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Abstract

Diffusion MRI (DMRI) is a powerful tool for studying early brain development and disorders. 

However, the typically low spatio-angular resolution of DMRI diminishes structural details and 

limits quantitative analysis to simple diffusion models. This problem is aggravated for infant 

DMRI since (i) the infant brain is significantly smaller than that of an adult, demanding higher 

spatial resolution to capture subtle structures; and (ii) the typically limited scan time of unsedated 

infants poses significant challenges to DMRI acquisition with high spatio-angular resolution. Post-

acquisition super-resolution (SR) is an important alternative for increasing the resolution of DMRI 

data without prolonging acquisition times. However, most existing methods focus on the SR of 

only either the spatial domain (x-space) or the diffusion wavevector domain (q-space). For more 

effective resolution enhancement, we propose a framework for joint SR in both spatial and 

wavevector domains. More specifically, we first establish the signal relationships in x-q space 

using a robust neighborhood matching technique. We then harness the signal relationships to 

regularize the ill-posed inverse problem associated with the recovery of high-resolution data from 

their low-resolution counterpart. Extensive experiments on synthetic, adult, and infant DMRI data 

demonstrate that our method is able to recover high-resolution DMRI data with remarkably 

improved quality.
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1. Introduction

Diffusion MRI (DMRI) has been widely employed to investigate white matter changes 

associated with early brain development and disorders (Cascio et al., 2007; Dubois et al., 

2014; Alexander et al., 2007). For instance, it has been shown using diffusion tensor imaging 

that mean diffusivity (MD) decreases and fractional anisotropy (FA) increases during brain 

development (Cascio et al., 2007; Dubois et al., 2014). Moreover, MD increase and FA 

decrease are found in the corpus callosum in patients with autism spectrum disorder 

(Alexander et al., 2007).

Despite its great utility, the typically low spatio-angular resolution of DMRI diminishes 

structural details and limits quantitative analysis to simple diffusion models. In practice, 

there is a trade-off between resolution, signal-to-noise-ratio (SNR), and acquisition time. 

Increasing spatial resolution often comes at the cost of SNR when the acquisition time is 

limited. Increasing angular resolution typically requires prolonged acquisition time, since it 

is directly related to the number of diffusion-weighted (DW) images that are acquired in 

association with the diffusion-sensitizing gradient directions. Acquiring high-resolution data 

for infants is even more challenging. First, the infant brain is significantly smaller than that 

of an adult (Knick-meyer et al., 2008; Li et al., 2012), demanding higher spatial resolution to 

capture subtle structures. Second, the acquisition time of infant DMRI data is significantly 

limited. For instance, in the Human Connectome Project (HCP) (Van Essen et al., 2012), the 

DMRI scan time is about an hour per adult. However, in the Baby Connectome Project 

(BCP) (Fallik, 2016; Howell et al., 2019), the acquisition time is limited to less than 15 

minutes, since scanning of infants is typically performed when they are asleep and has to be 

terminated if they wake up. The possibility of infants awakening is heightened by loud 

acoustic noise and sudden vibrations resulting from the rapid switching of gradient 

amplitude and polarity typical in DMRI (McJury PhD and Frank, 2000).

An alternative to acquisition-based methods is post-acquisition super-resolution (SR) 

(Nedjati-Gilani et al., 2008; Calamante et al., 2010; Manjón et al., 2010; Alexander et al., 

2017; Chen et al., 2017; Tuch, 2004; Descoteaux et al., 2007; Tanno et al., 2017). Existing 

SR methods can be divided into two categories based on their outcomes: derived diffusion 

quantities (Nedjati-Gilani et al., 2008; Calamante et al., 2010; Alexander et al., 2017) or DW 

images (Manjón et al., 2010; Chen et al., 2017; Tuch, 2004; Descoteaux et al., 2007; Tanno 

et al., 2017). Nedjati-Gilani et al. (2008) introduced a method for estimating orientations and 

volume fractions of fiber populations on a sub-voxel scale. Calamante et al. (2010) gained 

sub-voxel insights into white matter by computing local tract density using a very high 

number of fiber tracts given by whole-brain tractography. Alexander et al. (2017) proposed a 

technique, called image quality transfer, that learns low-resolution (LR) to high-resolution 

(HR) mappings of patches for different microstructural index maps. These methods are 

however restricted to specific derived quantities, e.g., fiber orientations, track density map, 

or microstructure index maps. On the other hand, SR of DW images affords greater 

flexibility in subsequent analysis (Manjón et al., 2010; Alexander et al., 2017; Chen et al., 

2017; Tuch, 2004; Descoteaux et al., 2007; Tanno et al., 2017). For x-space SR, Manjón et 

al. (2010) propose a patch-based SR framework to improve the resolution of MR images by 

iteratively performing non-local means (NLM) reconstruction and correcting for intensity 
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mean consistency. Tanno et al. (2017) proposed a technique called Bayesian image quality 

transfer for SR of DW images using mean apparent propagator data with convolutional 

neural networks. For q-space SR, the most common approaches are interpolation using 

spherical radial basis functions (SRBFs) (Tuch, 2004) or spherical harmonics (SHs) 

(Descoteaux et al., 2007). A common limitation of these methods is that SR is performed 

separately for spatial and wavevector domains, neglecting the relation between them.

In this paper, we propose an x-q space SR (XQ-SR) framework that harnesses self-similar 

information in the joint x-q space of DMRI. More specifically, we first establish the 

relationships of signals in x-q space using a robust neighborhood matching technique (Chen 

et al., 2019). We then use the established relationships to regularize the ill-posed inverse 

problem associated with the recovery of high resolution (HR) DMRI data, both spatially and 

angularly, from its LR counterpart. To the best of our knowledge, XQ-SR is the first method 

for spatio-angular SR that uses self-similarity information in the joint x-q space. To verify its 

effectiveness, we performed experiments on various datasets, including synthetic, adult, and 

infant data. Extensive experimental results demonstrate that XQ-SR outperforms various 

state-of-the-art methods and is capable of improving remarkably the quality of HR DMRI 

data.

The rest of the paper is organized as follows. In Section 2, we provide a detailed description 

of XQ-SR. In Section 3, we demonstrate the effectiveness of XQ-SR with synthetic data, 

adult DMRI data, and infant DMRI data. In Section 4, we provide further discussion on this 

work. In Section 5, we conclude our work.

2. Method

XQ-SR aims to jointly increase the spatio-angular resolution. This is achieved by harnessing 

the non-local self-similar information in the joint x-q space. Self-similar information is 

identified with the help of the robust x-q space neighborhood matching technique described 

in (Chen et al., 2019), which caters to even highly curved white matter structures where 

traditional x-space neighborhood matching methods are typically less effective.

2.1. Establishing Signal Relationships in Joint x-q Space

We establish the relationships of signals in joint x-q space using a robust neighborhood 

matching technique described in (Chen et al., 2019). As illustrated in Fig. 1, this procedure 

involves three steps. The first two steps employ (i) Graph representation and (ii) Graph 
framelet transform (GFT) to extract neighborhood features for each sampling point in x-q 

space. The features are used in the third step, (iii) Neighborhood matching, for establishing 

signal correspondences.

Specifically, we first represent the q-space sampling domain using a graph with an affinity 

matrix with elements determined by the products of two kernels — one for the diffusion 

gradient directions {q/|q|} and the other for gradient strengths {|q|}. The signals 

corresponding to different gradient directions and strengths at each voxel location can be 

viewed as a function defined on the graph. We perform GFT (Yap et al., 2016a) on this 

function to compute the neighborhood features for the nodes of the graph. The key idea of 

Chen et al. Page 3

Med Image Anal. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GFT is to slice the frequency spectrum of the graph in a multi-scale fashion by using a set of 

masks. The spectrum is obtained by performing Eigen decomposition on the graph 

Laplacian. A detailed description of GFT can be found in (Yap et al., 2016a; Dong, 2017). 

Given a point in x-q space associated with an x-space index i and a q-space index k, the first 

two steps will generate a feature vector f(i, k) for the point. Finally, in the third step, we 

compute the similarity weight between points (i, k) and (j, l) in the x-q space using a 

Gaussian function of the distance between the feature vectors, i.e.,

w(i, k; j, l) = G( f(i, k) − f( j, l) ) . (1)

Note that this allows correspondences to be established between points in the x-q space even 

in highly curved white matter structures, as illustrated in Fig. 1. For more details on x-q 

space neighborhood matching, please refer to (Chen et al., 2019).

2.2. Resolution Enhancement Using x-q Space Regularization

Let dLR be the signal vector containing the diffusion-attenuated signals of all points in x-

space and q-space in the LR DMRI data. Our aim is to recover its HR counterpart dHR by 

solving an inverse problem regularized by the signal relationships in x-q space. We define 

our objective function as

ϵ2 dHR = λ DqDxBxdHR − dLR 2
2

Data Fidelity Term 

+ r dHP , (2)

where Dx and Dq are respectively binary matrices representing downsampling operators in 

x-space and q-space, with a 1 in each row indicating an element in dHR that will be retained. 

Bx represents an x-space smoothing operator realized via convolution with a Gaussian 

kernel. λ is a regularization term controlling the trade-off between the data fidelity term and 

the regularization term r(dHR). The regularization term r(dHR) takes into account the signal 

relationships determined using neighborhood matching and is defined as

r dHR = 1
2 ∑

(i, k) ∈ Ω
∑

( j, l) ∈ 𝒮(i, k)
w(i, k; j, l) × ‖Ei, kdHR − E j, ldHR‖2

2, (3)

where Ω is the image domain and 𝒮(i, k) is the x-q space search neighborhood for point (i, k) 

and Ei,k is a matrix representing the operator that extracts the diffusion signal at point (i, k). 

The regularization term encourages non-local smoothness (Protter et al., 2009) by requiring 

each diffusion signal to be represented by its matching signals.

2.3. Optimization

2.3.1. Algebraic Simplification—To minimize the objective function, we set the 

derivative of (2) to zero:
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0 =
∂ϵ2 dHR

∂dHR
= 2λO⊤ OdHR − dLR +

∂r dHR
∂dHR

, (4)

where O = DqDxBx representing the operations associated with HR to LR. Matrix O 
resembles the blurring matrix described in Section 2.2, but is row-downsampled. The 

number of rows is determined by the number of x-q space sampling points in the LR DMRI 

data. Based on the definition of r(dHR), we have

∂r dHR
∂dHR

= ∑
(i, k) ∈ Ω

∑
( j, l) ∈ 𝒮(i, k)

w(i, k; j, l) × Ei, k − E j, l
⊤ Ei, k − E j, l dHR

= ∑
(i, k) ∈ Ω

∑
( j, l) ∈ 𝒮(i, k)

w(i, k; j, l)Ei, k
⊤ Ei, kdHR − ∑

(i, k) ∈ Ω
∑

( j, l) ∈ 𝒮(i, k)
w(i, k; j, l)Ei, k

⊤ E j, ldHR

− ∑
(i, k) ∈ Ω

∑
( j, l) ∈ 𝒮(i, k)

w(i, k; j, l)E j, l
⊤ Ei, kdHR + ∑

(i, k) ∈ Ω
∑

( j, l) ∈ 𝒮(i, k)
w(i, k; j, l)E j, l

⊤ E j, ldHR .

(5)

Observe that (i) the neighborhood is symmetric (i.e., if ( j, l) ∈ 𝒮(i, k), then (i, k) ∈ 𝒮( j, l)), and 

(ii) the weights are symmetric (i.e., w(i, k; j, l) = w(j, l; i, k)) (Protter et al., 2009). 

Therefore, we have

∑
(i, k) ∈ Ω

∑
( j, l) ∈ 𝒮(i, k)

w(i, k; j, l)Ei, k
⊤ Ei, kdHR = ∑

(i, k) ∈ Ω
∑

( j, l) ∈ 𝒮(i, k)
w(i, k; j, l)E j, l

⊤ E j, ldHR, (6)

and

∑
(i, k) ∈ Ω

∑
( j, l) ∈ 𝒮(i, k)

w(i, k; j, l)E j, l
⊤ Ei, kdHR = ∑

(i, k) ∈ Ω
∑

( j, l) ∈ 𝒮(i, k)
w(i, k; j, l)Ei, k

⊤ E j, ldHR . (7)

Simplifying (5) using (6) and (7) gives

∂r dHR
∂dHR

= 2ZdHR − 2WdHR, (8)

where

Z = ∑
(i, k) ∈ Ω

∑
( j, l) ∈ 𝒮(i, k)

w(i, k; j, l)Ei, k
⊤ Ei, k, (9)

Chen et al. Page 5

Med Image Anal. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



W = ∑
(i, k) ∈ Ω

∑
( j, l) ∈ 𝒮(i, k)

w(i, k; j, l)Ei, k
⊤ E j, i . (10)

Therefore, (4) becomes

0 = 2λO⊤ OdHR − dLR + 2ZdHR − 2WdHR . (11)

Finally, we have

λO⊤O + Z − W
M

dHR = λO⊤dLR
v

(12)

Algorithm 1

Conjugate Gradient Method

Require: Matrix M, vector v and initialization dHR
(0)

.

1: Let r0 = v − MdHR
(0)

, p0 = r0 and k = 0

2: loop

3:  αk =
rk
⊤rk

pk
⊤Mpk

4:  dHR
(k + 1) = dHR

(k) + αkpk

5:  rk+1 = rk – αkMpk

6:  if 
rk + 1
dHR

(0) < tol then

7:   end loop

8:  end if

9:  βk =
rk + 1
⊤ rk + 1

rk
⊤rk

10:  pk+1 = rk+1 + βkpk

11:  k = k +1

12: end loop

13: return dHR
(k + 1)

2.3.2. Conjugate Gradient (CG) Method—Equation (12) is a large-scale system of 

linear equations, which can be solved directly but involves the inversion of a very large 

matrix (Protter et al., 2009). For greater efficiency, we utilize the CG method (Shewchuk, 
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1994) to solve the problem. A detailed proof of the applicability of CG to our problem is 

provided in the appendix. The algorithm is summarized in Algorithm 1.

2.3.3. Initialization—Prior to SR, we first perform signal transformation as described in 

(Koay et al., 2009) so that noise becomes Gaussian distributed. We then perform spatial 

upsampling using an NLM-based method introduced in (Manjón et al., 2010) and angular 

upsampling using spherical harmonics (Descoteaux et al., 2007). The upsampled data is used 

as initialization, dHR
(0) , in our algorithm. Based on dHR

(0) , we perform x-q space neighborhood 

matching, as described in Section 2.1, to obtain the similarity weights.

3. Experiments

3.1. Datasets

3.1.1. Synthetic Data—For quantitative evaluation, we generated a noise-free HR 

dataset using phantomαs (Caruyer et al., 2014) and the fiber geometric setting of ISBI 2013 

HARDI challenge1. The gradients used in data simulation were consistent with the adult 

data described in the next section, i.e., b = 1000, 2000, 3000 s/mm2, 90 gradient directions 

per shell.

We downsampled the simulated HR dataset to generate its LR counterpart. Downsampling in 

x-space involves the following steps (see Fig. 2): (i) Fourier transform of the HR DW 

images. (ii) Removal of high-frequency content based on downsampling ratio (2 in our 

case). (iii) Filtering using Tukey window (Fong, 2005) to reduce Gibbs ringing. (iv) Inverse 

Fourier transform to obtain the LR DW images. Downsampling in q-space was then carried 

out by uniformly sampling half of the gradient directions in each shell. Finally, we added 

noise of different levels (SNR = 10, 20, 30, measured with respect to S0 = 1000) to the LR 

data.

3.1.2. Adult Data—The DMRI dataset of one subject randomly selected from the 

Human Connectome Project (HCP) (Van Essen et al., 2013) was used for evaluation. The 

dataset was acquired using a customized Siemens 3T Connectome Skyra MR scanner with 

the following imaging protocol: 145 × 174 imaging matrix, 1.25 × 1.25 × 1.25 mm3 

resolution, TE=89 ms, TR=5,500 ms, 32-channel receiver coil (Van Essen et al., 2013). 

Signal transformation as described in (Koay et al., 2009) was performed so that noise 

becomes Gaussian distributed. The images were downsampled to generate the corresponding 

LR counterpart as done with the synthetic dataset.

3.1.3. Infant Data—Three infant subjects from the Baby Connectome Project (Howell et 

al., 2019) were scanned postnatally at 2, 27, and 48 weeks. All data were acquired using a 

Siemens 3T Magnetom Prisma MR scanner with the following protocol: 140 × 105 imaging 

matrix, 1.5 × 1.5 × 1.5 mm3 resolution, TE=88 ms, TR=2,365 ms, 32-channel receiver coil, 

b = 500, 1000, 1500, 2000, 2500, 3000 s/mm2, and a total of 144 non-collinear gradient 

directions. All enrolled subjects had written informed consent provided by parents/

1http://hardi.epfl.ch/static/events/2013_ISBI/
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guardians. The experimental protocols were approved by the Institutional Review Board of 

the University of North Carolina (UNC) School of Medicine. Signal transformation as in 

(Koay et al., 2009) was performed.

3.2. Parameter Settings

In all experiments, we set the parameters for neighborhood matching in according to the 

parameter settings suggested in (Chen et al., 2019). Specifically, we set β = 0.1, s = 1, and θ 
= 30°, where β is a parameter controlling the bandwidth of the Gaussian function in Eq. (1), 

s is the x-space search radius, and θ is the q-space search angle. For the parameters used in 

SR, we performed grid search and found that λ = 100 and tol = 0.1 gave the best results.

3.3. Baseline Methods

Existing SR methods focus on one aspect of SR, i.e., either enhancing the spatial resolution 

or the angular resolution. Therefore, we used four hybrid SR methods for comparison. SR in 

x-space was performed using either linear interpolation or NLM-based upsampling (Manjón 

et al., 2010). SR in q-space upsampling was performed using either SRBFs (Tuch, 2004) or 

SHs (Descoteaux et al., 2007). For brevity, the four combinations are denoted as Linear

+SRBF, Linear+SH, NLM+SRBF, and NLM+SH.

3.4. Evaluation Methods

Qualitative and quantitative experiments were performed:

1. Peak signal-to-noise ratio (PSNR): PSNR is used for quantitative evaluation, 

and is defined as

PSNR = 20log10
MAX
RMSE, (13)

where RMSE is the root-mean-square-error between an image and the ground 

truth, MAX is the maximum signal value. A higher PSNR value implies that the 

image is closer to the ground truth.

2. FA images: We compute FA images using the iterative weighted tensor fitting 

method presented in (Salvador et al., 2005).

3. Absolute difference (AD) and mean normalized absolute difference 
(MNAD): The AD of FA with respect to the ground truth was evaluated. MNAD 

is computed by dividing AD with the ground truth.

4. Root mean squared error (RMSE): We computed the voxel-wise RMSE of a 

set of DW images, viewed as a single vector-valued image, with respect to the 

ground truth.

5. Fiber ODFs: We computed fiber orientation distribution functions (ODFs) using 

the method presented in (Yap et al., 2016b) for visual inspection.
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3.5. Results

3.5.1. Synthetic Data—Figure 3 shows the PSNR values computed using reconstructed 

HR DMRI data and the ground truth. It can be observed that XQ-SR gives the highest PSNR 

values for all noise levels. A higher PSNR value indicates better resemblance with the 

ground truth. Compared with the second-best method, NLM+SH, XQ-SR yields an 

improvement of 4.19 dB at SNR = 30.

The DW images, shown in Fig. 4, further demonstrate the advantages of XQ-SR. Compared 

with other methods, XQ-SR is capable of recovering HR DW images with more structural 

details, especially at boundaries, as illustrated in the close-up views in Fig. 5. Moreover, Fig. 

6 shows that XQ-SR dramatically reduces RMSE, indicating that its outcome is closer to 

ground truth.

We further computed the FA images to evaluate the effects of SR on diffusion indices. 

Figure 7, indicates that XQ-SR gives an FA image with sharp structural boundaries. The 

advantages of XQ-SR is further confirmed with the AD maps (bottom row of Fig. 7), where 

XQ-SR yields results closest to the ground truth with the lowest AD values.

3.5.2. Adult Data—The observations from Fig. 5 are confirmed by Fig. 8 with real data, 

where XQ-SR again shows greater preservation of structural details, especially in the 

cortical regions, as shown by the close-up views.

Figure 9 indicates that XQ-SR gives an FA image with sharper structural details and is closer 

to the ground truth. The AD maps, shown in the bottom row of Fig. 9, indicate that XQ-SR 

gives an AD map with much lower values. These observations are consistent with Fig. 7.

3.5.3. Infant Data—We further utilized XQ-SR to improve the resolution of infant 

DMRI data. The DW images, shown in Fig. 10 and 11, indicate that, for all time points, XQ-

SR improves the sharpness and clarity of structural details.

Figures 12 and 13 further demonstrate that XQ-SR yields FA images with richer structural 

details compared with the LR images.

Figure 14 indicates that XQ-SR (i) gives clean and coherent fiber ODFs, (ii) well preserves 

the fiber orientation information in the LR DMRI data, and (iii) provides improved fiber 

orientation information, especially in regions with complex fiber geometries, such as 

crossings.

4. Discussion

High-resolution DMRI data reconstructed using XQ-SR retain more structural details and 

better preserves the values of diffusion indices. As illustrated in Figs. 7 and 9, the baseline 

methods result in large FA errors. This is mainly caused by the smoothing effect of these 

methods, which reduces the sharpness of the diffusion signal profile. In contrast, XQ-SR 

utilizes x-q space signal relationships for regularization and preserves well the sharpness of 

diffusion signal profiles, and thus retaining FA values that are closer to the ground truth.
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XQ-SR depends on the accurate estimation of the relationships between the diffusion-

attenuated signals. In practice, we can re-estimate the neighborhood matching weights from 

the reconstructed HR DMRI data, and then utilize the updated weights for iterative SR 

reconstruction. However, our experimental results indicate that the contribution of this 

strategy is minimal, and iterative SR significantly extends the computational time. 

Therefore, we did not perform weight re-estimation in our experiments.

XQ-SR is built upon our work reported in (Chen et al., 2017). However, compared with 

(Chen et al., 2017), XQ-SR (i) focuses on spatio-angular resolution enhancement, rather 

than angular enhancement only, and (ii) employes the conjugate gradient method instead of 

fixed point iteration.

Using an 8-core Xeon CPU, XQ-SR takes about 6.28 hours to process one infant dataset (see 

Section 3.5.3). Currently, XQ-SR was implemented using C++ based on the Insight 

Segmentation and Registration Toolkit (ITK)2. Speed can be potentially improved by further 

parallelization or GPU implementation.

Recently, some advanced MRI reconstruction approaches were proposed to recover high 

spatio-angular resolution DMRI data. For instance, Mani et al. (2015) utilize compressed 

sensing (CS) to recover HR DMRI data from under-sampled k-q space data. The associated 

ill-posed inverse problem is regularized by imposing sparsity on the coefficients of ODFs 

and by reducing the TV of the HR DMRI data. A method called 6D-CS-DMRI (Cheng et al., 

2015) was developed to cater to multi-shell DMRI. This method harnesses the sparsity of the 

coefficients of the ensemble average propagator (EAP) in the estimation of HR DMRI and 

EAP data from the data sub-sampled in both 3D k-space and 3D q-space. More recently, 

Ning et al. (2016) proposed a method to reconstruct a very HR DMRI dataset from multiple 

LR DMRI datasets. This method regularizes both x-space and q-space based on spatial 

smoothness, which is imposed by TV, and the sparsity of ODF coefficients. Despite the 

promising performance of these methods, they require specially designed imaging protocols, 

limiting their widespread application. In contrast, XQ-SR can be applied to existing DMRI 

data acquired using conventional imaging protocols.

Learning-based methods have been shown to be effective for super-resolution (Alexander et 

al., 2017; Tanno et al., 2017), fiber orientation estimation (Koppers and Merhof, 2016; Ye 

and Prince, 2017), and microstructure estimation (Golkov et al., 2016; Ye, 2017; Ye et al., 

2019, 2018). Deep leaning techniques improve estimation tissue microstructural properties 

from DMRI data that are highly undersampled in q-space (Golkov et al., 2016; Ye, 2017; Ye 

et al., 2019, 2018). Graph convolutional neural networks (GCNNs) yield promising 

performance in longitudinal prediction of infant DMRI data (Kim et al., 2018; Hong et al., 

2019c) and acceleration of DMRI data acquisition (Hong et al., 2019a,b). In the future, we 

will explore utilizing GCNNs to jointly increase the resolution of DMRI data in both x-

space and q-space.

2https://itk.org/ITK.git
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Currently, we only employ x-q space signal relationships for the regularization. In the future, 

we can improve XQ-SR by integrating other advanced regularization terms into our 

framework, such as the total generalized variation (TGV) (Bredies et al., 2010), low rank 

(Shi et al., 2016; Zhou et al., 2018, 2019), and bilateral total variation (Farsiu et al., 2004). 

In particular, TGV is known as a generalization of the total variation, considering both the 

first and second derivative of a function, thus is able to avoid the stair-casing effect caused 

by TV regularization (Bredies et al., 2010). This extension is expected to improve the quality 

of the reconstructed HR DMRI data.

The neighborhood matching technique used in XQ-SR is a general framework for 

establishing the signal relationships in x-q space. This technique can be further utilized to 

improve a number of algorithms, including atlas building (Saghafi et al., 2017; Kim et al., 

2017; Yang et al., 2017), ODF estimation (Chen et al., 2016; Ye et al., 2016), voxel-based 

morphometry (Chen et al., 2015), etc.

5. Conclusion

In this work, we have proposed a regularization framework for the spatio-angular resolution 

enhancement of DMRI data. In this framework, the signal relationships in x-q space are 

employed to regularize the ill-posed inverse problem associated with recovering HR DMRI 

data from its LR counterpart. Experiments using synthetic and adult DMRI data demonstrate 

that our method outperforms various state-of-the-art methods, both qualitatively and 

quantitatively. We have also demonstrated the utility of our method in improving the quality 

of infant DMRI data.

Acknowledgment

This work was supported in part by NIH grants (NS093842, EB022880, EB006733, and 1U01MH110274) and the 
e orts of the UNC/UMN Baby Connectome Project Consortium. Data were provided in part by the Human 
Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 
1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience 
Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Appendix

CG requires that M be symmetric and positive-definite.

1. Symmetry: Matrix M is the sum of three terms, i.e., O⊤O, Z and W. The first 

matrix, O⊤O, is symmetric since (O⊤O)⊤ = O⊤O. The second matrix, Z, is a 

diagonal matrix with each diagonal element z(i, k) = ∑( j, l) ∈ 𝒮(i, k)w(i, k; j, l), and 

is therefore symmetric. Since the search regions and weights are both symmetric, 

W is symmetric as well. Matrix M is therefore symmetric.

2. Positive-definiteness: We can separate M into two parts, i.e., O⊤O and Z–W. 

First, O⊤O is positive-semidefinite, since for an arbitrarily non-zero vector z⊤, 

we have
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z⊤O⊤Oz = Oz ⊤Oz = Oz 2
2 ≥ 0. (14)

Second, matrix W can be viewed as a graph adjacency matrix relating points in 

the x-q space, with Z being the corresponding degree matrix. The Laplacian 

matrix L = Z–W is positive-semidefinite and t⊤Lt = 0 when t = t0 = c(1, 1, ⋯,

1)⊤. However, since in our case O is a nonnegative downsampling and blurring 

operator, we have t0
⊤O⊤Ot0 ≠ 0, and hence M is positive-definite.
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Highlights

• XQ-SR enhances the resolution of DMRI data in both spatial and wavevector 

domains.

• XQ-SR utilizes signal relationships in joint x-q space to regularize the ill-

posed inverse problem associated with resolution enhancement.

• Extensive experimental results demonstrate that XQ-SR is able to recover 

high-resolution DMRI data with remarkably improved quality.
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Figure 1: Overview.
(Graph Representation) Representing the q-space sampling domain using a graph with 

affinity matrix determined by kernels for diffusion gradient directions and strengths. (Graph 

Framelet Transform) Feature computation by spectral decomposition. (Neighborhood 

Matching) Correspondence matching in x-q space. Note that q-space is generally 3D; 2D 

illustration is used here for simplicity.
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Figure 2: Downsampling in x-Space.
LR image generated by (i) Extracting the low-frequency component (red rectangle) of the 

frequency spectrum of the HR image, and (ii) Filtering with a Tukey window.
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Figure 3: PSNR Comparison.
Quantitative evaluation using synthetic data.
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Figure 4: DW Images – Synthetic Data.
Comparison of DW images for b = 1,000 s/mm2 and SNR = 30.
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Figure 5: Close-Up Views of DW Images – Synthetic Data.
Local comparison of DW images for b = 1,000 s/mm2 and SNR = 30.
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Figure 6: RMSE Maps – Synthetic Data.
Comparison of RMSE maps for the synthetic data.
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Figure 7: FA Images – Synthetic Data.
AD comparison of FA images. Mean AD values are shown at the top left corners. The 

background was excluded when computing the mean values.
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Figure 8: Close-Up Views of DW Images – Adult Data.
Local comparison of DW images for b = 1,000 s/mm2.
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Figure 9: FA Images and AD Maps – HCP Data.
AD comparison of FA images. Mean AD values are shown at the top left corners. The 

background was excluded when computing the mean values.
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Figure 10: DWI Images – Infant Data.
Comparison of DW images for b = 1,000 s/mm2.
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Figure 11: Close-Up Views of DW Images – Infant Data.
Regional close-up views of DW images, shown in Fig. 10.
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Figure 12: FA Images – Infant Data.
Comparison of FA images of infant DMRI data.
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Figure 13: Close-Up Views of FA Images – Infant Data.
Regional close-up views of FA images, shown in Fig. 12.
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Figure 14: Fiber ODFs – Infant Data.
Comparison of fiber ODFs of infant DMRI data.
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