Skip to main content
. Author manuscript; available in PMC: 2019 Sep 27.
Published in final edited form as: IEEE Trans Knowl Data Eng. 2018 Jan 17;30(8):1440–1453. doi: 10.1109/TKDE.2018.2794384

Algorithm 3.

Sparse Private Distributed Online Learning

1: Input: fti(w):=l(w,xti,yti),i[1,m] and t[1,T]; doubly stochastic matrix At=(aij(t))Rm×m.
2: Initiaization: ϑ1i=0,i[1,m];
3: for t = 1,...,T do
4: for each node i = 1,...,m do
5:   receive xtin;
6:   pti=φt*(ϑtj);
7:   wti=arg minw12ptiw22+ρw1;
8:   predict y^ti;
9:   receive yti and obtain fti(wii):=l(wti,xti,yti);
10:   broadcast to neighbors: ϑ˜t+1i=ϑt+1i+δti;
11: end for
12: end for