Table 2.
Comparison of methodology of recent PD subtyping studies using cluster analysis.
Methodological steps | Liu 2011 | Van Rooden 2011 | Fereshtehnejad 2015 | Erro 2016 | Fereshtehnejad 2017 | Mu 2017 |
---|---|---|---|---|---|---|
Data pre-processing | Standardized scores | z scores | z scores | NS | Normative values | Standardised scores |
Clustering algorithm | K-means | Model-based | 2-step | K-means | Hierarchical | K-means & Hierarchical |
Basis of the determination of the number of clusters | NS | NS | Bayesian information criterion | Calinski-Harabasz pseudo-F value | Estimate, Hartigan’s rule | Various e.g. Gap Statistic and the 1-standard-error method |
Cluster validation on independent sample | No | Yes | No | No | No | No |
Evaluation of discriminative variables | No | Discriminant analysis | No | No | Principal component analysis | No |
Follow up period, years± mean | N/A | N/A | 4.5 | N/A | 2.73 ± 0.78 | No |
Post hoc analysis of variables not included in the cluster analysis | Yes, motor phenotype consistency | No | Yes, disease progression | Yes, 123[I]-FP-CIT binding values | Yes, CSF and imaging biomarkers, and disease progression | No |