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Abstract

Big geospatial data is an emerging sub-area of geographic information science, big data, and 

cyberinfrastructure. Big geospatial data poses two unique challenges to these and other cognate 

disciplines. First, raster and vector data structures and analyses have developed on largely separate 

paths for the last twenty years and this creates an impediment to researchers utilizing big data 

platforms that do not promote the integration for these classes. Second, big spatial data 

repositories have yet to be integrated with big data computation platforms in ways that allow 

researchers to spatio-temporally analyze big geospatial datasets. IPUMS-Terra, a National Science 

Foundation cyberInfrastructure project, begins to address these challenges. IPUMS-Terra is a 

spatial data infrastructure project that provides a unified framework for accessing, analyzing, and 

transforming big heterogeneous spatio-temporal data, and is part of the IPUMS (Integrated Public 

Use Microdata Series) data infrastructure. It supports big geospatial data analysis and provides 

integrated big geospatial services to its users. As IPUMS-Terra’s data volume grows, we seek to 

integrate geospatial platforms that will scale geospatial analyses and address current bottlenecks 

within our system. However, our work shows that there are still unresolved challenges for big 

geospatial analysis. The most pertinent is that there is a lack of a unified framework for conducting 

scalable integrated vector and raster data analysis. We conducted a comparative analysis between 

PostgreSQL with PostGIS and SciDB and concluded that SciDB is the superior platform for 

scalable raster zonal analyses.

1. Introduction

Many challenges humanity faces today are interconnected, complex and often involve 

interactions among human and environmental systems. Big data is viewed as a new tool that 

should be embraced by the larger scientific community in an effort to solve complex global 

problems (Hampton et al., 2013; Mayer-Schönberger & Cukier, 2013; Murdoch & Detsky, 

2013). In particular, we face a growing array of complex or “wicked” problems, so-called 
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because they are dynamically complex and ill-structured (Batie, 2008; Brown, Harris, & 

Russell, 2010). These problems are typically rooted in a social context and involve multiple 

stakeholders with differing perspectives; therefore, optimal solutions are often elusive. 

Additionally, many of these challenges are due to economic and population changes that 

have occurred in the last five decades. In this time, the world’s population has more than 

doubled, resulting in alarming environmental degradation and global climate change 

(O’Neill, MacKellar, & Lutz, 2005; World Bank, 2012). Population growth and human 

behavior playing out within a larger social and technological context lie at the heart of a 

myriad of environmental challenges facing the planet, as well as necessarily being part of 

their solutions.

Heterogeneous big data repositories that leverage high performance computation 

frameworks are necessary for advancing research discoveries and solving complex human-

environment challenges. These repositories help overcome the challenge posed by data silos, 

the existence of which hamper our understanding of these complex problems. Specifically, 

understanding the interactions among population and environmental systems is hampered by 

the dearth of integrated data. In order for scientists, students, and policy makers to tackle 

many challenges, they need fast and easy access to big data. However, there are critical data 

and computational infrastructure gaps in using big data to address these challenges. 

Geospatial researchers need frameworks that utilize and understand spatial data structures, 

support spatial analysis, and utilize spatial data visualizing techniques. These frameworks 

will allow us to understand spatio-temporal relationships between the world’s population 

and environment, and provide unprecedented opportunities to investigate the agents of 

change, assess their implications for human society and the environment, and develop 

policies to meet future challenges.

2. Background

Existing data repositories and cyberinfrastructures have made significant progress in 

advancing GIScience research, yet gaps remain. One basic challenge is that the volume of 

data is growing. These datasets are siloed, trapped in domain-specific infrastructures, 

formats, or storage locations. With the advent of large-scale spatial data infrastructure, users 

have greater access to data and analysis capability, but a challenge for many users is moving 

data to, from, or between these infrastructures. A final challenge facing researchers and 

others in using big spatial data is the need for analytical capabilities that work across data 

structures, particularly vector and raster formats.

The primary challenge with big geospatial data is simply the sheer amount of data available. 

Every day Facebook generates over half a petabyte of data (Vagata & Wilfong, 2014). 

Digital Globe collects approximately two petabytes of satellite imagery each year (Babcock, 

2013), and a single self-driving car is estimated to generate two petabytes of data a year (van 

Rijmenam, 2016). Research communities also play a role in producing big data. The 

Intergovernmental Panel on Climate Change (IPCC) recent Coupled Modeled 

Intercomparison Project (CMIP5), for example, is approximately two and half petabytes 

(Taylor, Stouffer, & Meehl, 2012). NASA’s Shuttle Radar and Topographic Mission (SRTM) 

90 meter digital elevation of the world is half a terrabyte (Jarvis, Reuter, Nelson, Guevara, & 
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others, 2008). These are just a few examples of the kinds of data that are becoming 

necessary to address a range of research questions.

Another challenge is that many of these datasets originate from different academic and 

commercial communities, resulting in big data that is siloed across many domains. In order 

to address wicked problems, however, we need integrated data. Population data integrated 

with data on the environment gives us the opportunity to describe the unfolding 

transformation of human and ecological systems. Indeed, data on the human population are 

crucial for understanding the impact of society on biological and climate systems. Equally 

important are climate and high resolution landcover datasets that provide essential 

information for understanding the effect of the environment upon the human population. For 

example, changes in global temperature are altering the endemic regions of disease and 

affecting new populations and the data needed to understand these relationships comes from 

multiple human and environmental sources and exists and various spatial scales. Access to 

big integrated data is essential for analyzing today’s complex problems.

A significant challenge for big spatial data users is moving massive datasets to new 

infrastructures. Spatial data infrastructures (SDIs) such as the United States Geological 

Survey (USGS) National Map represent major efforts to build easy-to-use web-based 

interfaces for big data repositories (United States Geological Survey, 2016). Similar to other 

SDIs, the National Map focuses on disseminating data and provides few data analysis tools. 

To analyze and synthesize spatial data, users of SDI rely on additional tools such as desktop 

GIS. However, as the size of spatial data increases, these desktop-based tools are becoming 

inadequate for handling the computational demands. New web-based portals such as the 

CyberGIS Gateway, Geospatial Building Blocks (GABBs), and Google Earth Engine serve 

as advanced cyberinfrastructure providing geospatial data tools and services (CyberGIS 

Gateway, 2016; Geospatial Data Analysis Building Blocks, 2016; Google Earth Engine, 

2016). Unlike SDIs, many of these portals focus on computational and analytical capabilities 

and often rely on users to provide a much of spatial data that are analyzed. There are 

significant technical and logistical challenges involved in transferring and synthesizing a 

range of geospatial datasets that may be explicitly spatial, such as raster and vector data, or 

implicitly spatial, such as tabular data with street addresses. A single infrastructure that 

combines the features of SDI and CyberGIS would offer an elegant end-to-end solution for 

users working with massive spatial data and circumvent some of the current limitations of 

desktop-based GIS software.

Processing big geospatial data, whether raster or vector, remains a challenge for geospatial 

scientists. For decades geospatial scientists have continually leveraged the latest 

technologies to solve the most pressing geospatial problems (Dobson, 1983). There have 

been significant advances in the use of computing technologies to help tackle these 

challenges under various evolving terms including distributed, grid, cloud, and data-

intensive computing. Distributed and grid computing in particular offer significant 

computational resources for geospatial problem solving (C. Yang & Raskin, 2009; Zhang & 

Tsou, 2009). Hofer (2015) provides a systematic review of online geoprocessing studies and 

platforms. Cloud computing platforms such as Microsoft Azure and Google Earth Engine 

provide a compelling means to advance geospatial sciences (C. Yang et al., 2011). Yue, et al. 
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(2013) compares two popular cloud platforms, Microsoft Azure and Google App Engine, 

using a suite of geoprocessing methods and demonstrates the growing utility of these 

systems while also showing they fall short in some ways. Similarly, cyberinfrastructure has 

provided a new paradigm for advancing geospatial sciences including spatial 

cyberinfrastructure (Wright & Wang, 2011), geospatial cyberinfrastructure (C. P. Yang & 

Raskin, 2010), and (cyberGIS Wang, 2010).

Another challenge for spatial big computing is the need for analytical capabilities that work 

across data structures, particularly vector and raster formats. Spatial data has always been 

large and GIScience researchers have long focused on developing novel ways of partitioning 

data that always seem to be a bit larger and more complex than existing computing systems 

can handle (Güting, 1994; Ding & Densham, 1996; Papadias, Kalnis, Zhang, & Tao, 2001; 

Zhou, Abel, & Truffet, 1998; Armstrong, 2000). What is being unveiled in the era of big 

geographic data is that methods for analyzing vector and raster data have evolved separately 

for the last 20 years, and accordingly, we now have a number of specialized Big Geo Data 

platforms, such as SpatialHadoop, GeoMesa, GeoTrellis, Greenplum DB, Rasdaman, and 

SciDB. However, each focuses, for the most part, on either vector or raster data formats and 

there are no integrated solutions.

Taken together, these challenges present a deep need for high performance spatial 

computation systems that offer integrated management, querying, and storage of two equally 

important spatial data formats. Table 1 describes a number of open-source platforms 

currently available for analyzing big spatial data. Eldawy and Mokbel (2015) and Olasz et 

al. (2016) provide extensive reviews of big geospatial data platforms. They conclude that big 

data faces the unfortunate situation of utilizing a collection of systems that each prioritizes a 

single spatial data type at the cost of working with, or integrating, multiple data types. The 

focus on a single data structure within a computation platform allows developers to 

maximize the analytical capacity at the cost of forcing researchers to develop their own 

techniques for moving data back forth from various data structures. For geospatial researcher 

the lack of an integrated system imposes a tremendous burden on and inhibits the 

development of innovative scalable geospatial analyses.

2.1 IPUMS-Terra

IPUMS-Terra is a National Science Foundation project that hosts terabytes of socio-

economic and environmental data. IPUMS-Terra is a next-generation spatial data repository 

with two main foci: data integration and data access. Data integration is achieved by 

providing a unified framework for accessing heterogeneous data: microdata, vector, and 

raster datasets (Table 2). Data access is facilitated by guided web interfaces that support 

standardized scientific workflows. The guided interface allows users the ability to access, 

apply, and integrate new datasets into their research.

IPUMS-Terra is amongst the largest sources of curated global human-environment data, 

incorporating areal data for geographic units, individual-level microdata, and raster data. It 

draws on two datasets from the Minnesota Population Center, the National Historical 

Geographic Information System (NHGIS) and Integrated Public Use Microdata Series 

projects (IPUMS). NHGIS has the largest database of United States Census aggregate data, 
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with over 265 billion data points, while IPUMS is the largest individual-level population 

database in the world, with over half a billion person records and a total data volume size of 

two terabytes. The raster data collection currently provides over 4,000 global rasters, 

approximately half a terabyte, on agriculture, climate, and land cover.

IPUMS-Terra has three main applications for researchers. The main application is the extract 

builder (data.terrapop.org), which has a guided web interface that allows users to create 

customized extracts from our existing data repository. The extract builder allows users to 

generate extracts that match their desired format. Raster extracts result in compressed (zip) 

files with georeferenced tiff files. Area-level or vector extracts contain ESRI shapefiles and 

comma-delimited text files (csv) that can be readily joined together and utilized by GIS 

software. Microdata extracts are csv files that can be easily loaded into statistical programs. 

The second application is TerraScope, (data.terrapop.org/terrascope), which is a data 

exploration platform for visualizing the IPUMS-Terra data collection. TerraScope provides 

users the opportunity to access, visualize, and analyze thousands of spatio-temporal datasets. 

Users are able to view the availability of variables across time and space, create choropleth 

maps of area-level data, and visualize raster datasets. The final application is TerraClip, 

(data.terrapop.org/terraclip), which allows users to download raster datasets within the 

collection. Taken together, all three address gaps in current cyberinfrastructure for big data 

of human-environmental systems.

2.2 Integrated Big Geo Services

What differentiates IPUMS-Terra from traditional data repositories or geospatial portals is 

we present an integrated system that connects large geospatial data to a spatial computation 

platform. Geospatial portals typically host a number of pre-calculated datasets. Through 

IPUMS-Terra, however, users make requests for tailored extracts, yielding a compilation of 

datasets customized by the system and delivered to the end user. Conceptually this is similar 

to a geoprocessing service, in which the user submits a request and is returned a spatial 

object.

IPUMS-Terra’s architecture (Figure 1) is unique and its purpose is multifaceted. The system 

must be able to quickly retrieve, analyze, and transform any of its three datasets and return 

those results to any of its web applications. The user interacts with web our applications 

(e.g., Extract Builder, TerraScope, TerraClip) to generate user-defined data requests. Those 

requests are submitted by the web applications to the web layer, where they are translated 

into a series of database transactional calls, which are handled by the Extract Assembler. 

The Extract Assembler interacts directly with PostgreSQL and assembles the user-defined 

request, which is typically a series of datasets and variables. Once the extract is assembled 

the user is alerted via email notification.

The spatial information is utilized for any data transformation in IPUMS-Terra. We illustrate 

this through one of our guided workflows, in which raster data is summarized and attached 

to geographic boundaries for an area level extract. In this example, a researcher requests 

aggregate population data for the United States, 2010 census. Each geographic feature will 

then have the percent of the state’s area used for agriculture attached to each record. The 

system uses the land cover dataset and state boundaries to calculate the percentage of each 

Haynes et al. Page 5

Trans GIS. Author manuscript; available in PMC 2019 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://data.terrapop.org
http://data.terrapop.org/terrascope
http://data.terrapop.org/terraclip


state’s area used for agriculture. These values are then attached to the area-level records 

using the state codes.

The volume and diversity of the IPUMS-Terra data collection dictates that the 

transformations performed to integrate data must be conducted on-the-fly as they are 

requested by users. Currently the project has over 780 spatio-temporal boundary datasets 

with associated population data and over 4,000 different rasters. If we were to pre-generate 

the vector to raster transformations, we would have to maintain over 3 million rasters. 

Instead, the system utilizes custom written functions stored within the PostgreSQL database 

to generate them as users make requests.

IPUMS-Terra’s web applications provide access to Web Processing Services (WPS) without 

requiring the user to have pre-existing knowledge for conducting spatial analysis. The 

services provided through IPUMS-Terra are specialized WPS designed to handle big spatial 

data. The IPUMS-Terra system does not use a geospatial data-sharing application (e.g. 

Geoserver, MapServer) for delivering these big datasets. Because the primary purpose of 

these applications are web mapping and they have limited tool sets for delivering customized 

big spatial datasets (Jaeger et al., 2005). These platforms are limited as they require the data 

to be within their own computation platform. Instead, IPUMS-Terra uses custom written 

database functions to conduct the analysis where the data are stored. This approach is 

superior for delivering big spatial data to a broad audience.

2.3 IPUMS-Terra’s Need for High Performance Spatial Architecture

IPUMS-Terra’s initial architecture design is simple in that it utilizes PostgreSQL for all of 

its data structures. Our reliance on PostgreSQL has merit as it is still the only open-source 

off-the-shelf system capable of working with both raster and vector data types. 

PostgreSQL’s open-source community makes it the jack of all trades and is therefore easily 

adaptable to new challenges. Many of the big geo architectures listed in Table 1 were in their 

infancy in 2012, when this project began, making PostgreSQL the logical choice. However, 

as IPUMS-Terra moved out of beta testing it became apparent that the architecture would 

not support an expanding user-base, increasing data requests, or growing raster spatial 

resolutions. In particular, raster summarizations are one of the largest bottlenecks of the 

current system and, per above, a general problem for big spatial data. This paper compares 

two platforms for raster summarizations and develops findings that are broadly applicable to 

others users and systems that leverage both raster and vector data for large analytical 

procedures.

Raster summarizations are problematic in IPUMS-Terra because users can submit any 

combination of vector and raster datasets. For instance, User A requests an extract 

identifying the percent of urban areas in all counties of the United States from the MODIS 

Aqua/Terra satellite imagery. User B requests the percent area of deciduous forest for all 

states in the United States. In the current system these requests would utilize the same stored 

procedure for analysis, but would result in widely different performance times. The variation 

in query performance times is due to vector irregularity and the tile size of the raster dataset.
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2.4 High Performance Geocomputation Environments

Table 1, provides a summary of the current open-source platforms available for conducting 

high performance geospatial analysis. The current IPUMS-Terra architecture led us to focus 

our research on two geocomputation environments that operate on different data models. 

PostgreSQL with PostGIS, operates on the entity model is ideally suited for vector datasets, 

whereas SciDB’s array model should benefit raster analysis.

PostgreSQL with the PostGIS extension is the only robust open-source system built for 

server-side operations that conducts spatial analysis of both raster and vector data types (as 

distinct from more desk-top oriented systems such as QGIS and GRASS, although this 

distinction is blurring over time). PostgreSQL does not natively support parallel queries for 

analyzing many kinds of big spatial data, and parallelization (essentially breaking a big 

problem into many small ones handled by separate computing cores) is the primary way in 

which big data is handled by most computation platforms. In our previous work we extended 

upon the existing PostgreSQL platform (Haynes, Ray, Manson, & Soni, 2015; Ray, Simion, 

Brown, & Johnson, 2014). Haynes et al. (2015), discussed a prototype shared-nothing 

parallel spatial database, called SpatialStado. SpatialStado acts as a coordinating node 

allowing it to leverage multiple PostgreSQL instances but currently has not implemented the 

raster data type.

Relational Database Systems (RDBS) like PostgreSQL, which operate on the entity model, 

are not well designed to handle raster datasets. Stonebraker (2011) describes how RDBS, 

which operate on a table platform must simulate arrays to handle raster data types, and this 

simulation comes at a cost. In our experience, this is a major reason why queries that involve 

high resolution raster datasets may fail within PostGIS.

SciDB is an open-source multi-dimensional array database and parallel computation engine, 

designed to work with array-structured datatypes such as astronomy data and genomics, and 

is now being adopted to geospatial datasets. Array databases such as SciDB and Rasdaman 

are well suited for analyzing large array datasets (Pavlo et al., 2009; Planthaber, Stonebraker, 

& Frew, 2012). However, there has been no existing literature that we are aware of that test 

either of these platforms performance in the primary forms of raster spatial analyses: local, 

focal, and zonal.

Scaling zonal analysis in particular to handle big spatial data is challenging. Unlike many 

geospatial methods that operate exclusively on raster or vector data, zonal statistics operate 

across both raster and vector data. As a result, these methods must integrate calculations 

across massive raster data as well as irregular vector data. Zones are spatially irregular, but 

the calculations applied to each zone are identical. Such problems are classified as loosely-

synchronous by Ding and Densham (1996) because the spatial domain is irregular, but the 

algorithms (calculations) are regular. This classification of problems, including zonal 

statistics, can be parallelized using non-overlapping equal area or adaptive spatial 

partitioning.
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3. Methods

We compared SciDB and PostgreSQL with PostGIS in terms of how they performed with 

zonal overlays between vector and raster datasets. This operation is quite common to any 

geospatial process that involves combining different data types and is essential to the 

existing bottleneck in IPUMS-Terra. We installed PostgreSQL 9.6 with PostGIS 2.3.0 and 

SciDB 16.9 onto a single machine with 8 gigabytes of random access memory (RAM) and 

four processing cores. The operations that we tested in this analysis are the spatial join and 

array join features of both platforms. As both platforms operate on different data models, we 

will evaluate which data model is optimal for raster summarizations. Since SciDB does not 

natively support vector datasets, we utilized secondary software to transform the vector 

dataset into an array that can be read by SciDB. This array has the same spatial resolution as 

the raster data and acts as a mask, which is analogous to the vector/raster overlay process in 

PostgreSQL.

All of the queries written for PostgreSQL and SciDB utilized aggregate functions. 

Aggregate functions are a class of functions in databases that operate over user-defined sets 

of data. For example, the function “average” or “sum” in Structure Query Language (SQL) 

is an aggregate function that can be utilized in a SQL query with a user-defined “Group By” 

clause. Aggregate functions are important because when written correctly they improve 

query performance by decomposing mathematical formulas into elements that can be 

operated on sequentially (thereby reducing memory requirements) or in parallel (reducing 

execution time). The aggregate function ST_SummaryStatsAgg only recently became 

available in PostGIS 2.2.0 (Ramsey, P., 2015).

3.1 Platform Specifications

PostgreSQL with PostGIS supports both vector and raster dataytpes, both vector datasets 

and raster datasets are loaded into the database. The vector datasets utilize the Generalized 

index Search Tree (GiST) index on the geometry column and the raster datasets are loaded 

with the default raster constraints, and includes a GiST index on the bounding boxes of 

raster tiles.

SciDB does not support vector datatypes and uses array dimensions as proxies for indices. 

Conducting zonal analyses in SciDB requires we utilize an intermediary script to perform 

raster zonal analysis (pseudo code is found in Figure 2). First the Geographic Data 

Abstraction Library (GDAL) and OGR Simple Features Library (OGR) are used to access 

the geographic boundary and rasterize it. Next the SciDB-Py module is used to transfer the 

raster array into SciDB, where a raster join query, written in SciDB’s Array Functional 

Language (AFL), is submitted to perform the analysis. Since SciDB, does not use indices 

Figure 2 depicts the process of aligning the array dimensions of the masked raster and 

clipped global raster.

Our research sought, in part, to determine how raster partitioning, termed a tile size 

(PostgreSQL) or chunk size (SciDB), affects raster zonal analyses. Raster datasets are 

loaded into both platforms using a variety of partitioning sizes. The proposed optimal chunk 

sizes for SciDB (Table 3) are in the range of between five and 50 megabytes (Stonebraker et 
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al., 2011). Chunk size is determined by estimating the number of megabytes based on the 

input value datatype, which is a 16 bit integer in this case. The raster dataset being loaded is 

a dense raster dataset and we employ a square non-overlapping chunk structure. There is no 

such stated ideal tile size for PostgreSQL. To account for this lack of an a priori tile size, the 

raster dataset was loaded into the database at various tile sizes, the results are discussed 

further.

3.2 Datasets Analyzed

One raster dataset and three different vector datasets were used for this comparison (Figure 

3). The global raster used for comparison is Global Landcover 2000 from the European 

Space Agency, which has a spatial resolution of 0.0089 decimal degree or approximately 

one square kilometer at the equator. It is a dataset commonly employed by domains ranging 

from economics to ecology (Bartholomé & Belward, 2005) (Figure 3C). The vector datasets 

used for this analysis come from the US Census Cartographic boundaries (United States 

Census, 2016). Both raster and vector datasets were modified to use only the geospatial 

extent of the continental United States. The first vector dataset is the counties boundaries of 

the continental United States, which has approximately 3,000 features. The second dataset 

are the state boundaries of the continental United States, which have the same spatial extent 

as the first dataset but with only 49 geographic units. Finally, we increased the spatial scale 

further with the Large-Scale International Boundaries (LSIB), which is the merger of the 

EurasiaOceania and AfricaAmericas 2015 boundaries (United States Department of State, 

2015). The merged dataset was modified by removing Antarctica and contains 249 country 

national boundaries. The LSIB dataset was chosen as it provides an accurate description of 

all current geospatial administrative boundaries for the globe. This will allow us to assess the 

capabilities and performance of both platforms when varying the partitioning strategies 

(termed tile size in PostgreSQL and chunk size in SciDB) for a global geospatial analysis.

4. Results

To directly compare platforms, we loaded each raster dataset into the database platforms at 

various partitioning sizes and then conducted zonal analysis on the each of the raster 

datasets. Figure 4 depicts the variation that occurs when conducting zonal analyses within 

PostgreSQL. Query performance is affected by tile size and the spatial irregularity of the 

vector datasets. Figure 4 captures vector irregularity in that it shows how the tile size chosen 

for one vector dataset with a high number of geographic features is unlikely to be beneficial 

for another with a small number of geographic features with the same extent. Therefore 

spatial irregularity affects the performance of zonal analysis for PostgreSQL.

Figure 4 depicts a “U-shaped” curve for the us_counties datasets, with an optimal tile size of 

300×300 for this dataset. The results show that the us_counties dataset is strongly negatively 

affected by both large and small tile sizes. The strength of the adverse performance is due to 

high irregularity of the dataset and the large number of geographic features (3000). The 

us_counties dataset is characterized by a large number of geographic features with small 

spatial extents.
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Figure 4 depicts a “L-shaped” performance curve for the us_states datasets. This dataset’s 

poorest performance is when the tile size is the smallest, 50×50. As the tile size increases 

performance improves, and the ideal performance time occurs when the each feature size is 

roughly similar to raster tiles size. Performance degrades when geographic features intersect 

many smaller raster tiles.

This analysis demonstrates the complexity of choosing a single tile size for analyzing both 

vector datasets in PostgreSQL. Query performance is related to a two factors: tile size and 

feature irregularity, which is composed of the feature spatial extents and the number of 

features in the dataset. Both datasets show improved query performance time when the size 

of the raster tile is similar to the size of the geographic features. This reduces the time 

required for creating the masked features. As the tile size changes, from the ideal tile size, 

query time increases because in either case we are now creating more or larger arrays.

Figure 4 as initially presented suggests that continuously increasing the tile size would 

continue benefit the us_states dataset. With extended testing, however, we are able to reject 

that claim. Figure 5 depicts that continuing to increase the tile size will degrade the 

performance the us_states dataset. With us_states, the best query performance occurred with 

a tile size of 1000×1000, and after this query times began to increase. The effect of this trend 

is not as pronounced as with the us_counties dataset because the number of features is small. 

Still we conclude that tile size affects the performance of raster/vector overlays in 

PostgreSQL.

Figure 6 displays the averaged performance times of SciDB, which includes the time 

necessary to rasterize the vector dataset and transfer it to SciDB. As discussed earlier, SciDB 

only supports an array data model so an intermediary script is used to convert the vector 

datasets into an array and load it into SciDB so the analysis can be performed. Results of 

zonal analysis in SciDB indicate virtually no changes in performance when analyzing 

datasets with different vector complexities. The times reported for us_counties and us_states 

are almost identical, because the SciDB’s model operates on the partitioned arrays. Each 

SciDB instance is given a portion of the rasterized polygon and a portion of the global raster 

dataset. The times are similar because the amount of data being analyzed is similar. 

Interestingly our results show that defined partition size has very little effect on the 

performance of SciDB as all queries are finishing within 10 seconds of each other.

Figure 6 does illustrate improved performance that comes when the partition size is 

1,000×1,000 for both datasets. This improvement is due to the type of query implemented in 

SciDB. The query was written to reflect as accurately as possible the PostgreSQL query, 

which would allow a direct comparison between the two platforms. The zonal analysis 

conducted with SciDB required subsets the global raster array so that it can align with 

dimension of the polygon mask. The function “subarray” creates a resulting array that is 

likely to have a default chunk size of 1,000×1,000. When the resulting raster subset and the 

rasterized overlay have the same chunk size we see increased performance. If sub setting or 

“cropping” is frequently performed by an application – as it is with IPUMS-Terra – then 

choosing default chunk size of 1,000×1,000 would yield better performance.
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The two platforms, SciDB and PostgreSQL w/ PostGIS, showed significant differences 

when performing zonal overlays between vector and raster datasets with states and counties 

datasets (us_states and us_counties respectively). Conducting zonal analysis within 

PostgreSQL’s entity relationship model resulted in a wider variation in query time 

performance. Conversely, SciDB’s array database model, which operates on the partitioned 

raster, had a very impressive consistent performance. Neither spatial extent of the geography, 

the number of geographic features, nor the tile size affected the performance with SciDB.

The final analysis increases the scale of the overlay to a global extent with the national LSIB 

boundaries. Due to the magnitude of the datasets, we considered alternative query structures 

that could improve performance for the global analysis. However, for PostgreSQL, the 

vector to raster overlay join was superior to employing a raster to raster join and those times 

are reported. For SciDB, a global array to global array join was superior to performing a 

number of sub analyses over the dataset and those times are reported. SciDB’s 

implementation required that the all of the LSIB boundaries were rasterized and written to a 

geotiff file, which was then loaded into SciDB as an array. Rasterizing the boundaries 

shapefile using the serial GDAL library took approximately 50 seconds. We have not 

included the rasterization time as part of query perform time for SciDB as this was 

considered part of the data loading process for creating a new raster dataset. Additionally 

there are parallelization techniques using R or Python that could be employed to greatly 

reduce this time.

The direct comparisons between the two platforms utilized three different partitioning sizes. 

Tile sizes of 250, 500, and 1000 were chosen for PostgreSQL and are termed small, 

medium, and large respectively. These tile sizes were chosen to capture the maximum 

variation of PostgreSQL’s performance. SciDB’s chunk sizes were again determined by 

calculating the estimated number of megabytes resulting in chunk sizes of 1000, 3163, and 

4473.

Figure 7 illustrates the advantage of SciDB over PostgreSQL when analyzing large raster 

datasets. PostgreSQL’s best performance occurred when performing zonal statistics with the 

largest tile size. The average query time for PostgreSQL was approximately 497.54 seconds, 

with the largest tile size for 1000. The performance of SciDB on the larger raster dataset 

exceeded expectations. Many of the SciDB queries finished in approximately 120 seconds, 

with the best performance of 113.55 seconds resulting from a chunk size of 4473. The 

results show a similar pattern as in the previous analysis in that chunk size had little effect 

when conducting a raster zonal analysis.

Table 4 depicts the performance gains of using SciDB over PostgreSQL on big raster 

datasets. SciDB was able to process the larger raster dataset more efficiently than 

PostgreSQL because of its parallel architecture and array design. The category comparisons 

are useful for conducting a direct comparison between architectures. PostgreSQL’s 

performance changes drastically as a function of the tile size of the raster dataset; this 

variation is undesirable when scaling geospatial applications. For example, category “small” 

in Table 4 depicts PostgreSQL’s worst time and SciDB’s best. A direct comparison between 

these two times results in a 29 times performance speedup for SciDB. The category “large” 
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in Table 4 depicts PostgreSQL’s best time and SciDB’s best and still SciDB shows increased 

performance, at a little over one speedup per core. Clearly SciDB is a useful tool for 

analyzing big geospatial data.

5. Conclusion

We are in the era of big data. Much of the geospatial data currently collected already 

exemplifies big data and with the deployment of sensors and wearable devices, big spatial 

data will increasingly become the norm. One important challenge for GIScience is to 

develop accessible geospatial platforms that harness and provide access to geospatial data. 

The GIScience community has taken tremendous strides to develop efficient ways of 

parallelizing big spatial data for analysis, but still faces critical gaps in connecting data 

storage infrastructure to data processing infrastructure. IPUMS-Terra bridges this gap by 

providing both capabilities in a single platform.

Another challenge is that the tools used for working with raster and vector data are largely 

separate and this reduces the ability for the larger science community to fully utilize 

geospatial data. Geoprocessing services are a promising solution for raster and vector data 

integration as they allow for the integration of heterogeneous data types. However, many 

geoprocessing services are integrated within Web GIS platforms such as MapServer or 

GeoServer. These software systems are likely to be ineffective on big data as their primary 

purpose is data sharing and data visualization. Their geoprocessing algorithms only operate 

on data within their framework and must move data from external sources into their domain.

As spatial data infrastructure continues to grow, the gap between big data availability and 

high performance computation becomes a critical infrastructure challenge. IPUMS-Terra 

bridges this gap, because it contains large volumes of free data tethered to high-performance 

geospatial computation. Its users aren’t required to analyze big geo data on a desktop GIS, 

but instead utilize the high performance computation (HPC) capabilities of the 

infrastructure. IPUMS-Terra is a critical piece of the spatial data infrastructure that addresses 

many challenges by supporting heterogeneous data types and linking users to big data 

computation resources. The project also demonstrates a potential evolution of web 

processing services, in which the analyses are pushed to the data instead of data being 

carried to analysis. Big data platforms and tools are likely to scale well for big spatial data 

and offer greater flexibility for end users.

This paper compares differing architectures and their effectiveness on big geospatial data. 

SciDB’s partitioned array model is promising for analyzing big raster datasets as it is more 

efficient at scaling out analyses. However, its increased performance is only likely to be seen 

in queries that have large geographic extents that surpass the current limits of PostgreSQL. 

The raster dataset utilized in our experiments has a very coarse resolution and one of the first 

steps in future research will be to determine performance over a range of higher resolution 

datasets. Lastly, we plan to integrate SciDB into the IPUMS-Terra’s ecosystem to support 

scalable and efficient raster computation.
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Figure 1. 
IPUMS-Terra System Architecture
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Figure 2. 
SciDB Raster Zonal Analysis Pseudocode
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Figure 3. 
Datasets Used for Scaling Zonal Statistics
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Figure 4. 
Performance of PostgreSQL Zonal Analysis Based on Raster Tile Size
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Figure 5. 
Extended Analysis of PostgreSQL Zonal Statistics for US States Dataset
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Figure 6. 
Performance of SciDB for Zonal Analysis Based on Array Chunk Size
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Figure 7. 
Comparison of Large Scale Zonal Statistics
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Table 1.

Characteristics of High Performance Geocomputation Environments

Vector Analysis Raster Analysis Scalable

Spatial Hadoop X X

GeoMesa X X

GeoTrellis X X

PostgreSQL w/ PostGIS X X

Greenplum DB X X

Rasdaman X X

SciDB X X
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Table 2.

IPUMS-Terra Integrated Data Structures

Data Structures Spatial representations

Microdata: Each record represents an individual person, 
household, or firm

Each record includes a code identifying a geographic polygon (e.g., state) 
or a point (street address)

Vector: Each record contains information about a place, such as 
census tabulations.

Each record includes coordinates defining a geographic polygon or point 
(e.g., zip code, environmental zone)

Raster: Two-dimensional grid of pixels, where each pixel 
provides a value for a variable

Each grid cell corresponds to a rectangular area on the ground
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Table 3.

Chunk sizes for SciDB

Estimated MB Chunk dimensions Pixels per chunk Estimated number of chunks

1 1000 * 1000 1,000,000 659.3

5 2237 * 2237 5,004,169 131.8

10 3163 * 3163 10,004,569 65.9

15 3873 * 3873 15,000,129 43.9

20 4473 * 4473 20,007,729 32.9
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Table 4.

SciDB Performance Speedup

PostgreSQL Average
Query Time

SciDB Average
Query Time

Speedup Speedup per
Core

Small 3415.808 115.750 29.510 7.378

Medium 1146.386 121.930 9.402 2.350

Large 497.549 113.552 4.382 1.095
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