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Summary

Gene expression levels in clonal bacterial groups have been found to be spatially correlated. These 

correlations can partly be explained by the shared lineage history of nearby cells, however they 

could also arise from local cell-cell interactions. Here, we present a quantitative framework that 

allows us to disentangle the contributions of lineage-history, long-range spatial gradients, and local 

cell-cell interactions to spatial correlations in gene expression. We study pathways involved in 

toxin production, SOS stress response, and metabolism in Escherichia coli microcolonies and find 

for all pathways that shared lineage history is the main cause of spatial correlations in gene 

expression levels. However, long-range spatial gradients and local cell-cell interactions also 

contributed to spatial correlations in SOS-response, amino-acid biosynthesis, and overall 

metabolic activity. Together our data shows that the phenotype of a cell is influenced by its lineage 

history and population context, raising the question whether bacteria can arrange their activities in 

space to perform functions they cannot achieve alone.

Introduction

Many bacteria do not live in isolation, but instead are members of larger communities 

(Claessen et al, 2014). The microenvironment in these communities is partly determined by 

abiotic conditions, but it is also affected by the activities of a cell’s neighbors (Flemming et 
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al, 2016; Stewart & Franklin, 2008). At the same time, cells adjust their phenotype by 

regulating gene expression based on the inferred state of the local microenvironment. The 

phenotype of a cell is thus likely influenced by its location in the community and by the 

identity and the activities of neighboring cells.

The functionality of the community as a whole depends on the combined activities of all of 

its members. Being part of a group can allow cells to specialize in performing different tasks 

(van Gestel et al, 2015a). Such interactions between different cell types can lead to new or 

improved functionality that goes beyond the sum of the activities of the individual cells 

(Claessen et al, 2014; van Vliet & Ackermann, 2015). In multispecies biofilms, most of this 

specialization is the result of genetic differences between member species. However, 

specialization can likewise occur in single species communities as the result of phenotypic 

variation among cells (van Gestel et al, 2015a; Ackermann, 2015; Mohr et al, 2013; 

Ackermann et al, 2008). One well studied example is in clonal Bacillus subtilis biofilms, 

where functionality depends on interactions between multiple different cell types (Lopez & 

Kolter, 2010; van Gestel et al, 2015a).

Interactions between different cell types can be sensitive to the spatial arrangements of the 

different types (Liu et al, 2016; Nadell et al, 2016). For example, the division of labor 

between nitrogen fixing and photosynthetic cells in multicellular cyanobacteria is likely 

more efficient due to the regular spacing of nitrogen fixing cells along the filaments (Muro-

Pastor & Hess, 2012). Furthermore, recent work in B. subtilis colonies directly linked 

functionality at the group level to the spatial arrangement of two cell types that perform 

complementary functions (van Gestel et al, 2015b). More generally, we expect that 

correlations in the phenotypes of neighboring cells can be beneficial for a large number of 

activities (Ross-Gillespie & Kümmerli, 2014). Positive correlations in phenotypes (i.e. 

neighbors having similar phenotypes) can allow cells to coordinate their activities. This can 

for example be of benefit in the production of secreted effectors, by allowing a sufficient 

build-up in local effector concentrations. Negative correlations in phenotypes (i.e. neighbors 

having different phenotypes) can facilitate division of labor between cells. This can be of 

benefit in the context of anabolic pathways: cells can benefit from economies of scale by 

specializing on the biosynthesis of a subset of metabolites, while exchanging end products 

with neighbors specializing on complementary pathways (Johnson et al, 2012; Guantes et al, 
2015).

Spatial correlations in phenotypes can be the result of several processes. In previous work it 

was found that phenotypes can be epigenetically inherited (Robert et al, 2010; Veening et al, 
2008b; 2008a; Hormoz et al, 2015; Julou et al, 2013). Such epigenetic inheritance leads to 

positive correlations between the phenotypes of closely related cells (e.g. between sisters 

(Hormoz et al, 2015)). As neighboring cells tend to be closely related, epigenetic inheritance 

can lead to positive spatial correlations in phenotypes. Furthermore, neighboring cells are 

exposed to a similar combination of environmental gradients (Flemming et al, 2016; Stewart 

& Franklin, 2008). A shared gene regulatory response to these gradients can thus result in 

positive correlations in phenotypes. Finally, local cell-cell interactions can lead to a coupling 

in expression levels between neighbors (Risser et al, 2012; Bassler & Losick, 2006). These 

intercellular feedbacks can give rise to either positive or negative correlations in phenotypes. 
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Spatial correlations in phenotypes will depend on the combined effects of epigenetic 

inheritance, spatial gradients, and intercellular feedbacks. However, we lack a quantitative 

understanding of the relative contributions of these processes to spatial correlations in 

phenotype.

Here we address the following question: to what extent are cellular activities correlated 

between neighboring cells? We are especially interested in disentangling the effects of 

epigenetic inheritance, spatial gradients, and intercellular feedbacks and quantifying their 

relative importance. As a model system, we used two-dimensional microcolonies of 

Escherichia coli. We followed the growth of a microcolony using time-lapse microscopy 

while tracking spatiotemporal gene expression patterns using transcriptional reporters. 

Subsequently, we quantified spatial correlations in gene expression and developed a novel 

quantitative approach to disentangle the effects of shared linage history, spatial gradients, 

and local interactions. We found strong spatial correlations for all studied pathways, which 

we could attribute to the effects of shared lineage history and, for some pathways, the effects 

of spatial gradients and local interactions.

Results

We used time-lapse microscopy to follow the growth of microcolonies of E. coli founded by 

a single cell. Gene expression was quantified using plasmid-based green fluorescent protein 

(GFP) transcriptional reporters. The mean fluorescent intensity of the transcriptional reporter 

is approximately proportional to the concentration of GFP and hence a proxy for the 

concentration of the protein encoded by the gene of interest; we refer to this quantity as 

protein level. We furthermore quantified the rate of change in the total fluorescent intensity 

over time, which is a proxy for the promoter activity (Kiviet et al, 2014, see Methods). We 

verified that our main findings can be reproduced using chromosomally integrated 

transcriptional reporters and are robust to changes in the bacterium used as model system 

(See Figure S10).

Neighboring cells have similar protein levels of Colicin Ib

We first investigated the spatial expression patterns of the bacteriocin colicin Ib (cib), which 

is a pore-forming toxin found in natural isolates of E. coli and Salmonella (Riley & Wertz, 

2002; Cascales et al, 2007). In natural systems the extra cellular concentration of bacteriocin 

needs to reach a threshold concentration to inhibit the growth of nearby sensitive cells 

(Cascales et al, 2007). If neighboring cells coordinated their expression dynamics, it would 

be easier for them to reach this threshold concentration. We thus hypothesized that Colicin 

Ib protein levels should be positively correlated between neighboring cells.

cib transcription is co-repressed by the binding of LexA to the SOS-box (SOS DNA repair 

response) and by the binding of Fe2+-Fur complex to the iron box (Ferric uptake regulation) 

(Cascales et al, 2007; Nedialkova et al, 2014). cib transcriptional repression can be partly 

relieved by activation of the SOS-response in response to DNA damage, or by a shortage in 

ferrous iron (Fe2+) (Spriewald et al, 2015; Nedialkova et al, 2014). Here, we relieved 

repression by Fur by chelating free iron in the medium. We did not induce SOS response, so 
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any cib expression is likely the result of SOS induction due to spontaneous occurring DNA 

damage (Pennington & Rosenberg, 2007).

Colicin Ib protein levels varied strongly between cells in a microcolony (median coefficient 

of variation=0.19, n=8, Figure 1A). This is consistent with previous reports of high variation 

in colicin expression levels (Silander et al, 2012). We do not expect any genetic variation 

between cells in the microcolony: when a microcolony is founded by a single cell there is a 

88% chance that no mutations occur during 7 generations, giving rise to more than 100 cells 

(assuming a mutation rate of 10-3, per genome, per generation (Lee et al, 2012)). Likewise, 

we do not expect abiotic variation in the agar pads: in the absence of uptake or release of 

compounds by cells, diffusion should equalize any inhomogeneities across the colony within 

seconds (e.g. a molecule with a diffusion coefficient similar to that of glucose (D~600 

μm2/s) diffuses across a microcolony (~13μm) in approximately 0.07 seconds). However, 

when cells excrete and take up nutrients and metabolites from the environment, they can 

create gradients on length scales comparable to the cell size, as long as the uptake rate (k) is 

comparable to the diffusion constant (length of gradient ∼ k /D (Hiscock & Megason, 

2015)). Phenotypic variation in the colony can thus be the result of cells adjusting their gene 

expression dynamics based on these local gradients. Furthermore, gene expression noise is 

likely an important factor leading to the observed phenotypic variation (Elowitz et al, 2002; 

Ozbudak et al, 2002; Kaern et al, 2005).

Visual inspection suggested that Colicin Ib protein levels were non-randomly distributed in 

the colony: neighboring cells appeared to have similar levels of Colicin Ib (Figure 1A). To 

quantitatively investigate the expression patterns, we first corrected the fluorescent images 

for optical artifacts (Figure 1B and S1, see Methods). Subsequently, we quantified the spatial 

correlation in Colicin Ib protein levels using a randomization test. We found that 

neighboring cells are significantly more similar to each other than can be expected by 

chance (Figure 1D, p=10-4, see Methods). We observed similar patterns for an additional 8 

replicate microcolonies (Figure S2), confirming that Colicin Ib protein levels are spatially 

correlated.

Two main factors could contribute to the observed positive spatial correlation in Colicin Ib 

protein levels: shared lineage history and spatial proximity. However, these two factors are 

strongly correlated with each other. To disentangle their contributions we reconstructed the 

full, spatially resolved, lineage trees of the microcolonies (Figure 2A) and developed a 

statistical method to analyze these lineage trees.

Shared lineage history leads to spatial correlations in colicin Ib expression dynamics

First, we developed a test for the effect of shared lineage history on spatial correlations in 

phenotype. We disentangle the effect of relatedness from the effect of spatial proximity by 

analyzing a group of cells that differ in their relatedness, but that are identical in their spatial 

arrangement. Specifically, we select a focal cell, locate its closest relative (e.g. its sister), and 

then find a third cell (the equidistant cell) that has the same distance to the focal cell as the 

closest relative, but that is less related (Figure 2B). We then calculated the phenotypic 

difference (i.e., the difference in the Colicin Ib protein levels) between the focal cell and its 

equidistant cell (δED) and between the focal cell and its closest relative (δCR). To compare 
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the magnitude of these phenotypic differences, we calculated the ratio δED/δCR that 

quantifies the effect of shared lineage history: values larger than 1 indicate that shared 

lineage history leads to similarity in phenotype (i.e. positive correlations), while values 

smaller than 1 indicate that shared lineage history leads to dissimilarity in phenotype (i.e. 

negative correlations).

We found that shared lineage history leads to positive correlations in Colicin Ib protein 

levels: a cell is much more similar to its closest relative than to an equally distant (but less 

related) cell. Specifically, the phenotypic difference between a focal cell and the equidistant 
cell is on average 5.8 times higher than the phenotypic difference between the focal cell and 

its closest relative (Figure 3A, 〈δED/δCR〉=5.8, p<1·10-5, t-test, n=9). Additionally, we found 

that closely related cells are also similar with respect to their cib promoter activity (Figure 

3A, 〈δED/δCR〉=1.8, p=0.002). While the similarity in protein level is to be expected due to 

protein inheritance, the similarity in promoter activity shows that closely related cells are 

also similar in their current activities.

Spatial proximity leads to spatial correlations in Colicin Ib protein level

Can the observed spatial correlation in Colicin Ib protein levels be fully explained by the 

shared lineage history of neighbors, or are there additional factors that couple gene 

expression in neighboring cells? To answer this, we developed a test to quantify whether 

spatial proximity contributes to spatial correlations in phenotypes, after correcting for the 

effects of shared lineage history. To do so, we compare a group of cells that are identical in 

their relatedness, but that differ in how far they are apart in space. We then asked whether a 

cell is more similar to its neighbors in terms of colicin Ib expression than to cells that have 

the same relatedness, but that are further away in space.

Specifically, we select a focal cell, pick one of its neighbors, and then find a third cell (the 

equally-related cell) that has the same relatedness to the focal cell as the neighbor but that is 

further away in space (Figure 2C). For example, if the chosen neighbor is a first cousin of 

the focal cell, then we selected another cell that is also a first cousin of the focal cell but 

further away in space; this is the equally related cell. We then calculated the phenotypic 

difference between the focal cell and its equally-related cell (δER) and between the focal cell 

and its neighbor (δNB). To compare the magnitude of these phenotypic differences, we 

calculated the ratio δER/δNB that quantifies the effect of spatial proximity: values larger than 

1 indicate that spatial proximity leads to similarity in phenotype (i.e. positive correlations), 

while values smaller than 1 indicate that spatial proximity leads to dissimilarity in phenotype 

(i.e. negative correlations). We verified that our test completely corrects for the effects of 

lineage history by applying it to a data set generated by a computer simulation of gene 

expression dynamics (Figure S6, see Methods for details).

We found that spatial proximity leads to significant similarity in Colicin Ib protein levels: 

the phenotypic difference between a focal cell and an equally-related cell is on average 15% 

larger than the phenotypic difference between the focal cell and its neighbor (Figure 3B, 

〈δER/δNB〉=1.15, p=1·10-3). However, spatial proximity does not significantly affect 

promoter activity (Figure 3B, 〈δER/δNB〉=0.99, p=0.7).
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Why did we observe that spatial proximity leads to similarity in protein levels, but not in 

promoter activities? One possible reason is that protein levels have a longer autocorrelation 

time than promoter activities. The amount of proteins inside a cell is the sum of protein 

production and protein inheritance and therefore depends on the transcriptional activity of 

both the cell itself and its ancestors. Contrarily, we determined the promoter activity as the 

amount of proteins produced during roughly one cell cycle. The overall (i.e. time-averaged) 

activities of cells could be spatially correlated even if they are not synchronized in time, for 

example due to transcriptional bursts or time-delays between the responses in neighboring 

cells. This would lead to an observed similarity over longer timescales (i.e. for protein 

levels) even when there is no similarity on shorter time scales (i.e. for promoter activity). 

Furthermore, promoter activities, which are calculated using temporal derivatives, are likely 

more affected by measurement noise than protein levels, which are directly measured. Weak 

correlations in promoter activity due to spatial proximity could thus be harder to detect.

In summary, our data shows that both shared lineage history and spatial proximity contribute 

to positive spatial correlations in Colicin Ib protein levels. Shared lineage history also 

contributes to positive correlations in cib promoter activity, but there is no evidence that 

spatial proximity also affects promoter activities.

Global spatial effects lead to correlations in Colicin Ib protein levels

Spatial proximity could lead to correlations in expression levels in two ways: by global and 

by local spatial effects. Global spatial effects refer to situations where expression dynamics 

vary systemically with the overall position of a cell in the microcolony. Specifically, we 

investigated whether expression dynamics correlated with the distance of a cell to the edge 

of the colony. Additionally, local (i.e. microscale) effects could lead to correlations in 

expression dynamics. Such local effects are most likely the result of interactions between 

neighboring cells. These interactions can be either the result of direct sharing of cellular 

components or be a consequence of intercellular feedbacks mediated though the local 

microenvironment. Both global and local effects could thus affect the phenotype of a cell 

through spatial variation in the environment. Although there is no fundamental difference 

between these two situations, we reserve the term global spatial effects for cases where the 

microenvironment varies on spatial scales that are (much) larger than the size of a cell and 

use local effects for cases where variation occurs on scales comparable to the size of a cell.

First, we analyzed whether global spatial effects contribute to spatial correlations in Colicin 

Ib protein levels. Visual inspection suggested that expression levels increased towards the 

center of the colonies. A linear regression of Colicin Ib protein levels with a cell’s distance 

to the colony edge confirmed this observation (mean r2=0.096, Figure S7). As neighboring 

cells are similar in their distance to the colony edge, the observed correlation between 

protein levels and the distance to the colony edge could thus lead to similar expression levels 

in neighboring cells. Cells at the colony edge could differ in phenotype from those in the 

center due to differences in the environment they experience (e.g. local density, nutrient 

availability, etc.) or due to differences in cell biology (e.g. cells at the colony edge tend to 

have older cell poles, Figure S7D,E).
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To what extend does the observed global trend in Colicin Ib protein levels explain the effect 

of spatial proximity? To find out, we recalculated the effect of spatial proximity after 

correcting for the global spatial effects. We do this correction by subtracting the expected 

phenotype determined from the linear regression from the observed phenotype (Figure 3C). 

We then recalculated the effect of spatial proximity using the obtained residuals. The 

magnitude of global spatial effects is subsequently estimated as the difference between the 

effect of spatial proximity determined from the observed phenotype of a cell (δER/δNB, 

Figure 3B) with the effect of spatial proximity determined from the residuals of the linear 

regression (δER/δNB|resid, Figure 3C).

We found that the spatial correlations in Colicin Ib protein levels are strongly influenced by 

global spatial effects (Figure 3D, 〈δER/δNB − δER/δNB |resid〉=0.18, p=6·10-4). In fact, we no 

longer observe a significant effect of spatial proximity when we only analyze the local 

spatial effects (Figure 3C, 〈δER/δNB|resid〉=0.98,p=0.3). The spatial correlations in Colicin Ib 

protein levels are thus mainly the result of shared lineage history and shared overall position 

in the colony. Does this mean that intercellular feedbacks do not play any role in Colicin Ib 

expression patterns?

Direct cell-cell interactions in SOS response

We designed an experimental system where we could directly test if intercellular feedbacks 

affect Colicin Ib expression dynamics. The system consists of two strains: an inducible 
strain in which we can induce the expression of a target gene and a reporter strain that has a 

reporter for the same gene, but that does not respond to the inducing signal. If intercellular 

feedbacks were present, reporter cells neighboring inducible cells should have higher 

expression levels than isolated reporter cells.

We expect that cib expression is mainly the result of fluctuations in SOS response activity as 

we relieved transcriptional repression by Fur by chelating free iron in the medium 

(Nedialkova et al, 2014; Spriewald et al, 2015; Pennington & Rosenberg, 2007). We thus 

hypothesized that any interactions in colicin expression dynamics would most likely be the 

result of intercellular feedbacks in SOS response.

To test this hypothesis, we constructed a strain in which we could induce SOS response by 

expressing a nuclease inside the cell (Figure 4A, Methods). To measure SOS response levels, 

we used a transcriptional reporter for recA, which is a key component of the SOS response 

and has previously been used as a reporter for SOS induction levels (Friedman et al, 2005).

We first tested for the presence of intercellular feedbacks by mixing recA reporter cells with 

cells with inducible SOS response. We grew the two strains together on agar pads and 

compared SOS induction levels in reporter cells that neighbored inducible cells with reporter 

cells without inducible neighbors. We found that in 14 out of 15 replicates SOS induction 

levels were higher when reporter cells neighbored an inducible cell (Figure 4B, mean 

relative induction=1.030, p=9·10-4, n=15). This suggests that cells can induce their 

neighbors’ SOS response with their own. However, from this data we cannot accurately 

estimate the strength of the induction, as only a small fraction (~11%) of the inducible cells 

actually has elevated levels of SOS response (Figure S9B).
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We performed a second set of experiments where we added a recA reporter to the inducible 

cells, thus allowing us to determine which inducible cells had elevated levels of SOS 

response and how they influenced their neighbors. We then compared the SOS response 

levels in reporter cells neighboring inducible cells with high SOS response level (top 10%) 

to a control group consisting of reporter cell neighboring inducible cells with low SOS 

response levels (bottom 10%). When we only considered direct neighbors (cells touching), 

we found an increase of 26% in the mean SOS response level (Figure S9C). If we allowed 

for slightly longer-range interactions and considered cells to be neighbors if they are within 

5μm of each other, we found an even higher effect size, with reporter cell close to highly 

induced cells having a 57% increase in their mean SOS response level compared to the 

control group (Figure 4C). Moreover, there was a three-fold increase in the fraction of 

reporter cells with very high SOS response levels (more than two standard deviations above 

average), from 5.1% in the control group to 15.1% in reporter cells close to highly induced 

cells (Figure 4C). Together, our data thus strongly suggests that there are intercellular 

feedbacks in SOS-response: cells appear to “sense” the SOS response level in their 

neighbors and respond by upregulating their own SOS response.

Despite finding evidence for direct intercellular feedbacks in SOS response, we did not 

observe any effect of spatial proximity on recA expression (Figure S8). RecA protein levels 

are spatially correlated (Figure S2), however this can be fully explained by the effects of 

shared lineage history (Figure S8A, 〈δED/δCR〉=5.9, p=1·10-4). We did not find a significant 

effect of spatial proximity (Figure S8B, 〈δER/δNB〉=1.07, p=0.2). One possible explanation 

for this is that the vast majority of cells in the microcolony had only very low SOS induction 

levels, making it unlikely that there could have been any transmission of the SOS response 

state.

Shared lineage history and spatial proximity lead to spatial correlations in anabolism

Next, we turn to our hypothesis that neighboring cells should be dissimilar in their 

expression levels of anabolic pathways. To test this hypothesis, we studied three pathways 

involved in amino acid biosynthesis in E. coli. Previous work using genetic consortia of 

complementary amino-acids autotrophs has shown that many amino acids can be exchanged 

through the environment (Mee et al, 2014; Wintermute & Silver, 2010). Furthermore, amino 

acid production costs appear to show economies of scale: the cost of producing an extra 

amino acid decreases with increasing production levels (Pande et al, 2013). A genetic 

consortia can thus grow faster if its members specialize on the production of complementary 

subset of amino-acids and exchange them with each other (Pande et al, 2013).

We hypothesized that genetically identical cells could phenotypically specialize on the 

production of different amino acids. A successful division of labor in amino-acid production 

would have two main requirements: i) efficient exchange of amino-acids between 

neighboring cells and ii) phenotypic variation in amino-acid production rates to would allow 

neighboring cells to specialize on different pathways (i.e. that would allow for symmetry 

breaking).

We used transcriptional reporters to follow the expression dynamics of PheL, the leader 

peptide of the pheLA operon that encodes for an enzyme involved tyrosine and 
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phenylalanine biosynthesis; MetA, an enzyme involved in methionine biosynthesis; and 

TrpL, the leader peptide of the trpLEDCBA operon that encodes for enzymes involved in 

tryptophan biosynthesis. We chose trpL as previous work has shown that it has relatively 

high variation in expression levels (Silander et al, 2012). We chose pheL and metA as cells 

with knockout mutations in the biosynthesis pathways of phenylalanine and methionine tend 

to grow well when combined with a large number of complementary knockout strains in 

cross feeding cultures, suggesting that these two amino acids can efficiently be shared 

between cells (Mee et al, 2014; Wintermute & Silver, 2010).

Contrary to our hypothesis, we observed strong positive spatial correlations in the protein 

levels of all three pathways (Figure S2). An important driver of these positive correlations is 

the effect of shared lineage history: for all three pathways we observe that closely related 

cells are similar in both protein levels and promoter activities (Figure 5A, 〈δED/δCR〉>1 for 

all pathways). However, even after correcting for lineage effects, we observed that protein 

levels are similar between neighboring cells. For all three pathways the phenotypic 

difference between a focal cell and its neighbor is smaller than the phenotypic difference 

between the focal cell and an equally related, but more distant, cell. However, this effect is 

only significant for pheL (Figure 5B, 〈δER/δNB〉>1 for all pathways). Based on protein 

levels we thus do not find any evidence for a division of labor in amino acid synthesis 

between neighboring cells.

Spatial dissimilarity in promoter activity of methionine biosynthesis

For metA, we observed that neighboring cells where significantly dissimilar in their 

promoter activities: a focal cell and its neighbor are more different in their promoter activity 

than the focal cell and an equally-related cell (Figure 5B, 〈δER/δNB〉=0.89, p=0.05). This 

difference does not change when we correct for global spatial effects by analyzing the 

residuals of a linear regression of metA promoter activity with the distance of a cell to the 

colony edge (Figure 5C, 〈δER/δNB|resid〉=0.89, p=0.04). This suggests that there are negative 

intercellular feedbacks affecting the expression of metA: if a cell transcribes metA at a high 

rate, its neighbors will tend to transcribe this gene at a lower rate. For pheA and trpL we 

found no evidence for similar negative feedback loops in promoter activity (Figure 5B).

For metA, we thus observed that neighboring cells where significantly dissimilar in their 

promoter activities, while their protein levels tended to be similar (though the latter effect 

was not significant, Figure 5B). This suggests that at any given time cells try to differentiate 

from their neighbors, giving rise to dissimilarity in promoter activities. However, as the 

identity of a cell’s neighbors continuously change with time (as a result of colony growth) 

this could prevent the establishment of dissimilarity in protein levels between neighbors.

Spatial similarity in overall metabolic state of cells

We observed positive spatial correlations in the protein levels of all three amino acid 

synthesis pathways we studied. This raises the question whether such positive correlations 

are a more general feature of a cell’s metabolism. To investigate this possibility, we 

simultaneously measured a cell’s elongation rate (i.e. growth rate) and the expression level 

of rpsM, which codes for the S13 ribosomal protein. Ribosome production levels have 
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previously been shown to be strongly correlated to a cell’s growth rate and are thus expected 

to be a good proxy for a cell’s overall metabolic activity (Scott et al, 2010; 2014).

We observed significant positive spatial correlations in both RpsM protein levels and cell 

elongation rate (Figure S2). A large part of this correlation is again due to the effects of 

shared lineage history (Figure 6A). However, neighboring cells are more similar in the 

protein level and promoter activity of rpsM and in cell elongation rate than expected based 

on their relatedness (Figure 6B).

This similarity is due to both global and local spatial effects (Figure 6CD): RpsM protein 

levels and cell elongation rate are both (weakly) correlated with the distance of a cell to the 

edge of the colony (Figure S7). After correcting for these global effects, we still observe that 

spatial proximity tends to cause similarity in rpsM expression dynamics and cell growth rate, 

though the effect is only significant for RpsM protein levels (Figure 6C). Together these data 

show that metabolic activities are spatially correlated because of lineage history, local cell-

cell interaction and global spatial gradients. For the latter, our analysis shows that cells in the 

colony center grow faster and had higher expression levels of rpsM, showing that nutrients 

are not limiting growth in the colony center (Figure S7).

Finally, we checked for the robustness of our results to the choice of model organism and the 

use of plasmid-based reporters by analyzing a transcriptional reporter for rpsM integrated in 

the chromosome of Salmonella Typhimurium. We find that our results for rpsM expression 

levels agree both qualitatively and quantitatively between a plasmid-based reporter in E. coli 
(Figure 6) and chromosomal reporter in Salmonella Tm. (Figure S10). The measurements 

for rpsM promoter activity in Salmonella Tm deviate from those measured in the plasmid-

based system, potentially due to technical differences between the measurements: the lower 

signal intensity of the chromosomal construct resulted in a lower signal-to-noise ratio and 

required a reduced sampling frequency to reduce the effects of bleaching. Nonetheless, these 

results show that our main conclusion are robust to the genetic background of the model 

organism and suggest that our findings can be extended to other bacterial species.

Discussion

We found that lineage history effects contributed to positive correlations in gene expression 

in all pathways we studied, and global and local spatial effects affected a subset of the 

pathways (Figure 7). In general, we expect shared lineage history to always contribute to 

positive spatial correlations in gene expression as in most cases proteins are partitioned 

equally between daughter cells at cell division (Robert et al, 2010; Hormoz et al, 2015; 

Veening et al, 2008b; 2008a; Julou et al, 2013). Global spatial effects can also contribute to 

positive spatial correlations in gene expression and are likely caused by emergent spatial 

gradients that are the result of the uptake, release, and diffusion of metabolites during 

population growth (Julou et al, 2013; Stewart & Franklin, 2008; Flemming et al, 2016). 

Local interactions could lead to both positive and negative spatial correlations in gene 

expression. We found evidence for positive correlations in SOS stress response and RpsM 

expression levels and for negative correlations in metA promoter activity. These local 

interactions could be the result either of a direct exchange of cellular components between 
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cells (e.g. via nanotubes (Dubey & Ben-Yehuda, 2011; Pande et al, 2015), pili (Hayes et al, 
2010), vesicles (Schwechheimer & Kuehn, 2015), or membrane fusion (Ducret et al, 2013)) 

or indirectly through the microenvironment.

Shared lineage history, global spatial effects, and positive intercellular feedbacks can all 

contribute to spatial correlations in gene expression. However, only intercellular feedbacks 

allow cells to directly coordinate their activities with their neighbors. In contrast, spatial 

correlations caused by lineage history effects or global spatial effects will largely be 

determined by the physics of cell growth (Nadell et al, 2013) and the physical and chemical 

properties of the environment (Stewart & Franklin, 2008). Intercellular feedbacks are thus 

the main mechanism that can allow for robust and consistent pattern formation irrespective 

of environmental conditions. Furthermore, intercellular feedbacks directly link the genotype 

of a cell to the spatial patterns of gene-expression at the colony level, potentially allowing 

for these patterns to evolve by natural selection.

Spatial correlations in expression levels can potentially have functional consequences. 

Positive correlations could allow cells to achieve a critical mass to collectively change their 

environment. This could be the explanation for the strong positive correlations we observe in 

the expression levels of the Colicin Ib toxin. Furthermore, positive correlations could allow 

for collective information processing where cells improve their inferences about the 

environment by pooling measurements between a group of neighboring cells (Hein et al, 
2015; Simons, 2004; Berdahl et al, 2013; Popat et al, 2014). This could be beneficial in the 

context of stress response system: a cell’s survival chances might increase if it preemptively 

upregulates its stress response system if its neighbor is stressed, even if it is not yet exposed 

to any stressor itself. Consistent with this idea we found evidence for direct intercellular 

feedbacks in SOS response.

Negative spatial correlations in expression levels might allow for a division of labor strategy, 

however we did not find any evidence for them in this study. Although we did observe 

spatial dissimilarity in metA promoter activity, the stronger converging effect of lineage 

history resulted in an overall positive correlation in expression levels. Nonetheless, our data 

does not completely rule out the possibility of a phenotypic division of labor in amino acid 

biosynthesis: amino acid synthesis pathways are regulated by end product inhibition which 

cannot be measured using transcriptional reporters (Chubukov et al, 2014). Negative 

correlations in amino acid synthesis fluxes could thus be present without corresponding 

differences at the transcriptional level.

Our most important conclusion is that the phenotype of a cell depends to a large extend on 

the population context in which it grows. Our work thereby joins a growing number of 

recent studies showing that a large degree of phenotypic variation is not random, but rather 

determined by a cells lineage history, location in the population and the activities of its 

neighbors (Snijder & Pelkmans, 2011; Symmons & Raj, 2016). If we want to understand the 

activities of cells living in spatially structured assemblies, it is thus essential to learn more 

about the feedbacks between a cell and the surrounding population.
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STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Simon van Vliet (simonvanvliet@gmail.com).

Experimental Model and Subject details

Strains and reporter plasmids—All experiments were done using E. coli MG1655, 

unless otherwise specified (see Table S1 for a list of strains and plasmids used in this study). 

Gene expression dynamics were followed using transcriptional reporters. The promoter 

region of the gene of interest was inserted in front of a gfpmut2 green fluorescent protein. 

For trpL, metA, pheL, and rpsM we used reporters based on the pUA66/pUA139 low copy 

number plasmids (Zaslaver et al, 2006). For recA we used a newly constructed dual reporter 

plasmid, pSV66-recA-rpsM, which is based on the low copy number plasmid pUA139 

(Zaslaver et al, 2006). This plasmid contains a GFPmut2 transcriptional reporter for recA 
and an additional turboRFP (red fluorescent protein) transcriptional reporter for rpsM, 

allowing for the independent measurement of two promoters within the same cell (see 

Supplementary Text 1 and Table S2 for construction details). For cib we used the medium 

copy number plasmid pM1437 with a pBR322 background (Nedialkova et al, 2014; 

Spriewald et al, 2015). MG1655 does not naturally contain the cib operon in its 

chromosome. To measure Colicin Ib expression dynamics, we therefore transformed TB60 

(MG1655 containing a chromosomal kanR cassette) with the p2-camR plasmid that is based 

on the natural occurring Salmonella pColB9 plasmid, which contains, among others, the cib 
operon (Stecher et al, 2012). We subsequently transformed the same strain with the pM1437 

plasmid containing the cib transcriptional reporter. Additionally, we used the high copy 

number plasmids pGFP and pRFP with inducible green and red fluorescent proteins under 

control of the lac promoter to check for fluorescent bleed-through and halos (see Table S1). 

Finally, we used strain NF06, a S. Typhimurium SL1344 derivative with a GFP 

transcriptional reporter for rpsM inserted in the putPA locus on the chromosome.

Strain with inducible SOS response—To test for interactions in SOS response we 

constructed a plasmid, pSJB18, with which SOS response can be chemically induced. To do 

so, the nuclease domain of colicin E2 (colE2) was cloned downstream of the Ptet tetracycline 

inducible promoter of the pMG-Ptet vector (see Supplementary Text 1 and Table S2 for 

construction details). Upon induction, the nuclease activity results in DNA breaks, which in 

turn activates the cell’s SOS response. We made sure that the nuclease produced in a cell 

could not directly affect neighboring cells in two ways: i) pSJB18 does not contain the lysis 

gene that is part of the full colE2 operon; as colicins are released during cell lysis this 

greatly reduces the amount of extracellular nuclease (Cascales et al, 2007). ii) pSJB18 only 

contains the C-terminal nuclease domain of the colE2; the N-terminal and central domains 

that are required for Colicin E2 to enter a target cells (by mediating receptor binding and 

membrane translocation, respectively (Cascales et al, 2007)) were removed. A second 

plasmid, pSJB19, was constructed. This plasmid is identical to pSJB18, except that it also 

contain the coding sequence for the Colicin E2 immunity protein. Expression of this 
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immunity protein inhibits the nuclease activity of Colicin E2 (see Supplementary File 2 for 

construction details).

We confirmed the functionality of the construct by co-transforming MG1655 with pSJB18 

and pUA139-recA (Zaslaver et al, 2006). The latter contains a GFP transcriptional reporter 

for the SOS-response gene recA. Expression of the nuclease was induced by adding 

100ng/ml of the non-toxic tetracycline analog anhydrotetracycline (AHT, Fluka, Buchs, 

Switzerland). Using flow cytometry and single-cell microscopy we confirmed that SOS-

response activity (measured as recA expression levels) increased when the inducer was 

added (Figure S9).

Plasmid construction

Construction of pSJB18 and pSJB19: The pSJB18 plasmid is based on the pMG-Ptet 

plasmid (Neuenschwander et al, 2007) which contains the tetracycline inducible Ptet 

promoter. The colicin E2 nuclease domain (ceanuclease) was amplified from plasmid pColE2-

p9 (Kerr et al, 2002; Hol et al, 2014) using primers ColE2_C-dom_tet_fwd and 

ColE2_tet_rev (see Table S2 for primer sequences). The forward primer includes an ATG 

start codon and Xbal restriction site, the reverse primer includes a Xhol restriction site. The 

amplicon was inserted into pMG-Ptet via Xbal/Xhol. The construct sequence was confirmed 

with sequencing.

We constructed a second plasmid, pSJB19, that is identical to pSJB18, except that it also 

includes the Colicin E2 immunity protein (cei). This immunity protein is co-expressed with 

the nuclease domain and inhibits the nuclease activity. The Colicin E2 nuclease domain 

(ceanuclease) was amplified together with the colicin E2 immunity protein (cei) from plasmid 

pColE2-p9 (Kerr et al, 2002; Hol et al, 2014) using primers ColE2_C-dom_tet_fwd and 

ImmE2_tet_rev (see Table S2). The forward primer includes an ATG start codon and Xbal 

restriction site, the reverse primer includes a Xhol restriction site. The amplicon was inserted 

into pMG-Ptet via Xbal/Xhol. The construct sequence was confirmed with sequencing.

Construction of pSV66-rpsM-rpsM dual-reporter: The pSV66 dual reporter is based on 

the low copy number pUA66/pUA139 (Zaslaver et al, 2006) reporter plasmid, but contains 

an additional transcriptional reporter based on the red fluorescent protein TurboRFP. The 

arrangement of the two reporters was based on the triple reporter plasmid pZS2-123 (Cox et 
al, 2010). Specifically, the gfmut2 and turborfp reporters are separated by a region 

containing multiple transcriptional terminators amplified from pZS2-123. The plasmid was 

constructed using a three-step Gibson assembly protocol (New England Biolabs, Ipswich, 

Massachusetts):

PrpsM-tRFP promoter-reporter construct. The promotor region of rpsM was amplified from 

plasmid pUA139-rpsM (Zaslaver et al, 2006) using primers Prpsm-fw/rv (see Table S2 for 

primer sequences). The coding sequence of turborfp was amplified from plasmid 

pTurboRFP (Hol et al, 2014) using rfp-fw/rv. The resulting products were joined using 

Gibson assembly.
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PrpsM-turboRFP-terminator construct. The PrpsM-turboRFP construct from step 1 was 

amplified from the Gibson assembly product using primers Prpsm-fw and rfp-rv. The 

multiple terminator region was amplified from plasmid pZS2-123 (Cox et al, 2010) using 

primers ter-fw/rv. The resulting products were joined using Gibson assembly.

pSV66-rpsM-rpsM plasmid. The PrpsM-turboRFP-terminator construct from step 2 was 

amplified from the Gibson assembly product using primers ter-rv and Prfp-fw. The greater 

part of plasmid pUA139-rpsM ((Zaslaver et al, 2006), including the Prpsm-gfpmut2 reporter, 

origin of replication and kanamycin resistance cassette) was amplified using primers vector-

fw/rv. The resulting products were joined using Gibson assembly.

We confirmed the sequence of the promoter regions, fluorescent proteins, terminator region 

and origin of replication using sequencing.

Construction of pSV66-recA-rpsM dual-reporter: To construct the dual reporter pSV66-

recA-rpsM the promoter region in front of gfpmut2 of the pSV66-rpsM-rpsM was replaced 

with the promoter of recA using a one-step Gibson assembly process. The promoter for recA 
was amplified from the plasmid pUA139-recA (Zaslaver et al, 2006) using primer Pgfp-

fw/rv and the backbone of pSV66-rpsM-rpsM was amplified with gfpVec-fw/rv. The two 

PCR products were then combined using Gibson assembly and the sequence of both the 

recA and rpsM promoter region, as well as the intermediate terminator region was confirmed 

using sequencing.

In all steps we used the Q5 high-fidelity DNA polymerase for DNA amplification and 

Gibson Assembly master mix for Gibson assembly (New England Biolabs, Ipswich, 

Massachusetts).

Media and growth conditions—In all cases cultures were started from a single colony 

taken from a LB-agar plate and grown overnight at 37°C in a shaker incubator. Subsequently 

the cultures were diluted 100 to 1000 fold and grown until mid-exponential phase. Cells 

containing reporters for cib, recA, and rpsM were grown in LB media (Sigma-Aldrich, 

Buchs, Switzerland, or Applichem, Darmstadt, Germany). For these reporters, microscopy 

was done on agar pads consisting of LB with 1.5% agar (Sigma-Aldrich or Applichem). 

Cells containing reporters for metA, pheL and trpL were grown overnight in M9 medium 

(47.76 mM Na2HPO4, 22.04 mM KH2PO4, 8.56 mM NaCl and 18.69 mM NH4Cl) 

supplemented with 1mM MgSO4, 0.1 mM CaCl2, 0.4% Glucose (all from Sigma-Aldrich), 

and 5% LB. Diluted cultures were grown in M9 medium supplemented with 1mM MgSO4, 

0.1 mM CaCl2 and 0.4% Glucose. Microscopy was done on agar pads consisting of M9 salts 

with 1.5% agar and supplemented with 1mM MgSO4, 0.1 mM CaCl2 and 0.4% Glucose.

Plasmid maintenance was insured by adding the appropriate antibiotic to the culture medium 

and agar pads: 50μg/ml ampicillin (pM1437, pSJB18, pGFP, pRFP, Applichem), 50μg/ml 

kanamycin (pUA66, pUA139, pSV66, Sigma-Aldrich) and 15μg/ml chloramphenicol (p2-

camR, Sigma-Aldrich). For experiments with the cib reporter we added additionally 0.1mM 

DTPA (diethylenetriaminepentaacetic acid, Fluka) to the medium of the diluted cultures and 

to the agar pads to chelate free iron. For the SOS interaction experiments 100ng/ml of 
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anhydrotetracycline (AHT) was added to the agar pads to induce the nuclease in pSJB18. 

For the experiments done with a mixture of strains MG1655+pSJB18+pSV66-recA-rpsM 

and MG1655+pUA139-recA (Figure 4C) we additionally added 30μg/ml kanamycin to the 

agar pad. For the experiments done with a mixture of strains MG1655+pSJB18 and 

MG1655+pSV66-recA-rpsM (Figure 4B), no antibiotics were added to the agar pads as the 

two strains carry different resistance genes. As these experiments only lasted 1h, we expect 

plasmid loss to be negligible. For experiments using pGFP or pRFP we added 1mM IPTG 

(Isopropyl β-D-1-thiogalactopyranoside, Promega, Madison, Wisconsin) to the liquid 

cultures and agar pads to induce expression of the fluorescent proteins.

Method Details

Agar pad preparation—Agar pads were prepared by adding the appropriate supplements 

to molten aliquots of LB or M9 agar and adding 250μl of this mixture to the well of hollow-

well microscope slides (Karl Hecht GmbH, Sondheim, Germany). The wells were sealed 

with a cover glass and dried at room temperature for 20 to 30min. Subsequently the cover 

glass was removed and the agar was cut into a square of approximately 5x5mm in the center 

of the well. 0.5 to 2μl of prepared cell suspension (see below) was added to the center of the 

pad and left to dry. Finally, the pad was sealed by adding a new cover glass. An air-tight seal 

was insured by adding a thin layer of lubricating grease (Glisseal, Borer, Zuchwil, 

Switzerland) between the two glass surfaces. The agar pad only occupies the central part of 

the well; the remaining area contains air to insure that sufficient oxygen is present for 

aerobic growth.

Before inoculation the optical density at 600nm (OD600) of the cultures was measured. The 

cultures were diluted to the desired OD600 (of 0.001 to 0.01) before adding 0.5 to 2μl of 

cells to the pad. For the SOS interaction experiment the two strains were first washed to 

remove antibiotics from the growth medium. Subsequently the strains were mixed in 

approximately a 1:1 ratio and added to the agar pad.

Microscopy—Time-lapse microscopy was done using fully-automated Olympus IX81 

inverted microscopes (Olympus, Tokyo, Japan). Imaging was done using a 100X NA1.3 oil 

objective (Olympus) and either a F-View II CCD camera (for cib, Olympus Soft Imaging 

Solutions, Münster, Germany) or an ORCA-flash 4.0 v2 sCMOS camera (all other data, 

Hamamatsu, Hamamatsu, Japan). Fluorescent imaging was done using a X-Cite120 120 

Watt high pressure metal halide arc lamp (Lumen Dynamics, Mississauga, Canada) and 

Chroma 49000 series fluorescent filter sets (N49002 for GFP and N49008 for RFP, Chroma, 

Bellows Falls, Vermont). Focus was maintained using the Olympus Z-drift compensation 

system and the entire setup was controlled with either the Olympus CellM or CellSens 

software. The sample was maintained at 37°C by a microscope incubator (Life imaging 

services, Basel, Switzerland). Images were taken every 3 (rpsM, elongation rate), 5 (cib) or 

7.5 (recA, trpL, pheA, metA) minutes for several hours. We quantified the homogeneity of 

the illumination field and found that light intensities varied by less than 11% within the 

microcolony. Any potential negative effects of light exposure (bleaching, photo toxicity, etc.) 

are thus not expected to contribute to the observed spatial patterns of gene expression as they 

would affect all cells equally.
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Quantification and Statistical Analysis

Selection and analysis of microcolonies—Fiji (Schindelin et al, 2012) was used for 

data visualization, image cropping and file-type conversions. All other processing was done 

using Matlab (version 2013 and newer, MathWorks, Natick, Massachusetts). For each 

reporter we analyzed 8 to 10 microcolonies, we decided on this sample size based on 

preliminary experiments with a colicin Ib reporter strain. Each micro colony is considered to 

be an independent biological replicate. From each agar pad we selected 1 to 6 (median=2) 

positions that contained an isolated micro colony of sufficient size (>128 cells before cell 

overlap occurs) and good optical quality. We manually determined the time range where 

cells were present in a single layer and cropped the images to only contain the area occupied 

by the colony.

Subsequently Schnitzcells 1.1 (Young et al, 2011) was used to segment and track cells. For 

cib, segmentation was done on phase contrast images. For trpL, metA, pheA, and rpsM 
segmentation was done on the GFP fluorescent images. The reporter plasmid for recA also 

contained a RFP reporter for rpsM, here segmentation was done on the RFP fluorescent 

images. As a last step custom Matlab code was used to extract fluorescent and geometrical 

properties of each cell (see fluorescent image processing and cell length determination 

below).

Fluorescent image processing—There are a number of optical artifacts that could 

cause neighboring cells to have similar fluorescent intensity levels, it is thus essential to 

correct for these artifacts before calculating the spatial similarity. Specifically, we applied 

the following corrections (see also Figure S1):

• Shading correction. We corrected for inhomogeneities in the illumination field 

using a shading image. This image gives the normalized intensity of the 

incoming light for each pixel in the image. Subsequently we obtained the 

shading corrected image by dividing the intensity in each pixel of the captured 

fluorescent image by the intensity in the corresponding pixel of the shading 

image.

• Deconvolution. Diffraction will cause the light of a point source to be spread 

across several pixels. Bright cells will thus generate a “halo” that increases the 

fluorescent intensity of its neighbors. We corrected for diffraction by 

deconvolving the shading corrected image with the experimentally measured 

point spread function (PSF) of the microscope (Kiviet et al, 2014). 

Deconvolution was done using the Matlab function “deconvlucy”, which uses the 

Lucy-Richardson method. We found that the accuracy of the deconvolution 

correction depends critically on the size of the PSF that is used (Figure S3B). 

When the size of the PSF is too small (e.g. 13x13 pixels) the halos are not 

completely removed, increasing fluorescent intensities in neighbors of bright 

cells. If the PSF is too large (e.g. 30x30 pixels) a “dark halo” artifact is formed, 

decreasing fluorescent intensities in neighbors of bright cells. We calibrated the 

required size of the PSF by mixing unlabeled wild type cells with cells carrying a 

high copy number plasmid with an inducible green fluorescent protein. We then 
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selected the size of the PSF (i.e. 24x24 pixels) for which median fluorescent 

intensity in unlabeled cells neighboring GFP labeled cells are the same as for 

isolated unlabeled cells (Figure S3B,C). Furthermore, we confirmed that our 

statistical analysis of the effects of spatial proximity is robust to small changes in 

the size of the PSF (Figure S4C).

• Background correction. We performed a background correction to compensate 

for temporal changes in the incoming light intensity. For each pixel the 

background corrected intensity (Icorr) was calculated as: Icorr = (I-Dark)/(Bg-

Dark), where I is the pixel intensity after shading correction and deconvolution, 

Bg is the median intensity of all background pixels (i.e. all pixels that are not 

part of any segmented cell) and Dark is the median pixel intensity for the dark 

image (i.e. an image taken when no light reaches the camera taken with the same 

exposure settings).

• Cell center intensity. As sell segmentation is imperfect, some pixels at the 

periphery will be misclassified. To increase robustness to such errors we 

calculated the mean fluorescent intensity only over the central area of the cell. 

The central area is found by eroding (i.e. shrinking) the cell segmentation mask 

on all sides with one quarter of the median cell width (the median cell width was 

determined over all cells in the microcolony). For most cells the intensity was 

thus be determined for the central 50%. If erosion removed all pixels in the cell 

mask, we progressively reduced the number of outer pixels we removed until at 

least a single row of pixels remained in the cell center.

• Fluorescence bleed-through. The recA reporter strain contained a second RFP 

reporter for rpsM. We confirmed that there is no fluorescence bleed-through 

from the RFP to the GFP channel. To do so, we mixed unlabeled cells with cells 

carrying a high copy number plasmid with inducible red fluorescent protein. The 

distribution of fluorescent intensities in the GFP channel in unlabeled cells is 

identical to intensities in the GFP channel for the RFP labeled cells. This shows 

that emission from the red fluorescent protein do not affect measured intensities 

in the GFP channel (Figure S3A).

After performing all corrections, we obtained for each cell the mean fluorescent intensity, 

I t , which is proportional to the concentration of GFP molecules in the cell and hence to the 

concentration of the gene of interest. Throughout the text we use protein level to refer to the 

mean fluorescent intensity.

Cell length determination—Cell length was determined following the procedure 

described in (Kiviet et al, 2014). In short: the cell centerline was determined by fitting the 

cells mask with a 3th degree polynomial (f(x)). To find the cell pole positions we calculated 

the silhouette proximity (sum of the squared distance to closest 25 pixels in cell mask) along 

the centerline. This measure is constant in the cell center, but increases sharply at the poles; 

the position of the cell poles was taken as the point along the centerline where the proximity 

silhouette reached 110% of the average value in the cell center. The cell length was 
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subsequently calculated by numerical integration of ∫ x0

x1 1 + f ′ x 2 dx, where f′(x) is the 

derivative of f(x) and x0 and x1 are the positions of the cell pole.

Cell elongation rate—Cell elongation rates (r) were calculated for the microcolonies with 

a rpsM transcriptional reporter by fitting the exponential curve L(t) = L(0) · er·t to the cell 

length over time. The fitting was done using a linear fit on the log transformed cell lengths 

over a sliding time window of 7 time-points (21 minutes). When the time window exceeded 

the life time of a cell, it was extended by summing the cell lengths of the two daughter cells 

or by taking a fraction of L0/(L0 + L0,sister) of the mother cell length. Here, L0 and L0,sister 

are the lengths of a cell and its sister at their birth. This fraction takes the effects of 

asymmetries at cell division into account.

Promoter activity—Assuming that the rate of protein degradation is negligible, the 

promoter activity (PA) an be estimated as the rate of change in the total fluorescent intensity 

of a cell: PA t = d
dt Itot t . The measurement of total fluorescent intensity as the summed 

intensity over all pixels in the cell mask is very sensitive to segmentation inaccuracies. To 

get a more accurate estimate of promoter activities we thus estimate the total fluorescent 

intensity by multiplying the mean fluorescent intensity of a cell, I t  with its length, L(t); as 

the cell width is constant through the lifetime of a cell, this quantity is proportional to the 

total fluorescent intensity of a cell: Itot t ∝ I t ⋅ L t = I t . The promoter activity is then 

estimated as the slope of a linear fit of this quantity over a window of 5 time points: 

PA t ∝ d
dt I t . When the time window exceeded the life time of a cell, it was extended by 

summing the total fluorescent intensities of the two daughter cells or by taking a fraction 

I0/(I0 + I sister
o ) of the total intensity of the mother cell. Here, I0and I sister

o  are the total 

fluorescent intensities of a cell and its sister at their birth. This fraction takes the effects of 

asymmetries at cell division into account.

Cell geometric and neighborhood properties—The cell width and its position were 

determined using the Matlab regionprops function and correspond to the minor-axis length 

of a fitted ellipse and the coordinates of the center of mass, respectively. The neighbors of a 

cell were found by expanding the cell mask in all directions with ¾ of the median cell width; 

all cells that overlap with this expanded area are classified as neighbors. The distance of a 

cell to the colony edge was determined as the minimum Euclidean distance between pixels 

inside the cell mask and pixels that are part of the colony boundary. Cell pole age was 

determined using the custom written Matlab code described in reference (Bergmiller & 

Ackermann, 2011).

Neighborhood similarity statistic—We quantitatively investigated the apparent non-

randomness of expression patterns in the microcolonies using a randomization procedure. 

Cells in the colony were classified into two groups depending on whether their mean 

fluorescent intensity was above or below the median intensity in the microcolony. For each 

cell in the colony we calculated the fraction of neighboring cells that was classified in the 

same group and we computed the mean over all cells (red bar, Figure 1D and S2). We then 
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randomly permuted intensities between cells in the colony and recalculated the mean 

fraction of neighbors classified in the same group. This procedure was repeated 104 times 

obtaining the distribution shown in Figure 1D. p-values were calculated by taking the 

fraction of randomized samples that have a higher mean fraction of neighbors of the same 

type than the non-randomized data.

Statistic for effect of shared lineage history—We tested for the effect of shared 

lineage history by quantifying how similar a cell is to its closest relative after correcting for 

the effects of spatial proximity. We compared the phenotypes within a group of three cells: a 

focal cell, its closest relative, and an equidistant cell. The closest relative will typically be a 

cell’s sister, however if the sister has already divided we selected one of its offspring (e.g. a 

niece of the focal cell) at random. The equidistant cell is a cell that directly neighbors the 

closest relative and that has a center-to-center distance to the focal cell that is the most 

similar to that of the closest relative.

We then calculated the difference in phenotype between the focal cell i and its closest 

relative (CRi): δCR
i = Xi − XCRi

 and between the focal cell i and its equidistant cell (EDi): 

δED
i = Xi − XEDi

, where Xi, XCRi, and XEDi are the phenotypes (i.e. protein levels, promoter 

activities, or elongation rates) of the focal cell, closest relative, and equidistant cell, 
respectively. Finally, we calculated the effect of shared lineage history by taking the ratio of 

these two phenotypic distances: median δER
i /δCR

i , where the median is taken over all cells 

in the colony.

Statistic for the effect of spatial proximity—We tested for the effect of spatial 

proximity by quantifying how similar a cell is to its neighbors after correcting for the effects 

of shared lineage history. We compared the phenotypes within a group of three cells: a focal 

cell, one of its neighbors, and an equally-related cell. We defined a cell’s neighbors as all 

cells that are directly adjacent (within ¾ cell width) to the focal cell (mean number of 

neighbors=5,95% range=[3,8]). For each neighbor we found a group of equally-related cells, 

these are cells that have the same relatedness to the focal cell as the neighbor, but that are 

further away in space (mean number of equally-related cells=20,95% range=[0,70]). From 

this group we selected the most distant equally-related cell, which is the equally-related cell 
with the largest Euclidean distance to the focal cell.

We then calculated the difference in phenotype between the focal cell i and its neighbor j: 

δNB
i, j = Xi − X j  and between the focal cell and the most distant equally-related cell (ERi,j): 

δER
i, j = Xi − XERi, j

, where Xi, Xj, and XERi,j are the phenotypes (i.e. protein levels, promoter 

activities, or elongation rates) of focal cell i its neighbor j, and their most distant equally-
related cell. Finally, we calculated the effect of spatial proximity by taking the ratio of these 

two phenotypic distances: median δER
i, j /δNB

i, j , where the median is taken over all neighbor-

focal cell pairs in the colony.
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Our definition of equally-related cells insures that δER
i, j and δNB

i, j  Were always calculated for 

pairs of cells that have been separated by the same amount of time. However, different sets 

of cells (i.e. sets based on different choices of focal and/or neighbor cell) do differ in their 

absolute degree of relatedness, e.g. for one focal cell both the neighbor and equally related 

cell could be first cousins, while for another focal cell both could by fourth cousins. This 

difference in the absolute degree of relatedness will likely affect the absolute values of 

δER
i, j and δNB

i, j , but should not affect their ratio.

We also tested whether our choice of equally-related cell affected our conclusions (Figure 

S4A). We recalculated the statistics using the median phenotypic distance between the focal 

cell and all equally-related cells: δmed ER
i, j = median Xi − X

ERi, j
k , where X

ERi, j
k  is the 

phenotype of the kth equally-related cell of neighbor j of focal cell i and the median is taken 

over all equally-related cells. Subsequently we calculated the effect of spatial proximity as: 

median δmed ER
i, j /δNB

i, j , where the median is taken over all neighbor-focal cell pairs in the 

colony.

Statistic for local spatial effects—The phenotype of a cell can vary systematically 

within the colony, we corrected for such global effects using a linear regression of a cell’s 

phenotype (Xi) with its distance to the edge of the colony (di): Xi = α + β · di, where α and 

β are constants. The strength of local spatial effects could then be estimated by correcting 

the observed phenotype of a cell Xi
obs  for the global trend by calculating the residuals of 

the regression: Xi
resid = Xi

obs − α + β ⋅ di . We then calculated the ratio of phenotypic 

differences (median δER
i, j /δNB

i, j
resid

) as described above, where the phenotype of a cell (Xi) 

was replaced with the residual of the regression Xi
resid .

Statistic for global spatial effects—The importance of global spatial effects was 

quantified by calculating to what extend the effect of spatial proximity is reduced when we 

correct for the systematic variation in phenotype. Specifically, we defined the global spatial 

effect as: median δER
i, j /δNB

i, j ‐median δER
i, j /δNB

i, j
resid

, whμere the first term describes the total 

effect of spatial proximity and the second term describes the local spatial effects.

Computational data set for validation of statistical method.—To validate our 

statistical tests, we used a computer to simulate protein levels under a null-model that only 

includes lineage history effects, but no spatial effects. Protein levels were computed using a 

stochastic model of unregulated gene expression:

dm
dt = km − γm ⋅ m; dp

dt = kp ⋅ m − γp ⋅ p;

where m represents the number of mRNA molecules and p the number of proteins in a cell. 

mRNA and protein levels were simulated on top of experimentally measured lineage trees 

van Vliet et al. Page 20

Cell Syst. Author manuscript; available in PMC 2019 September 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



using a Gillespie algorithm. Every cell produces mRNA and proteins according to the 

stochastic model above, and values for the protein levels were stored at the experimentally 

determined sampling times. Subsequently, p and m were distributed to the two daughter cells 

by sampling from a binomial distribution (thus incorporating lineage history effects) and the 

procedure was repeated until all cells were processed. For the first cell in the lineage tree p 
and m were set to the theoretically predicted steady state levels. We used the dataset of the 

rpsM reporter as source of the experimentally measure lineage trees and to parameterized 

our model. We estimated the parameters as follows: mRNA degradation rate 

(γm=0.1177min-1, (Chen et al, 2015)) and steady state RpsM protein number (pss =72767, 

(Schmidt et al, 2015)) were taken from the literature; the conversion factor from total GFP 

intensity to protein number was determined as α = pss
Itot

, where 〈Itot〉 is the measured 

average of the total fluorescence in the cells; the protein degradation rate γp was set to 0, as 

proteins were assumed to only be lost due to dilution at cell division; kp was estimated using 

the relation 
kp
γm

= var p
p − 1 =

var α ⋅ Itot
α ⋅ Itot

− 1 (Thattai & van Oudenaarden, 2001); and km was 

estimated from using the relation pss =
km ⋅ kp
γm ⋅ μ , where μ  is the average measured growth rate 

of the cells. For each lineage tree, parameters were estimated separately and 1000 simulation 

were run. Subsequently we compared the values of our lineage history or spatial proximity 

statistic of the real data with the distribution of these statistics for the computed data set 

(Figure S6).

Data and Software Availability

Cell segmentation and tracking data, as well as the used Matlab code, has been deposited to 

the ETH Data Archive: http://dx.doi.org/10.5905/ethz-1007-77. A full data set containing 

the unprocessed microscopy data has been deposited to the Zenodo data archive: https://

doi.org/10.5281/zenodo.268921.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Neighboring cells have similar expression levels of colicin Ib.
A) Fluorescence image of an E. coli microcolony with GFP transcriptional reporter for 

colicin Ib (cib). B) Reconstructed image of the colony shown in A: cell shapes obtained 

from cell segmentation are uniformly colored based on their mean corrected intensity (see 

Figure S1). Note how neighboring cells tend to have similar intensities. C) Same as in B, but 

fluorescence intensities are randomly permuted among the cells. Note that the similarity 

between neighboring cells has been reduced compared to B. D) Cells are grouped into two 

clusters based on their intensity. The red line shows the average fraction of a cell’s neighbors 

that is of the same type. The blue distribution shows the same quantity obtained after 

randomly permuting the intensities among the cells (104 permutations). The observed 

similarity is significantly higher for the true data compared to the randomized data 

(p<1·10-4, randomization test). See also Figure S1, S2, & S3.
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Figure 2. Reconstructing lineage trees to disentangle the effects of space and relatedness.
A) Left: frames from a time-lapse movie of a growing microcolony with a GFP reporter for 

cib. The images show GFP intensities using a heatmap representation for t=0,3,6h. Right: 

reconstructed lineage tree. Cells are plotted as a function of location (horizontal plane) and 

time (vertical axis). Branching points in the lineage tree mark cell division events. The 

spheres at the tip of the tree represent cells at the final time point with their color indicating 

the Colicin Ib level of the cell. B) Statistical test to quantify the effect of shared lineage 

history on similarity in expression levels. A focal cell (FC, red) is compared with its closest 

relative (CR, green) and with an equidistant cell (ED, blue), which is a cell that has the same 

distance to the focal cell as the closest relative, but that is less related. C) Statistical test to 

quantify the effect of spatial proximity on similarity in expression levels. A focal cell (FC, 

red) is compared with one of its neighbors (NB, green) and with an equally-related cell (ER, 

blue), which is a cell that has the same relatedness to the focal cell as the neighbor, but that 

is further away in space. B,C) The insets at the bottom show the positions of these cells in 

the GFP image for the last time point (see panel A).
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Figure 3. Factors contributing to spatial correlations in colicin Ib expression dynamics.
A) Shared lineage history leads to similarity in Colicin Ib protein levels (left) and promoter 

activity (right). The phenotypic difference between a focal cell and an equidistant cell (δED) 

is significantly larger than the phenotypic difference between a focal cell and its closest 

relative (δCR), i.e. 〈δED/δCR〉 > 1. B) Spatial proximity leads to similarity in Colicin Ib 

levels but not in promoter activity. For Colicin Ib levels, the phenotypic difference between a 

focal cell and an equally-related cell (δED) is significantly larger than the phenotypic 

difference between the focal cell and one of its neighbors (δNB), i.e. 〈δER/δNB〉 > 1. C) 
Local spatial effects do not contribute to spatial correlations in Colicin Ib levels or promoter 

activity. Local spatial effects were calculated using the residuals of a linear regression of a 

cell’s phenotype to the distance of a cell to the colony edge. The difference in residuals 

between a focal cell and an equally-related cell (δER|resid) is not significantly different from 

the difference in residuals between the focal cell and one of its neighbors δNB|resid),i.e. 

δER/δNB|reside ≈ 1. D) Global spatial effects contribute to spatial correlations in Colicin Ib 

levels. Global spatial effects were calculated as the difference between the total effects of 

spatial proximity (panel B) and the local spatial effects (panel C). A-D) Each point 

corresponds to a microcolony with 117-138 (mean=128) cells; points are horizontally offset. 
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Thick horizontal lines indicate mean, thin lines 95% confidence intervals. Dashed lines 

indicate the expected value under the null-hypothesis. Null hypothesis rejected with: 

*p<0.05, **p<0.01, ***p<0.001, t-test, n=9. The statistics are robust to the choice of the 

equally-related cell (Figure S4A), the size of the colony being analyzed (Figure S4B), and 

differences in the processing of fluorescent images (Figure S4C). Full distributions are 

shown in Figure S5. See also Figure S4-8
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Figure 4. Direct cell-cell interactions in SOS response.
A) Test for direct interactions in SOS response. Cells with a transcriptional reporter for recA 
(pSV66-recA-rpsM, red cells) where grown together on agar pads with cells in which SOS 

response was induced by expressing the nuclease domain of colicin E2 (pSJB18, black 

cells). After 1h, the average SOS induction level was compared between reporter cells that 

do (right) and do-not (left) have inducible neighbors. The grey area indicates the region 

where cells are considered neighbors. Nuclease expression was induced by adding 

Anhydrotetracycline (AHT) to the agar pad. B). Cells neighboring inducible cells have 

higher SOS response levels. For each of 15 biological replicates, we measured the GFP 

intensity of a recA transcriptional reporter in cells with inducible neighbors (51-189 

(mean=137) cells) and in cells with no direct inducible neighbors (359-713 (mean=575) 

cells). Each dot corresponds to a single biological replicate and shows the ratio between the 

mean GFP intensity in reporter cells next to inducible neighbors compared to the mean 

intensity in reporter cells without inducible neighbors. Points are horizontally offset, thick 

horizontal line indicates mean, thin lines 95% confidence intervals, over the 15 replicates. 

Reporter cells neighboring inducible cells have significantly higher levels of recA expression 

with a mean relative SOS induction of 1.030 (95% CI=1.015,1.045), p=9·10-4, t-test, n=15. 

C). Cells neighboring inducible cells with high levels of SOS response strongly upregulate 

their own stress response levels. Reporter cells (pUA66-recA) were mixed with inducible 

cells that also contained a recA transcriptional reporter (pSJB18 + pSV66-recA-rpsM) and 

grown together for 90 min on agar pads containing AHT. The distribution of SOS response 

levels is shown for reporter cells that are within 5μm of inducible cells with low levels 

(dimmest 10% of inducible cells, n=59 cells) of SOS response (blue) and for reporter cells 

that are within 5μm of inducible cells with high levels (brightest 10% of inducible cell, 

n=503 cells) of SOS response (red). The distributions were obtained by pooling the data of 4 

biological replicates. The dashed vertical line indicates an SOS response level of 2 standard 

deviation above average. Distributions considering only direct neighbors are shown in Figure 

S9C.
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Figure 5. Analyses of factors that contribute to spatial correlations in amino acid synthesis.
A) Shared lineage history leads to similarity in protein levels and promoter activity for all 

three pathways involved in amino acid synthesis. In all cases, the phenotypic difference 

between a focal cell and an equidistant cell (δED) is significantly larger than the phenotypic 

difference between a focal cell and its closest relative (δCR). B) Spatial proximity leads to 

similarity in PheL protein levels and dissimilarity in metA promoter activity. For PheL 

protein levels the phenotypic difference between a focal cell and an equally-related cell 
(δER) is significantly larger than the phenotypic difference between the focal cell and one of 

its neighbors (δNB). For metA promoter activities, neighboring cells are less similar than 

expected based on their relatedness. C) The dissimilarity in metA promoter activity is due to 

local spatial effects. For metA promoter activity, the difference in residuals between a focal 

cell and an equally-related cell (δER|resid) is significantly smaller than the difference in 

residuals between the focal cell and one of its neighbors (δNB|resid). D) Global spatial effects 

lead to similarity in PheL protein levels and trpL promoter activity. A-D) Each point 

corresponds to a microcolony with 117-138 (mean=128) cells, points are horizontally offset. 

Thick horizontal lines indicate mean, thin lines 95% confidence intervals. Dashed lines 

indicate the expected value under the null hypothesis. Null-hypothesis rejected with: 

*p<0.05, **p<0.01, ***p<0.001, t-test, n=9 (pheL, metA) or 8 (trpL). See also Figure S5,7.
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Figure 6. Analyses of factors that contribute to spatial correlations in metabolism.
A) Shared lineage history leads to similarity in RpsM protein levels (left), rpsM promoter 

activity (middle), and cell elongation rate (right). In all cases, the phenotypic difference 

between a focal cell and an equidistant cell (δED) is significantly larger than the phenotypic 

difference between a focal cell and its closest relative (δCR). B) Spatial proximity leads to 

similarity in RpsM protein levels, rpsM promoter activity, and cell elongation rate. In all 

cases, the phenotypic difference between a focal cell and an equally-related cell (δER) 

significantly is larger than the phenotypic difference between the focal cell and one of its 

neighbors (δNB). C) The similarity in RpsM protein levels is partly due to local spatial 

effects. For RpsM protein levels, the difference in residuals between a focal cell and an 

equally-related cell (δER|resid) is significantly larger than the difference in residuals between 

the focal cell and one of its neighbors (δNB|resid). D) Global spatial effects lead to similarity 

in RpsM protein levels and cell elongation rate. A-D) Each point corresponds to a 

microcolony with 117-138 (mean=128) cells, points are horizontally offset. Thick horizontal 

lines indicate mean, thin lines 95% confidence intervals. Dashed lines indicate the expected 

value under the null hypothesis. Null hypothesis rejected with: *p<0.05, **p<0.01, 

***p<0.001, t-test, n=10. See Figure S10 for a chromosomal rpsM reporter in Salmonella 
Tm. See also Figure S5-7.

van Vliet et al. Page 31

Cell Syst. Author manuscript; available in PMC 2019 September 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 7. Causes of spatial correlations in phenotype.
A) Spatial correlations in phenotype are the consequence of shared lineage history, global 

spatial effects, and local spatial effects. B) For each pathway the relative importance of 

lineage history (〈δER/δNB〉) and spatial proximity (〈δED/δCR〉) is shown for protein level and 

cell elongation rate (left) and promoter activity (right). In most cases lineage history is the 

dominant factor (note the different scaling of the axis). C) For each pathway the relative 

importance of global spatial effects (〈δER/δNB − δER/δNB|resid〉) and local spatial effects 

(〈δER/δNB|resid〉) is shown for protein level and cell elongation rate (left) and promoter 

activity (right). B,C) Each point corresponds to the average value over 8-10 microcolonies; 

the data are identical to those shown in Figures 3, 5, and 6. Error bars indicate 95% 

confidence intervals. The green shaded region (upper right region) indicates that both factors 

contribute to similarity in phenotype; the red shaded region (bottom left) indicates that both 

factors contribute to dissimilarity in phenotype; in the other two regions (grey shading) the 

two factors have opposing effects.
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