Skip to main content
. Author manuscript; available in PMC: 2019 Sep 27.
Published in final edited form as: IEEE Trans Knowl Data Eng. 2018 Jan 17;30(8):1440–1453. doi: 10.1109/TKDE.2018.2794384

Algorithm 1.

ϵ-Differentially Private DOLA

1: Input: fti(w):=l(w,xti,yti),i[1,m] and t[0,T]; initial points w01,,w0m; doubly stochastic matrix At=(aij(t))Rm×m; maximum iterations T.
2: for t=0,,T do
3: for each node i=1,,m do
4:   bti=j=1maij(t+1)(wti+σti), where σtj is a Laplace noise vector in n;
5:   gtjfti(bti,ξti);
6:   wt+1i=Pro[btiαt+1gti], where σti~Lap(μ);
  (Projection onto W)  (Lap(μ) defined in (11))
7:   broadcast the output (wt+1i+σt+1i)toG(t+1)i;
8: end for
9: end for