glutamate pulses 50 um
CTZ increased current amplitudes similarly in both cell types and
slowed the current decays, however to a different extent (Fig.
8A4,B). Effects of CTZ on the paired-pulse ratio (PPR) measured
using a paired-pulse interval of 100 msec between two glutamate
pulses were also different. In bipolar cells in 50 um CTZ, the
change in PPR [defined by dividing the PPRs in CTZ by the PPRs
in control (PPR1,/PPR.)] was 1.96 = 0.26 (n = 4). Whereas in
multipolar cells it was 1.19 * 0.05 (n = 3) (Fig. 84). Thus, in
nucleated patches CTZ has a larger effect on PPR in bipolar cells
compared with multipolar cells. However, this is consistent with
the removal of desensitization by CTZ and attributed to the
difference in recovery time from desensitization, because in
patches from both cell types PPR in the presence of CTZ was
close to 1 (0.92 = 0.05 and 0.96 = 0.01 for bipolar and multipolar
cells, respectively). If AMPAR desensitization contributes to
synaptic depression, one would expect similar effects of CTZ on
PPD of EPSCs. In paired whole-cell recordings under control
conditions, repetitive stimulation (10 Hz) of presynaptic pyrami-
dal cells resulted in strong depression of EPSCs recorded from
either bipolar or multipolar target cells. In the presence of CTZ
(50 um) the PPD measured as the amplitude ratio of the second
divided by first EPSCs evoked in bipolar cells was strongly re-
duced (PPR.1,/PPR, = 1.94 = 0.61; n = 4); whereas in multi-
polar cells the effect on PPD was minimal (PPR.,/PPR, =
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Table 2. Functional properties of somatic AMPAR channels of layer 2/3 interneurons

Bipolar depressing cell

Multipolar depressing cell Bitufted facilitating cell

Pco/Pna 0.13 = 0.05 (n = 5)
rdeactivation 2.9 £ 0.3 msec (n = 12)
rdesensitization 45 = 0.3 msec (n = 5)

7, = 19 msec (30%)
7, = 556 msec (70%)

Recovery from desensitization

0.98 = 0.29 (n = 6)
27 = 0.2 msec (n = 5)
4.2 = 0.5 msec (n = 6)
7, = 21 msec (66%)

7, = 233 msec (34%)

1.16 = 0.25 (n = 10)
2.8 = 0.4 msec (n = 5)
10.0 = 2.5 msec (n = 5)
7, = 4.4 msec (55%)
7, = 37 msec (45%)
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Figure 6. Recovery from desensitization of AMPAR channels. 4, Over-
laid glutamate-evoked currents recorded using double-pulse protocol at
variable interpulse intervals in nucleated patches pulled from bipolar (top
traces) and multipolar (bottom traces) cells. Duration of glutamate (1 mm)
pulses was 2 msec. Membrane potential, —60 mV. B, Time course of
recovery from desensitization for the two types of interneurons measured
as specified in 4. Each point represents average of five to eight experi-
ments. Solid lines represent double exponential fits for the data points.

0.93 = 0.12; n = 4) (Fig. 8B). In both cell types CTZ had an effect
on desensitization of postsynaptic AMPARSs, as indicated by the
increased amplitude and longer decay times of EPSCs. It is
noteworthy that changes in the kinetics of EPSCs were different
in two cell types but consistent with those of the glutamate-
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Figure 7. Recovery from synaptic depression. 4, Time course of recovery
from depression of EPSPs in bipolar cells recorded using paired-pulse
stimulation of pyramidal cells at different interpulse intervals. B, The
same as in A for multipolar cells. Open symbols indicate recovery from
desensitization of the glutamate-evoked currents (I,/I,) for respective
cells taken from Figure 6. Solid lines represent double exponential fits for
the data points.

evoked currents in nucleated patches. Qualitatively similar effects
of CTZ on PPD were observed with 100 um CTZ and when
EPSPs instead of EPSCs were recorded (data not shown). Be-
cause sensitivity of the AMPARs to CTZ in bipolar and multi-
polar cells appeared to be the same (Fig. 84,B), the stronger
effects of CTZ on PPD in bipolar cells suggests that in these
synapses reduction of AMPAR desensitization reduced synaptic
depression.

Effects of AMPA and glutamate
For doing these experiments we considered the following. At
continuous presence of an agonist at low concentration there will
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Figure 8. Effects of cyclothiazide on AMPAR desensitization and synaptic depression. A4, Left, Overlaid glutamate-evoked currents recorded in the
same nucleated patch pulled from a bipolar cell in control (a), with 50 uM (b), and 100 uM (¢) CTZ. Duration of glutamate (1 mm) pulses was 50 msec.
Middle, Overlaid glutamate-evoked currents recorded using double pulse protocol at 100 msec interpulse interval in the same nucleated patch pulled from
a bipolar cell in control (d) and with 50 um CTZ (e). Duration of glutamate pulses was 2 msec. Membrane potential, —60 mV. Right, Pairwise
comparison of the current amplitude ratios (1,/I,) in control (open symbols) and in the presence of 50 um CTZ (closed symbols) recorded from four
nucleated patches. Connected symbols represent values obtained from the same patch. B, Same as in A for patches pulled from multipolar cells. C,
Representative recordings of EPSCs evoked in the same bipolar cell after 10 Hz stimulation of a presynaptic pyramidal cell in control (left) and after
application of 50 uMm CTZ into extracellular solution (middle). Pairwise comparison of the amplitude ratios (EPSC2/EPSC1) in control (open symbols)
and in the presence of CTZ (closed symbols) recorded from four cell pairs is shown on the right. Connected symbols represent values obtained from the

same cell pairs. D, Same as in C for EPSCs in target multipolar cells.

be a dynamic equilibrium between amount of desensitized and
nondesensitized channels. For the channels with a slow recovery
time from desensitization, this equilibrium will be shifted to a
smaller amount of channels free from desensitization at any given
point of time. Respectively, for the channels with a faster recov-
ery time from desensitization a larger portion of nondesensitized
channels will be available. Thus, for the channels with the slower
recovery it is expected that in the presence of low agonist con-
centration currents activated by high concentration of glutamate
will be reduced stronger compared with the control than those for
the channels with a faster recovery time. How will this affect PPD
in the two cases?

To understand effects of steady-state desensitization on PPD,
one has to realize the main difference between channel desensi-
tization produced by short pulse of high glutamate concentration
and that induced by continuous presence of low agonist concen-
tration. In the first case most of the channels undergo desensiti-
zation almost synchronously. Moreover, based on the curves
shown in Figure 6, one can easily predict percentage of channels
that will recover from desensitization and will be ready for acti-
vation at any given moment of time. However, the recovered
receptors will be always just a fraction of the same channel
population that has been activated and desensitized by the glu-
tamate pulse.

In the continuous presence of AMPA or glutamate at a low
concentration, the desensitization profile is absolutely different.
Because the low concentration of agonist activates channels asyn-
chronously, all subsequent steps (desensitization and recovery
from desensitization) will be desynchronized as well. This would
lead to the situation when at any time point some channels would
be ready for activation, some would be just about to recover from
desensitization, and some would be in the “deep desensitization.”
On the background of the low agonist concentration, a pulse of

high glutamate concentration applied at a given time point will hit
only the first recovered fraction of receptors and will not have any
effect on the state of the channels that have been desensitized or
are about to recover from desensitization. However, indepen-
dently of the presence or absence of glutamate pulse within a very
short time window the first available fraction desensitized by low
steady-state AMPA concentration will be substituted by those
channels that have been just about to recover from desensitiza-
tion. Thus, very shortly after the first glutamate application al-
most the same number of channels (except those that have not
been recovered from desensitization induced by the glutamate
pulse) will be available for activation. Therefore, in the presence
of the low agonist concentration paired-pulse desensitization will
not be determined by the time for recovery from desensitization
but partially by the fraction of the channels that are desensitized
by the first glutamate pulse. In case of AMPAR channels highly
sensitive to the steady-state desensitization, a brief glutamate
pulse activates only a small fraction of channels that are free from
steady-state desensitization (because most of the channels are
desensitized by continuously present AMPA, see above). There-
fore, the total current evoked by glutamate pulse at the following
time point will be affected to a lesser extent than in control
conditions in which all channels are desensitized by a glutamate
pulse. As a result for such channels in the presence of AMPA or
glutamate a smaller paired-pulse desensitization is expected than
in control. For the channels with a low sensitivity to steady-state
desensitization in the presence of AMPA the fraction the chan-
nels available for the first glutamate application is larger, and
therefore the effect of the glutamate application on paired-pulse
desensitization is much stronger and is close to that in control
conditions. Thus, if strong AMPAR desensitization and its slow
recovery play a role in PPD during synaptic transmission, we
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Figure 9. Effects of AMPA and glutamate on synaptic depression. 4, Glutamate-evoked currents recorded using double-pulse protocol at 100 msec
interpulse interval in nucleated patch pulled from a bipolar cell in control (leff) and in the presence of 50 nM AMPA (middle). Duration of glutamate
pulses was 2 msec. Membrane potential, —60 mV. Pairwise comparison of the current amplitude ratios (/,/I,) in control (open symbols) and in the
presence of 50 nMm AMPA (closed symbols) is shown on the right. Connected symbols represent values obtained from the same patch. B, Same as in 4 for
patches pulled from multipolar cells. C, Representative recordings of EPSCs evoked in the same bipolar cell after 10 Hz stimulation of a presynaptic
pyramidal cell in control (left) and in the presence of 50 nm AMPA in extracellular solution (middle). Pairwise comparison of the amplitude ratios
(EPSC2/EPSC1) in control (open symbols) and in the presence of 50 nm AMPA or 50 uM glutamate (closed symbols) is shown on the right. Connected
symbols represent values obtained from the same cell pairs. D, Same as in C for EPSCs in target multipolar cells.

might be able to detect this by comparing PPD in control and in
the presence of low agonist concentration.

We tested these ideas first in nucleated patches. In these series
of experiments we used 50 nm AMPA (or 50 um glutamate) for
conditioning desensitization. We used these concentrations of the
agonists because bath application of AMPA or glutamate at
concentrations higher than 100 nm for AMPA (or 100 um for
glutamate) caused measurable depolarization of cells. Control
experiments in nucleated patches showed that AMPAR channels
in bipolar cells were more sensitive to steady-state desensitization
than those in multipolar cells. In continuous presence of 50 nm
AMPA the amplitude of glutamate-induced current reduced to
34 + 2% of control (n = 3) in bipolar cells and to 71 = 1% of
control (n = 3) in multipolar cells. Accordingly, the PPR was
reduced stronger in patches from bipolar cells (PPR Ay pa/PPR.
= 1.68 = 0.02; n = 3) compared with that in multipolar cells
(PPRAMmpa/PPR, = 1.08 + 0.02; n = 3). In paired whole-cell
recordings AMPA (50 nm) applied to the bath solution reduced
substantially the amplitude of the first EPSC in bipolar cells (to
35 * 6% of control; n = 3) and to a lesser extent (60 = 9% of
control; n = 5) in multipolar cells. Accordingly, EPSCs recorded
from bipolar cells showed significant reduction of PPD at 10 Hz
stimulation (PPR\pa/PPR, = 2.26 = 0.41; n = 3), whereas in
multipolar cells it was virtually unaffected (PPR 4y pa/PPR, =
0.95 = 0.14; n = 5). Similar effects on PPD of EPSCs were
observed with 50 um extracellular glutamate (PPRg,,/PPR. was
1.84 £ 0.12, n = 5 and 092 = 0.09, n = 3, in bipolar and
multipolar cells, respectively) (Fig. 9). These data are in line with
a higher sensitivity to steady-state desensitization and a slower
recovery time from desensitization of AMPAR channels ex-
pressed in bipolar interneurons. Taken together these results
strongly suggest that in synapses between pyramidal and bipolar
cells the desensitization of AMPAR channels contributes to
synaptic depression. In comparison, in synapses between pyrami-
dal and multipolar cells the contribution of AMPAR desensiti-

zation to synaptic depression at the same given stimulation fre-
quency (10 Hz) appears to be negligible.

DISCUSSION

Identification of bipolar interneurons

We describe a new local feedback circuit in cortical layer 2/3
between pyramidal cells and bipolar interneurons. The bipolar
interneuron is innervated by axon collaterals of neighboring
pyramidal cells, and synapses show strong frequency-dependent
depression of EPSPs. In contrast, the GABA , receptor-mediated
IPSPs evoked in pyramids by bipolar cell stimulation have PPR
close to one, suggesting that the pyramid-to-bipolar synapses
determine the frequency-dependent properties of this feedback
circuit.

The bipolar interneurons described here as part of a feedback
circuit resemble closely one subtype (defined as IS VIPergic
interneurons by Porter et al., 1998) of neocortical bipolar cells
reported previously in rat cortical layers 2/3 and 5 (Kawaguchi
and Kubota, 1996; Porter et al., 1998; Cauli et al., 2000). They
have a comparable dendritic morphology and are immunoreac-
tive to VIP. In addition, the pattern of APs following somatic
current injection is characterized by an initial burst followed by a
more regular pattern of APs. They are excited by pyramids, and
unitary EPSPs show frequency-dependent depression. The func-
tional data available and the different experimental conditions
(e.g., temperature, intracellular solutions) do not allow a more
detailed comparison with VIP-positive IS cell subtypes (Porter et
al., 1998; Cauli et al., 2000).

Bipolar interneurons form a feedback circuit with
pyramidal neurons

The dendritic and axonal arbors of the bipolar cells described
here span the cortex in the vertical direction. Based on the
anatomy and on the functional properties, the pyramid-to-bipolar
connections identify a novel reciprocal pyramid-to-interneuron
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circuit in layer 2/3 additional to those described earlier (Reyes et
al., 1998). This circuit presumably reduces pyramidal cell excita-
tion in conjunction with direct thalamocortical afferents (Staiger
et al., 1996) under conditions of low levels of synchronous activ-
ity. Anatomical evidence shows that part of the VIPergic termi-
nals contact the dendrites of pyramidal cells (Peters, 1990), con-
sistent with our reconstructions of paired cells.

GluR channel properties

The properties of AMPAR channels in bipolar cells showed
striking differences compared with those expressed in other cor-
tical interneurons. First, unlike in bitufted and multipolar inter-
neurons the AMPAR channels in bipolar interneurons have a low
Ca?* permeability. High Ca®" permeability of AMPAR chan-
nels was found to be one of the common properties of interneu-
rons, whereas low Ca®* permeability was found mainly in prin-
cipal neurons (for review, see Jonas and Burnashev (1995). In this
respect, the bipolar VIP-positive interneurons resemble pyrami-
dal cells. Interestingly, Cauli et al. (2000) report high levels of
GluR-B subunit-specific mRNA in IS VIPergic cells. Second, the
AMPARS present in somata patches had a very slow time course
of recovery from desensitization, much slower than that previ-
ously described for nonpyramidal cells in rat neocortex (Hestrin,
1993; Angulo et al., 1997; Cauli et al., 1997). Although the
mechanisms that terminate synaptic currents are not known in
these synapses, comparable time courses of deactivation and
desensitization kinetics of glutamate-activated current suggest
that desensitization of AMPARs could contribute to this process.

Contribution of AMPAR channel desensitization to
frequency-dependent depression

In many neuronal connections, short-term synaptic depression is
thought to be attributable primarily to presynaptic mechanisms
such as depletion of vesicles at release sites, inactivation of the
release apparatus, or desensitization of the Ca?* sensor (for
review, see Zucker, 1994). A postsynaptic mechanism that could
contribute to the depression is GluR channel desensitization.
Desensitization properties of AMPARs can be modified geneti-
cally by alternative splicing and mRNA editing (Sommer et al.,
1990; Lomeli et al., 1994), and desensitization varies among
AMPARs consisting of different subunit combinations that are
expressed in different cell types (Mosbacher et al., 1994; Geiger et
al., 1995). In chick cochlear nucleus (Trussel et al., 1993; Otis et
al., 1996) and brainstem nucleus tractus solitarius neurons (Zhou
et al., 1997) desensitization of postsynaptic AMPARSs contributes
to synaptic depression.

Usually it is difficult to discriminate between relative contribu-
tion of presynaptic and postsynaptic sites to synaptic depression,
because in most cases presumably both sites are involved. In
neuronal circuits described in this paper two different target cells
have synaptic contacts with axons of the same projecting pyrami-
dal neuron. This is advantageous in several respects. First, it is
plausible to assume that presynaptic effects of the drugs used to
modify synaptic transmission are similar at the two types of
connections. Second, this allows us to make pairwise comparison
of two different synaptic connections in various experimental
conditions and find out a parameter that might be most relevant
for the observed differences. Finally, in this study we compared
data obtained from paired synaptic recordings with those ob-
tained for patches from the two identified target cells using fast
glutamate application approach.

Although the AMPAR channels expressed in bipolar and mul-
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tipolar cells of layer 2/3 have almost the same deactivation and
desensitization time course, the recovery from desensitization
was much slower in bipolar cells. In these, but not in multipolar
cells, extracellularly applied CTZ decreased depression, although
AMPAR channels in both cell types had the same sensitivity to
CTZ with respect to removal of desensitization. In some neuronal
connections CTZ, in addition to removal of desensitization of
AMPAR channels, also has presynaptic effects (Diamond and
Jahr, 1995; Isaacson and Walmsley, 1996; Bellingham and Walms-
ley, 1999; but see Choi et al., 2000) that may affect the PPR. In
CAL1 hippocampal neurons, for instance, CTZ potentiates release
and increases PPD (Diamond and Jahr, 1995). However, at the
endbulb of Held, a fast transmitting calyx-type of synapse in the
auditory pathway, CTZ reduces release and decreases PPD (Bel-
lingham and Walmsley, 1999). Thus, based on the results of the
effects of CTZ on EPSCs alone, one cannot unequivocally prove
a contribution of AMPAR desensitization to PPD. In our study,
however, CTZ had no or little effect on the PPR either of EPSCs
or glutamate-evoked whole-soma currents recorded from multi-
polar interneurons. This correlates with the comparatively fast
recovery from desensitization of the AMPAR channels in multi-
polar cells (Fig. 6). With 10 Hz stimulation most of the AMPARs
recovered from the desensitization induced by the AP or fast
glutamate application. Thus the effect of CTZ on PPD in bipolar
cells most likely reflects slow recovery from desensitization of
postsynaptic AMPARs, rather than a decrease of the release
probability, because such an effect would have been seen also in
the EPSCs recorded from multipolar cells having inputs from the
terminals of the same axon. Moreover, we restricted our study of
PPRs to 10 Hz stimulation, thus excluding at least one of the
described presynaptic effects of CTZ (Bellingham and Walmsley,
1999) that is not detected after 100 msec. Additional evidence in
favor of a contribution of AMPAR desensitization to PPD was
obtained from experiments with steady-state desensitization of
synaptic AMPAR channels. Steady-state desensitization of AM-
PARs reduced synaptic depression only in bipolar cells, which
express AMPAR channels highly sensitive to steady-state desen-
sitization. Thus, both the reduction of desensitization and induc-
tion of steady-state desensitization reduced depression in bipolar
cells but not in multipolar cells. Moreover, both actions had
comparable effects on the PPR for the currents measured in
patches, under conditions when any presynaptic effect is excluded.
These results strongly suggest that a substantial part of the syn-
aptic depression in bipolar cells occurring during repetitive stim-
ulation of pyramidal cells is attributable to the rapid and strong
desensitization of AMPAR channels and their slow recovery
from desensitization.

Function of bipolar cells in local inhibitory circuits of
cortical layer 2/3
The pyramid-to-bipolar cell circuit adds to two other reciprocal
local circuits that limit pyramidal cell activity in layer 2/3, the
pyramid-to-bitufted and the pyramid-to-multipolar circuits
(Reyes et al., 1998). The output of bipolar cells to pyramidal cells
is GABAergic with only a small frequency-dependent change in
inhibition. Presumably bipolar cells limit the AP output of pyra-
midal cells in layer 2/3 under conditions different from those when
the two other reciprocal circuits are active, because of differences
in the frequency dependence of transmission and because of the
different field span of their dendritic and axonal arbors.

Bipolar interneurons receive excitatory input from all cortical
layers because of the long vertical field span of their dendrites. In



Rozov et al. « Synaptic Depression by AMPAR Desensitization

addition, their axonal arbor extends into the infragranular layers
of a putative column. Bipolar cells may function as the main
inhibitory elements within the entire column, but operate only at
low stimulation frequencies. They act as a low-pass filter during
synchronous activity of pyramidal and thalamic cells, and in the
barrel cortex for example, would be turned off during repetitive
afferent activity, e.g., during 8 Hz “whisking” behavior of a
rodent.

The dendritic and axonal arbors of bitufted interneurons are
also vertically oriented. However, these cells receive facilitating
input from pyramids (Reyes et al., 1998). Here the feedback
inhibition increases with repetitive activation of pyramids. The
pyramid-to-bitufted synapse thus acts as a high-pass filter oper-
ating mostly during repetitive afferent input, e.g., during whisking
behavior recently shown to restrict the extent of the representa-
tional area of a whisker (Moore et al., 1999) in the barrel cortex.

What could be the difference in the inhibition of pyramidal
neurons by multipolar and bipolar interneurons? They both re-
ceive excitatory input from pyramids that show frequency-
dependent depression. One functional difference might be attrib-
utable to the difference in arborization of their dendrites and
axons. The field spread of multipolar cells dendrites and axons is
more restricted (Reyes et al., 1998). Therefore multipolar cells
may act more in individual layers e.g., in layer 2/3, whereas
bipolar cells may act throughout the neocortical layers because of
the vertical spread of their dendrites and axons.
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