Skip to main content
. 2019 Jul 22;43(7):730–741. doi: 10.1002/gepi.22245

Table 2.

Computational aspects of JAM and runtimes (in minutes) of the different methods applied to the meta‐GWAS case studies

Case study Total JAM JAM JAM lassosum LDPred
SNPs
λ
SNPs Runtime Runtime Runtime
T1D 231,510 0.01 712 4.6 10.3 61.5
CAD 211,263 0.001 7233 5.1 7.5 27.5
Schizophrenia 385,474 1E‐04 30544 16.6 17.4 157.2

Note: The total number of SNPs analyzed (i.e., after QC), for all methods, is shown in the first column. The next two columns correspond to the optimal value of for use with JAM—smaller values encourage more sparsity—and the posterior average number of SNPs selected into the corresponding optimal JAM model

Abbreviations: CAD, coronary artery disease; SNP, single‐nucleotide polymorphism; T1D, type 1 diabetes.