Skip to main content
. 2019 Oct 1;10(5):1130–1139. doi: 10.14336/AD.2019.0112

Table 2.

Comparison of methodology of recent PD subtyping studies using cluster analysis.

Methodological steps Liu 2011 Van Rooden 2011 Fereshtehnejad 2015 Erro 2016 Fereshtehnejad 2017 Mu 2017
Data pre-processing Standardized scores z scores z scores NS Normative values Standardised scores
Clustering algorithm K-means Model-based 2-step K-means Hierarchical K-means & Hierarchical
Basis of the determination of the number of clusters NS NS Bayesian information criterion Calinski-Harabasz pseudo-F value Estimate, Hartigan’s rule Various e.g. Gap Statistic and the 1-standard-error method
Cluster validation on independent sample No Yes No No No No
Evaluation of discriminative variables No Discriminant analysis No No Principal component analysis No
Follow up period, years± mean N/A N/A 4.5 N/A 2.73 ± 0.78 No
Post hoc analysis of variables not included in the cluster analysis Yes, motor phenotype consistency No Yes, disease progression Yes, 123[I]-FP-CIT binding values Yes, CSF and imaging biomarkers, and disease progression No