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Introduction

Background
Stroke is a common acute neurovascular disorder 
that causes disabling long-term limitations to 
daily living activities. The most common conse-
quence of a stroke is motor deficit of variable 
degree,1 although nonmotor symptoms are also 
relevant and often equally disabling.2 To date, to 
the best of the authors’ knowledge, there is no 
validated treatment that is able to restore the 
impaired functions by a complete recovery of the 

damaged tissue. Indeed, stroke management 
basically consists of reducing the initial ischemia 
in the penumbra, preventing future complica-
tions, and promoting a functional recovery using 
physiotherapy, speech therapy, occupational 
therapy, and other conventional treatments.3,4

Ischemic damage is associated with significant 
metabolic and electrophysiological changes in 
cells and neural networks involved in the affected 
area. From a pure electrophysiological perspec-
tive, however, beyond the affected area, there is a 
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local shift in the balance between the inhibition 
and excitation of both the affected and contralat-
eral hemisphere, consisting of increased excitabil-
ity and disinhibition (reduced activity of the 
inhibitory circuits).3,5 In addition, subcortical 
areas and spinal regions may be altered.3,5 In par-
ticular, the role of the uninjured hemisphere 
seems to be of utmost significance in post-stroke 
clinical and functional recovery.

Different theoretical models have been proposed to 
explain the adaptive response of the brain to acute 
vascular damage. According to the vicariation 
model, the activity of the unaffected hemisphere 
contributes to the functional recovery after a stroke 
through the replacement of the lost functions of the 
affected areas. The interhemispheric competition 
model considers the presence of mutual inhibition 
between the hemispheres, and the damage caused 
by a stroke disrupts this balance, thus producing a 
reduced inhibition of the unaffected hemisphere by 
the affected side. This results in increased inhibi-
tion of the affected hemisphere by the unaffected 
side. More recently, a new model, called bimodal 
balance recovery, has been proposed.3,5 It intro-
duces the concept of a structural reserve, which 
describes the extent to which the nondamaged neu-
ral pathways contribute to the clinical recovery. 
The structural reserve determines the prevalence of 
the interhemispheric imbalance over vicariation. 
When the structural reserve is high, the interhemi-
spheric competition model can predict the recovery 
better than the vicariation model, and vice versa.3

Repetitive transcranial magnetic stimulation
One of the proposed interventions to improve 
stroke recovery, by the induction of neuromodula-
tion phenomena, is based on methods of noninva-
sive brain stimulation. Among them, transcranial 
magnetic stimulation (TMS) is a feasible and 
painless neurophysiological technique widely used 
for diagnostic, prognostic, research, and, when 
applied repetitively, therapeutic purposes.6-9 By 
electromagnetic induction, TMS generates sub or 
suprathreshold currents in the human cortex in 
vivo and in real time.10,11

The most common stimulation site is the primary 
motor cortex (M1), that generates motor evoked 
potentials (MEPs) recorded from the contralat-
eral muscles through surface electromyography 
electrodes.11 The intensity of TMS, measured as 
a percentage of the maximal output of the 

stimulator, is tailored to each patient based on the 
motor threshold (MT) of excitability. Resting 
MT (rMT) is found when the target muscle is at 
rest, it is defined as the minimal intensity of M1 
stimulation required to elicit an electromyogra-
phy response with a peak-to-peak ampli-
tude > 50 µV in at least 5 out of 10 consecutive 
trials.11 Alternatively TMS MTAT 2.0 software 
(http://www.clinicalresearcher.org/software.htm) 
is a free tool for TMS researchers and practition-
ers. It provides four adaptive methods based on 
threshold-tracking algorithms with the parameter 
estimation by sequential testing, using the maxi-
mum-likelihood strategy for estimating MTs. 
Active MT (aMT) is obtained during a tonic con-
traction of the target muscle at approximately 
20% of the maximal muscular strength.11

The rMT is considered a basic parameter in pro-
viding the global excitation state of a central core 
of M1 neurons.11 Accordingly, rMT is increased 
by drugs blocking the voltage-gated sodium chan-
nels, where the same drugs may not have an effect 
on the gamma-aminobutyric acid (GABA)-ergic 
functions. In contrast, rMT is reduced by drugs 
increasing glutamatergic transmission not medi-
ated by the N-methyl-D-aspartate (NMDA) 
receptors, suggesting that rMT reflects both 
neuronal membrane excitability and non-NMDA 
receptor glutamatergic neurotransmission.12 
Finally, the MT increases, being often undetecta-
ble, when a substantial portion of M1 or the cor-
tico-spinal tract is damaged (i.e. by stroke or motor 
neuron disease), and decreases when the motor 
pathway is hyperexcitable (such as epilepsy).13

Repetitive (rTMS) is a specific stimulation para-
digm characterized by the administration of a 
sequence of consecutive stimuli on the same cortical 
region, at different frequencies and inter sequence 
intervals. As known, rTMS can transiently modu-
late the excitability of the stimulated cortex, with 
both local and remote effects outlasting the stimula-
tion period. Conventional rTMS modalities include 
high-frequency (HF-rTMS) stimulation (>1 Hz) 
and low-frequency (LF-rTMS) stimulation 
(⩽1 Hz).11 High-frequency stimulation typically 
increases motor cortex excitability of the stimulated 
area, whereas low-frequency stimulation usually 
produces a decrease in excitability.14 The mecha-
nisms by which rTMS modulates the brain are 
rather complex, although they seem to be related to 
the phenomena of long-term potentiation (LTP) 
and long-term depression (LTD).15
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When applied after a stroke, rTMS should ideally 
be able to suppress the so called ‘maladaptive 
plasticity’16,17 or to enhance the adaptive plastic-
ity during rehabilitation. These goals can be 
achieved by modulating the local cortical excita-
bility or modifying connectivity within the neu-
ronal networks.10

rTMS in stroke rehabilitation: an overview
According to the latest International Federation of 
Clinical Neurophysiology (IFCN) guidelines on 
the therapeutic use of rTMS,10 there is a possible 
effect of LF-rTMS of the contralesional motor 
cortex in post-acute motor stroke, and a probable 
effect in chronic motor stroke. An effect of 
HF-rTMS on the ipsilesional motor cortex in post-
acute and chronic motor stroke is also possible.

The potential role of rTMS in gross motor function 
recovery after a stroke has been assessed in a recent 
comprehensive systematic review of 70 studies by 
Dionisio and colleagues.18 The majority of the pub-
lications reviewed report a role of rTMS in improv-
ing motor function, although some randomized 
controlled trials (RCTs) were not able to confirm 
this result,19–23 as shown by a recent large rand-
omized, sham-controlled, clinical trial of navigated 
LF-rTMS.24 It has also been suggested that rTMS 
can specifically improve manual dexterity,10 which 
is defined as the ability to coordinate the fingers and 
efficiently manipulate objects, and is of crucial 
importance for daily living activities.25 Notably, 
most of the studies focused on motor impairment in 
the upper limbs, whereas limited data is available on 
the lower limbs.18 Walking and balance are fre-
quently impaired in stroke patients and significantly 
affect the quality of life (QoL),26,27 and rTMS might 
represent a valid aid in the recovery of these func-
tions.28,29 Spasticity is another common complica-
tion after a stroke, consisting of a velocity-dependent 
increase of muscular tone,30 and for which rTMS 
has been proposed as a rehabilitation tool.31

Dysphagia is highly common in stroke patients, it 
impairs the global clinical recovery, and predis-
poses to complications.32 It has been pointed out 
that rTMS targeting the M1 area representing the 
muscles involved in swallowing may contribute to 
the treatment of post-stroke dysphagia.33

Nonmotor deficit is also a relevant post-stroke dis-
ability that negatively impacts the QoL. Aphasia is 
a very common consequence of stroke, affecting 

approximately 30% of stroke survivors and signifi-
cantly limiting rehabilitation.34 According to the 
IFCN guidelines, to date, there is no recommen-
dation for LF-rTMS of the contralesional right 
inferior frontal gyrus (IFG). Similarly, no recom-
mendation for HF-rTMS or intermittent theta 
burst stimulation (TBS) of the ipsilesional left 
IFG or dorsolateral prefrontal cortex (DLPFC) in 
Broca’s aphasia has been currently approved.10 
The same is true for LF-rTMS of the right supe-
rior temporal gyrus in Wernicke’s aphasia.10

Neglect is the incapacity to respond to tactile or 
visual contralateral stimuli that are not caused by 
a sensory-motor deficit.35 Although hard to treat, 
rTMS has been proposed as a tool for neglect 
rehabilitation.36 However, the IFCN guidelines 
state that currently there is no recommendation 
for LF-rTMS of the contralesional left posterior 
parietal cortex, or for HF-rTMS of the ipsile-
sional right posterior parietal cortex.10 In a recent 
systematic review, most of the included studies 
supported the use of TMS for the rehabilitation 
of aphasia, dysphagia, and neglect, although the 
heterogeneity of stimulation protocols did not 
allow definitive conclusions to be drawn.37

Post-stroke depression is a relevant complication 
of cerebrovascular diseases.38 The role of rTMS 
in the management of major depressive disorders 
is well documented,39,40 and currently, rTMS is 
internationally approved and indicated for the 
treatment of major depression in adults with anti-
depressant medication resistance, and in those 
with a recurrent course of illness, or in cases of 
moderate-to-severe disease severity.39 In major 
depression disorders, according to the IFCN 
guidelines, there is a clear antidepressant effect of 
HF-rTMS over the left DLPFC, a probable anti-
depressant effect of LF-rTMS on the right 
DLPFC, and probably no differential antidepres-
sant effect between right LF-rTMS and left 
HF-rTMS. Moreover, there is currently no rec-
ommendation for bilateral stimulation combining 
HF-rTMS of the left DLPFC and LF-rTMS of 
the right DLPFC. The mentioned guidelines also 
state that the antidepressant effect when stimulat-
ing DLPFC is probably additive, and possibly 
potentiating, to the efficacy of antidepressant 
drugs.10 However, no specific recommendation 
currently addresses the use of rTMS in post-
stroke depression. Recently, rTMS has been pro-
posed as a treatment option for the late-life 
depression associated with chronic subcortical 
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ischemic vascular disease, the so called ‘vascular 
depression’.41–44 Three studies tested rTMS effi-
cacy in vascular depression (one was a follow-up 
study with citalopram). Although presenting pos-
itive findings, further trials should refine clinical 
and diagnostic criteria to assess its impact on 
antidepressant efficacy.45

Approximately 25–30% of stroke patients develop 
an immediate or delayed cognitive impairment or 
an overt picture of vascular dementia.46 There is 
evidence of an overall positive effect on cognitive 
function for both LF-rTMS47 and HF-rTMS,48 
supported by studies on experimental models of 
vascular dementia.49–52 Nonetheless, the few trials 
examining the effect on stroke-related cognitive 
deficit produced mixed results.53–56 In particular, 
two studies found no effect on cognition when 
stimulating the left DLPFC at 1 Hz and 10 Hz,53,54 
whereas a pilot study found a positive effect on 
the Stroop interference test with HF-rTMS over 
the left DLPFC in patients with vascular cogni-
tive impairment without dementia.55 However, 
this finding was not replicated in a follow-up 
study.56 To summarize, rTMS can induce benefi-
cial effects on specific cognitive domains, although 
data are limited and their clinical significance 
needs to be further validated. Major challenges 
exist in terms of appropriate patient selection and 
optimization of the stimulation protocols.57

Central post-stroke pain (CPSP) is the pain 
resulting from an ischemic lesion of the central 
nervous system.58 It represents a relatively com-
mon complication after a stroke, although it is 
often under-recognized and, therefore, under-
treated.59 According to the IFCN guidelines for 
the use of rTMS in the treatment of neuropathic 
pain, there is a definite analgesic effect of 
HF-rTMS of contralateral M1 to the pain side, 
and LF-rTMS of contralateral M1 to the pain 
side is probably ineffective. In addition, there is 
currently no recommendation for cortical targets 
other than contralateral M1 to the pain side.10 
Notably, rTMS might be effective in drug-resist-
ant CPSP patients.58 A recent systematic review 
that included nine HF-rTMS studies suggested 
an effect on CPSP relief, but also underlined the 
insufficient quality of the studies considered.60

Study objective
In this article, we aim to provide an up-to-date 
overview of the most recent evidence on the 

efficacy of rTMS in the rehabilitation of stroke 
patients. Although several studies have been pub-
lished, a conclusive statement supporting a sys-
tematic use of rTMS in the multifaceted clinical 
aspects of stroke rehabilitation is still lacking.

Methods

Search strategy
A literature review was performed on all the meta-
analyses on conventional rTMS protocols in post-
stroke rehabilitation studies indexed in PubMed, 
Cochrane Library, Scopus, and Web of Science, 
from database inception until 31 July 2019. We 
focused on the recovery of motor function, man-
ual dexterity, walking and balance, spasticity, 
dysphagia, aphasia, unilateral neglect, post-stroke 
depression, vascular depression, cognitive func-
tion, and CPSP.

Search queries and results
Pubmed: ((“transcranial magnetic stimulation” 
[MeSH Terms] OR (“transcranial”[All Fields] 
AND “magnetic”[All Fields] AND “stimulation” 
[All Fields]) OR “transcranial magnetic 
stimulation”[All Fields] OR (“repetitive”[All 
Fields] AND “transcranial”[All Fields] AND 
“magnetic”[All Fields] AND “stimulation”[All 
Fields]) OR “repetitive transcranial magnetic 
stimulation”[All Fields]) AND (“stroke”[MeSH 
Terms] OR “stroke”[All Fields])) AND ((Meta-
Analysis[ptyp] OR systematic[sb]) AND 
“humans”[MeSH Terms] AND English[lang]). 
Results: 59.

Cochrane Database of Systematic Reviews: “tran-
scranial magnetic stimulation stroke in Title 
Abstract Keyword”. Results: 4.

Scopus: TITLE-ABS-KEY (“repetitive transcra-
nial magnetic stimulation” AND stroke AND 
meta-analysis) AND DOCTYPE (ar OR re) 
AND (LIMIT-TO (LANGUAGE, “English”). 
Results: 46.

Web of Science Core Collection: TOPIC: (“repeti-
tive transcranial magnetic stimulation” AND stroke 
AND meta-analysis) Refined by: LANGUAGES: 
(ENGLISH) AND DOCUMENT TYPES: 
(REVIEW OR ARTICLE) Timespan: All years. 
Indexes: SCI-EXPANDED, SSCI, A&HCI, 
CPCI-S, CPCI-SSH, ESCI. Results: 30.
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Study selection
To be included, a study had to: Use conventional 
rTMS protocols for post-stroke patients recov-
ery, it is mentioning that studies using other 
stimulation techniques in addition to rTMS were 
included only when rTMS data could be inde-
pendently extracted from the meta-analysis, an 
exception was made for the studies where data 
from other techniques (TBS) were pooled in the 
same meta-analysis but represented only a minor-
ity of the total amount of the analyzed studies. 
Describe a systematic process for searching for 
and selecting relevant articles. Perform the statis-
tical analysis.

Two independent authors (FF and GL) screened 
all titles and abstracts of the identified publica-
tions. Disagreements were solved by the consensus 
of a third author (MP). Duplicated entries, 

retracted publications, studies on other diseases or 
conditions different from stroke, works on animals, 
studies without statistical analysis, non-English 
written papers, publications that are not research 
studies (i.e. commentaries, letters, editorials, 
reviews, etc.), and any other study that did not fit 
within the scope of this review, were excluded. 
Publications listed in the references were also 
reviewed in search of more data (Figure 1).

Data extraction
Two authors (RB and GP) independently 
extracted the following information from the 
retrieved meta-analyses: type and number of 
studies included, stimulation parameters and set-
tings, main findings. Disagreements were solved 
by a third author (AAG). The relevant data are 
summarized in Table 1.

Figure 1.  Flow diagram showing the search strategy, the number of records identified, the excluded articles, 
and the studies eventually included.61
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Results
A total of 139 results were originally found. Of 
these, 32 peer reviewed publications were selected 
according to the above-mentioned inclusion and 
exclusion criteria (Figure 1). The publication 
year ranges from 2009 to 2019.

In detail, the results included the following: seven 
studies for motor function,62–68 three for manual 
dexterity,69–71 three for walking and balance,72–74 
three for spasticity,64,75,76 six for dysphagia,77–82 five 
for aphasia,83–87 three for unilateral neglect,88–90 
three for post-stroke depression and vascular 
depression,66,91,92 one for cognitive function,66 and 
one for CPSP.93 The study by Graef and col-
leagues64 included data on both motor function 
and spasticity and, therefore, the results were inde-
pendently considered for both categories. Given 
that the meta-analyses specifically addressing the 
treatment of cognitive function were not found, 
data were extracted from a subanalysis of the study 
by Hao and coworkers.66 The same study also 
included a subanalysis on post-stroke depression.66

Motor function
Overall, Tang found a positive effect of rTMS for 
upper limb motor function, and in particular for 
LF-rTMS over the unaffected M1 area in acute 
stroke patients.68 Hsu and colleagues found an 
overall positive effect of rTMS on motor func-
tion, with more pronounced results in patients 
with subcortical lesions.67

Interestingly, LF-rTMS applied over the unaf-
fected hemisphere appears to be more beneficial 
than HF-rTMS over the affected hemisphere.67 A 
meta-analysis focusing on LF-rTMS applied over 
the contralesional hemisphere also found a posi-
tive short- and long-term effects on upper limb 
motor recovery.63 Nevertheless, Kang and col-
leagues investigated the effect of rTMS on paretic 
limb strength during the acute, subacute, and 
chronic phases of the stroke. Their results show a 
positive effect in all stroke phases, either for 
HF-rTMS applied over the ipsilesional M1 or for 
LF-rTMS over the contralesional hemisphere.65 
Recently, Xiang and colleagues reported a posi-
tive effect of rTMS (in particular, by using 1 Hz 
stimulation) on limb motor recovery and activi-
ties of daily living (ADL). This effect was more 
evident for acute and subcortical strokes, as well 
as after seven sessions of stimulation, whereas it 
decreased with more prolonged treatments.62

Finally, it is worth mentioning that some meta-
analyses failed to prove a significant impact of 
rTMS in stroke recovery. Graef and colleagues 
did not observe substantial differences when 
rTMS was combined with upper limb training 
versus upper limb training alone.64 Hao and col-
leagues found no effect of rTMS on the Barthel 
index score, motor function, Hamilton Depression 
Rating Scale (HDRS), and cognitive status, 
regardless of different frequencies of stimulation 
or stroke duration.66

Overall, there is currently conflicting evidence 
regarding the efficacy of rTMS in motor recovery. 
LF-rTMS applied over the unaffected hemi-
sphere seems to be the most promising protocol, 
although further studies are required.

Manual dexterity
Le and colleagues found a positive effect of rTMS 
on finger motor ability and hand function.71 A 
meta-analysis of studies using LF-rTMS, 
HF-rTMS, and TBS for the recovery of the upper 
limb found a significant short- and long-term 
improvement in the outcome measures of motor 
function. Interestingly, the authors reported the 
time-dependent effectiveness of rTMS, with a 
descending order from acute to subacute until the 
chronic phase of a stroke. Finally, they also sug-
gested a number-dependent effect of rTMS ses-
sions on the manual dexterity recovery, with the 
most beneficial effect obtained after five sessions.

Regarding the stroke location, rTMS seems to be 
more effective in those patients with subcortical 
lesions with respect to other cerebral sites.70 On 
the other hand, a more recent meta-analysis, 
focusing exclusively on studies considering man-
ual dexterity as a specific outcome measure after 
rTMS, shows a significant effect in improving 
hand dexterity in patients with mild-to-moderate 
chronic stroke.69

To summarize, the evidence available suggests a 
positive effect of rTMS in manual dexterity recov-
ery, but the optimal timing of administration 
remains uncertain.

Walking and balance
A recent meta-analysis including nine rTMS 
studies (seven HF-rTMS and two LF-rTMS) 
showed a significant treatment effect on walking 
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speed for ipsilesional HF-rTMS but not for con-
tralesional or bilateral stimulation. In addition, 
no improvement in balance or motor function 
was observed.74 Similarly, a further meta-analysis 
showed a positive effect of rTMS combined with 
other rehabilitation therapies on gait speed and 
walking cadence in patients with acute, subacute, 
and chronic stroke.73 Conversely, Tung and col-
leagues found a positive effect of rTMS on lower 
limb motor function, regardless of the stimulation 
frequency or stroke phase.72

To date, studies specifically addressing the walk-
ing and balance recovery are too limited to pro-
vide a definitive conclusion, although the effects 
reported on walking speed are encouraging.

Spasticity
McIntyre and colleagues evaluated the effective-
ness of rTMS in improving post-stroke spasticity 
by taking into consideration the modified 
Ashworth scale as the main outcome measure.75 
All of the studies included used LF-rTMS (1 Hz) 
to inhibit the contralesional hemisphere,75 apart 
from one, that used bihemispheric stimulation by 
combining 1 Hz and 10 Hz.94 Among the 10 
uncontrolled studies considered in the meta-anal-
ysis, a significant improvement of spasticity at the 
elbow, wrist, and finger flexors were found. 
However, the two only RCTs did not show a sig-
nificant effect for the wrist.75

The same two RCTs31,95 were previously included 
in a meta-analysis by Graef and colleagues, who 
did not conclude there was any positive effect on 
spasticity after rTMS combined with upper limb 
training versus upper limb training alone.64 Finally, 
in the meta-analysis of three studies by Korzhova 
and colleagues, no significant difference between 
LF-rTMS versus sham stimulation over M1 of the 
unaffected hemisphere was detected.76

Based on the limited available data, there is no 
current evidence to support the role of rTMS in 
the treatment of spasticity.

Dysphagia
Two meta-analyses found an overall positive 
effect82 and a positive effect for the stimulation 
of the unaffected side,80 respectively. Momosaki 
and colleagues observed a positive effect of 
rTMS on the dysphagia severity rating scale and 

the penetration aspiration scale.81 Bath and col-
leagues found an improvement of swallowing 
but no effect on case fatality or penetration aspi-
ration scale.77

Another recent meta-analysis included six 
RCTs.45 The result showed a significant improve-
ment in dysphagia, although HF-rTMS seems to 
be more effective than LF-rTMS. Regarding the 
stimulation site, an effect for bilateral or contral-
esional stimulation was found, but not for ipsile-
sional stimulation. The therapeutic effect lasts 
for at least 4 weeks after the procedure.79 Finally, 
rTMS seems to be the most effective, among the 
other neuromodulation techniques (transcranial 
direct current stimulation, surface neuromuscu-
lar electrical stimulation, and pharyngeal electri-
cal stimulation), for the treatment of acute and 
subacute post-stroke dysphagia.78

In brief, rTMS seems to be a promising neuro-
modulation technique for the treatment of post-
stroke dysphagia, although the optimal stimulation 
setting needs to be defined.

Aphasia
A recent meta-analysis including eight studies 
(one of which used TBS and another one a com-
bination of HF-rTMS and LF-rTMS) found a 
pooled positive effect on aphasia after treatment 
in both subacute and chronic stroke patients.84 
The efficacy of rTMS on naming in subacute and 
chronic patients is also supported by Bucur and 
Papagno, who confirmed that the positive effect 
was maintained over time.83 In previous work, a 
positive effect on the accuracy of naming was 
observed after LF-rTMS over the right IFG.85 Li 
and colleagues found a positive effect of 
LF-rTMS on naming but not on repetition and 
comprehension,86 whereas Ren and colleagues 
showed an effect on severity of impairment, as 
well as in naming, repetition, writing, and 
comprehension.87

In conclusion, the evidence seems to support the 
role of LF-rTMS over the unaffected side in the 
recovery of post-stroke aphasia, with more evi-
dent beneficial effects on naming.

Unilateral neglect
A recent meta-analysis including six rTMS 
studies showed an improvement of unilateral 
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neglect outcome measures, with an immediate 
and long-lasting effect. Both LF-rTMS and 
HF-rTMS exerted significant results, either 
applied on the ipsilesional or the contralesional 
site, although the effect was more pronounced 
for ipsilesional stimulation and for HF-rTMS.89 
Similar results after both excitatory and inhibi-
tory stimulation were found by another meta-
analysis that considered the same studies.90 
According to the most recent meta-analysis on 
the same topic, the benefits of rTMS seem to be 
particularly evident when 1 Hz frequency of 
stimulation is used.88

Although there are promising results, the efficacy 
of rTMS in the treatment of neglect remains con-
troversial, particularly in terms of the best stimu-
lation parameters to be used.

Post-stroke depression and vascular 
depression
In their meta-analysis including two RCTs, Hao 
and colleagues found no effect on the HDRS 
score.66 In contrast, a large meta-analysis of 22 
RCTs found a significant clinical response after 
rTMS, as indexed by a significant reduction of 
HDRS score. However, a clear relationship with 
the stimulation site and frequency, as well as with 
the disease duration, the conventional treatment, 
the type of intervention used as a control, and the 
total number of sessions, was not found.92 
Regarding the stimulation frequency, the efficacy 
of 10 Hz stimulation over the left DLPFC was 
supported by a recent meta-analysis including 
only HF-rTMS studies.91

In short, the evidence seems to support the effi-
cacy of rTMS (particularly HF-rTMS) over the 
left DLPFC for post-stroke depression. The 
widely proved efficacy of rTMS for the treat-
ment of major depression disorder encourages 
further trials.

Cognitive function
In their meta-analysis including two RCTs,96,97 
Hao and colleagues found no significant effect on 
global cognitive functioning indexed by the Mini 
Mental State Examination score.66 Therefore, 
data regarding the efficacy of rTMS on cognitive 
functions is currently lacking.

CPSP
A meta-analysis including five HF-rTMS studies 
found an analgesic effect in terms of a significant 
decrease of the score at the pain visual analog 
scale compared with the sham procedure. The 
effect was greater with multiple stimulation ses-
sions and within a frequency range of 1 and 
10 Hz.93

To date, given the limited number of low-quality 
studies available, no recommendation can be 
made regarding the role of rTMS for post-stroke 
pain treatment.

Discussion

General considerations
The rationale for using rTMS in stroke recovery 
is based on the neuroplastic effects that it exerts 
on altered electrophysiological mechanisms 
including reduced intracortical inhibition and 
increased transcallosal inhibition of the healthy 
hemisphere over the damaged side.98 Therefore, 
the therapeutic approaches with rTMS, in accord-
ance with the interhemispheric competition 
model, are targeted at the normalization of the 
imbalance between the affected and the unaf-
fected hemispheres.3,99,100 This can be reached 
either by delivering HF-rTMS on the ipsilesional 
hemisphere (to upregulate the level of cortical 
excitability), or by LF-rTMS to the contralesional 
hemisphere (thus, downregulating the effect that 
it exerts on the ipsilesional cortex).98

In this context, the selection of the cortical targets is 
based on the pathophysiological mechanisms that 
are known to be involved. Functional magnetic 
resonance imaging (fMRI) studies have demon-
strated the role of both ipsilesional and contrale-
sional M1 areas after a stroke, suggesting a 
reduction of functional connectivity between the 
areas related to the severity of motor impairment. 
On the other hand, stronger functional connectivity 
between M1 and other brain areas is associated 
with better motor recovery.101,102 Notably, although 
conventional fMRI is limited in providing informa-
tion on cortical locations, which are active during 
motor movements, sensory stimuli, or cognitive 
tasks, resting-state fMRI is a recently evolving 
method from which functional connectivity 
between distant brain regions is extracted based on 
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low-frequency fluctuations.101 In particular, 
Grefkes and colleagues used the dynamic causal 
modeling, which is a novel approach to capture the 
intrinsic and task-dependent influences that a par-
ticular area exerts over the activity of another area, 
known as ‘effective connectivity’.102 Based on these 
assumptions, M1 was confirmed to be the most 
common stimulation site when aiming to treat 
motor impairment and spasticity.

The same principle applies to dysphagia, although 
deglutition is physiologically mediated by bilat-
eral innervation, with a prevalence by the domi-
nant hemisphere. In dysphagia patients, the 
increasing contralesional activity might help 
recovery.33,80 Nevertheless, hemispheric domi-
nance for swallowing can vary among individuals, 
it is not necessarily the same for language.

Similarly, in patients with aphasia, fMRI demon-
strated hyperactivity of the homologous of the 
Broca’s area in the right hemisphere. This activity 
was associated with poor recovery,103,104 thus pro-
viding the rationale for an rTMS-mediated sup-
pression of the right hemisphere activity.105

Hemispatial neglect is typically attributed to a 
lesion of the right hemisphere, especially involv-
ing the parietal cortex. In normal patients, each 
hemisphere is responsible for the attention 
toward the contralateral space, a mechanism 
normally balanced by reciprocal interhemi-
spheric inhibition. Following a stroke, the 
impaired activity of the right hemisphere favors 
the disinhibition of the contralateral side. 
Therefore, the increased activity of the left hemi-
sphere shifts the attention to the right space of 
the patient, thus further increasing the inhibition 
over the affected side.106 Accordingly, patients 
with neglect show increased cortical excitability 
of the left parietal regions.107 In this scenario, 
inhibitory or excitatory rTMS, applied over the 
left or right parietal cortex respectively, can 
modulate the excitability of the regions involved 
in post-stroke neglect.89,106

In depressed patients, many studies pointed out a 
hypometabolism/hypoexcitability of the left fron-
tal region and a hypermetabolism/hyperexcitabil-
ity of the right frontal region.108,109 The DLPFC 
is easy to access with rTMS, and its crucial 
involvement in mood/affect regulation and execu-
tive functions makes it an ideal target for neuro-
modulation interventions.10,110

Finally, the rationale for the application of rTMS 
in the treatment of chronic pain is based on the 
efficacy of the epidural stimulation of the motor 
cortex in treating drug-resistant neuropathic 
pain.111 Repetitive TMS on M1 is capable of 
modulating pain perception, as demonstrated by 
experimental models of pain.112 Although the 
exact mechanisms are not known, an fMRI study 
in CPSP patients showed that rTMS can influ-
ence the activity of the secondary somatosensory 
cortex, insula, prefrontal cortex, and putamen, 
suggesting a more widespread modulation of a 
complex pain network.113

Proposed pathomechanisms
Regardless of the clinical manifestation of the 
specific neuroanatomical region involved, the 
human brain typically shows a wide spectrum of 
innate capacities to react as a dynamic system, in 
both physiological and pathological conditions, 
with the final goal to plastically modulate the 
characteristics of both single cells and neural cir-
cuits.114 These phenomena are recognized under 
the umbrella term of ‘neuroplasticity’, defined as 
the ability of the brain to reorganize itself, with a 
long-lasting remodeling of neural communica-
tion.115 The recovery of post-stroke motor deficit 
probably requires long and complex motor learn-
ing processes,116 which are mediated at a molecu-
lar level by mechanisms of LTP and LTD.117 
These basically consist in long-lasting modifica-
tions of the synaptic activity, mainly mediated by 
α-amino-3-hydroxy-5-methyl-4-isoxazolepro
pionic acid (AMPA) and NMDA receptors and 
by GABAergic transmission.

In this context, rTMS is able to reliably mimic the 
experimental paradigms inducing LTD and LTP 
phenomena, thus producing changes in MEPs 
amplitude that outlast the stimulation applica-
tion.118 In particular, LF-rTMS inhibits cortical 
excitability,119 whereas HF-rTMS produces the 
opposite effect.120 The NMDA-dependency of 
the long-lasting effects of rTMS is suggested by 
some neuropharmacological studies: memantine, 
a well-known NMDA antagonist, blocks the 
effects of TBS.121

However, rTMS exerts more diffuse effects, 
including the induction of specific structural 
changes within the cortex and the modification of 
functional connections between different and 
remote areas of the brain, eventually modulating 
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network oscillations.15,118 Furthermore, rTMS 
can trigger the release of different neuromodula-
tors (such as acetylcholine, dopamine, norepi-
nephrine, and serotonin),122,123 promote the 
induction of neurotrophic factors,124–126 and 
modulate the expression of genes such as 
c-Fos.127,128 Of particular interest, a 10 Hz stimu-
lation of the left DLPFC seems to modulate 
dopamine release, an effect that is not observed 
during stimulation of the right DLPFC.129 It is 
important to note that susceptibility to the neuro-
plasticity-related modification induced by rTMS 
might be genetically encoded, thus making the 
response to treatment customized and possibly 
predictable.130–132

Finally, the modulation of neural activity induced 
by rTMS might also result from dynamic changes 
of the blood flow through specific cerebral 
regions, including those implicated in cognition 
and mood regulation.133

Safety and controversies
Overall, based on the data reviewed, rTMS is 
shown to be safe, painless, and generally well-
tolerated, except for a few patients experiencing 
mild side effects, such as transient headache and 
anxiety. Nonetheless, before undergoing any 
rTMS procedure, candidate patients should 
always be screened according to the safety guide-
lines134 to rule out possible contraindications 
(e.g. history of seizures, head trauma, syncope, 
pacemaker, and medical implants or devices, 
pregnancy). The risk/benefit ratio of the proce-
dure should be carefully evaluated for each 
patient.

Regarding efficacy, with the exception of spastic-
ity (in which the evidence of benefit is not conclu-
sive yet) and cognitive impairment (for which 
data are limited), the current literature seems to 
agree on a positive effect of rTMS for all the other 
clinical applications of stroke. However, there is 
still uncertainty regarding the optimal protocols 
to follow, in terms of patient characteristic and 
stimulation settings, as briefly summarized in the 
following and reported in Table 1.

Stroke location.  Zhang,70 Hsu67 and Xiang62 
reported a more pronounced effect of rTMS on 
motor function recovery for subcortical stroke. 
However, it is still unclear whether rTMS should 
be set for the specific stroke site or not.

Stroke phase.  Shah-Basak84 and Bucur83 reported 
a positive effect of rTMS on aphasia in subacute 
and chronic stroke, whereas O’Brien found a pos-
itive effect on fine motor function in chronic 
stroke only.69 According to Zhang, the effective-
ness of rTMS on manual dexterity recovery fol-
lows a descending order from acute to subacute 
and chronic phase of stroke.70 On the other hand, 
Kang described a positive effect on motor func-
tion in acute, subacute, and chronic stroke,65 
whereas Tang68 and Xiang62 described more pro-
nounced effects for acute stroke compared with 
chronic stroke, whereas Hao found no effect 
regardless of the stroke phase.66 Vaz reported effi-
cacy in walking recovery in all stroke patients.73 
Still, the optimal timing of intervention remains 
controversial.

Stroke severity.  O’Brien described an effect on 
fine motor function in mild-to-moderate stroke,69 
although data on the correlation between stroke 
severity and rTMS efficacy are lacking.

Stimulation site.  As expected, M1 is the most 
common site for motor recovery, CPSP, and spas-
ticity, whereas the cortical area representing the 
muscles involved in deglutition is targeted in 
post-stroke dysphagia. The DLPFC is the most 
common target for depression, while the stimula-
tion areas proposed for neglect are parietal cortex 
areas three, four, and five. In post-stroke aphasia, 
rTMS is targeted to the pars triangularis, the pars 
opercularis, and the IFG. The most studied para-
digms usually consist of ipsilesional HF-rTMS or 
contralesional LF-rTMS, although some authors 
have proposed a combined approach that uses 
bilateral stimulation. A contralesional HF-rTMS 
has been also tested in dysphagic patients.79

Stimulation frequency.  Leung found a positive 
effect of HF-rTMS in CPSP, particularly in the 
frequency range > 1 Hz and ⩽ 10 Hz.93 HF-
rTMS over the unaffected side seems to be more 
effective than LF-rTMS for dysphagia.79 Both 
HF-rTMS and LF-rTMS seems to be effective in 
patients with unilateral neglect.88–90 The most 
used protocol for aphasic patients is LF-rTMS at 
1 Hz over the unaffected side. Ipsilesional HF-
rTMS appears to be the more effective for gait 
recovery,74 while LF-rTMS over the unaffected 
side seems to be more beneficial than HF-rTMS 
over the affected side for gross motor function 
recovery. HF-rTMS seems to be the most effec-
tive protocol for post-stroke depression. Overall, 
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this bulk of heterogeneity does not allow us to 
draw a definitive conclusion on the ideal stimula-
tion frequency.

Stimulation intensity.  As for the stimulation fre-
quency, there is great variability among the stud-
ies for the intensity of stimulation to be used, with 
values oscillating from below to well above the 
patient’s rMT. Suprathreshold upper intensities 
and frequencies are limited according to the safety 
guidelines.134 Therefore, the most appropriate 
stimulation intensity is still unclear.

Coil type. The type of coil been used in the studies 
analyzed was not always clearly stated. Moreover, 
when reported, significant heterogeneity of coil 
types was noted. These issues make the compari-
son of the obtained results rather challenging. To 
date, therefore, a clear recommendation regard-
ing the type of coil to be used cannot be reached.

Stimulation length.  Leng found a greater effect of 
rTMS on CPSP with repeated stimulations.93 
Zhang found a number of dependent effects of 
rTMS sessions on motor function, with a peak of 
efficacy after five sessions.70 Similarly, Xiang 
describes the best effects on motor function after 
seven sessions.62 However, the number of stimula-
tion sessions and the total length of treatment sig-
nificantly vary among the studies and, to date, there 
is no conclusive statement about this feature.

Long-term efficacy.  Liao observed that the effect 
of rTMS on dysphagia persisted for at least 4 
weeks.79 A long-lasting positive effect on unilat-
eral neglect was also found by Fan.89 Zhang 
described a long-term improvement in motor 
function.70 The effects of stimulation seem to be 
long-lasting for aphasia.83 Nonetheless, more data 
is needed to firmly establish the long-term effects 
of rTMS and to determine the best stimulation 
parameters to achieve consistent results.

Outcome measures. There is a large heterogeneity 
of the outcome measures in the studies consid-
ered, making the different interventions employed 
and the expected results difficult to compare. As 
known, an objective measure of the effectiveness 
of an intervention is crucial to translate the 
research results into clinical practice. Therefore, 
the outcome measures should be selected accord-
ing to the WHO International Classification of 
Functioning, Disability, and Health (ICF) in order 
to ensure comparability, reliability, and validity.135

Concomitant treatment. The difference between 
outcomes from TMS combined with conventional 
therapy versus TMS alone has to be addressed. 
Indeed, many of the studies reviewed do not report 
specific results on this aspect, and others do not 
separately consider the effect of the different ther-
apeutic interventions concomitantly performed.

Strengths and limitations
The strength of this review is that it comprehen-
sively summarizes the evidence from a large num-
ber of meta-analyses covering the impact of rTMS 
on the most common consequences of stroke. 
The main criticism is of the review is that data 
were extracted from meta-analyses rather than 
individual studies, although the meta-analyses 
provide the highest level of evidence. Another 
limitation is that, in addition to the conventional 
HF-rTMS and LF-rTMS, other protocols of 
repetitive stimulation can be set, such as TBS or 
the quadripulse stimulation, although this goes 
beyond the main goal of the present review. When 
a meta-analysis included both conventional 
rTMS and TBS, the results on rTMS were in 
most cases independently extracted, although in 
some cases data from both techniques were 
pooled. In these circumstances,62,67,69,70,84 the 
meta-analyses were eventually included given 
that TBS studies represented only a minority of 
the total results (Table 1). Finally, although the 
research methodology was systematic, this article 
cannot be considered as a systematic review 
because it provides a description of the studies 
but not a detailed evaluation of the quality of the 
studies themselves.

Conclusions and future perspectives
In combination, the evidence from the literature 
reviewed allows us to state that rTMS is a feasible 
nonpharmacological tool to assist the neuroreha-
bilitation of different motor and nonmotor clini-
cal manifestations of stroke. Integrated with other 
conventional rehabilitative modalities, rTMS 
might synergistically act by further enhancing the 
clinical recovery and the prognostic perspective of 
stroke survivors.

However, it is not possible to recommend a par-
ticular protocol at present. The significant heter-
ogeneity of the studies currently available, 
especially in terms of the protocol to be set and 
outcome measures that have to be used, makes it 
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hard to compare the different interventions 
employed and the expected results. This leads to 
a lack of consensus on the best clinical and tech-
nical settings to be adopted in order to achieve 
optimal long-lasting results and to expand the use 
of rTMS into a large-scale application.

To overcome the previously mentioned limitations, 
future research should preliminarily evaluate the 
most promising protocols before going on to multi-
center studies with large cohorts of patients in order 
to achieve a definitive translation into daily clinical 
practice and a reliable group stratification.
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