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Abstract

As a model organism for studies of cell and environmental biology, the free-living and 

cosmopolitan ciliate Euplotes vannus shows intriguing features like dual genome architecture (i.e. 

separate germline and somatic nuclei in each cell/organism), “gene-sized” chromosomes, stop 

codon reassignment, programmed ribosomal frameshifting (PRF) and strong resistance to 

environmental stressors. However, the molecular mechanisms that account for these remarkable 

traits remain largely unknown. Here we report a combined analysis of de novo assembled high-
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quality macronuclear (MAC; i.e. somatic) and partial micronuclear (MIC; i.e. germline) genome 

sequences for E. vannus, and transcriptome profiling data under varying conditions. The results 

include: 1) the MAC genome contains more than 25,000 complete “gene-sized” 

nanochromosomes (~85 Mb haploid genome size) with the N50 ~2.7 kb; 2) though there is a high 

frequency of frameshifting at stop codons UAA and UAG, we did not observe impaired transcript 

abundance as a result of PRF in this species as has been reported for other euplotids; 3) the 

sequence motif 5’-TA-3’ is conserved at nearly all internally-eliminated sequence (IES) 

boundaries in the MIC genome, and chromosome breakage sites (CBSs) are duplicated and 

retained in the MAC genome; 4) by profiling the weighted correlation network of genes in the 

MAC under different environmental stressors, including nutrient scarcity, extreme temperature, 

salinity and the presence of ammonia, we identified gene clusters that respond to these external 

physical or chemical stimulations; 5) we observed a dramatic increase in HSP70 gene transcription 

under salinity and chemical stresses but surprisingly, not under temperature changes; we link this 

temperature-resistance to the evolved loss of temperature stress-sensitive elements in regulatory 

regions. Together with the genome resources generated in this study, which are available online at 

Euplotes vannus Genome Database (http://evan.ciliate.org), these data provide molecular evidence 

for understanding the unique biology of the highly adaptable microorganisms.
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1. INTRODUCTION

Single-celled microorganisms were the first forms of life that developed on Earth 

approximately ~3.2 billion years ago, firstly as prokaryotic forms and then evolved into 

eukaryotic cells between 1.4–2.0 billion years ago (Cavalier-Smith 2006; Schopf et al., 

2018). As an important part of the bulk biodiversity on Earth, microbes play crucial roles in 

biogeochemical cycles and ecosystems, and can be found almost anywhere, even in extreme 

environments (Hu 2014). Therefore, microbes have been evolving and developed a wide 

variety of biological mechanisms to survive in the long history of the Earth. One of the most 

diverse and highly differentiated group among single-celled microorganisms are ciliates, 

which emerged approximately one billion years ago (Parfrey et al., 2011) and are abundant 

in diverse habitats across the globe, where they are among the most important components 

of food webs in aquatic ecosystems (Gao et al., 2017; Lynn 2009). Ciliate diversity, 

physiology and abundance have been linked to studies of environmental change (Gong et al., 

2005; Xu et al., 2014), pollution monitoring (Gutiérrez et al., 2003; Jiang et al., 2011; 

Stoeck et al., 2018), biogeography (Foissner et al., 2008; Liu et al., 2017; Petz et al., 2007), 

adaptive evolution (Clark & Peck 2009; He et al., 2019), cell biology (Jiang et al., 2019; 

Wang et al., 2017a; Zheng et al., 2018) and epigenetics (Wang et al., 2017c; Xiong et al., 

2016; Zhao et al., 2017).

As a monophyletic clade, ciliates show several intriguing features. First, ciliates possess both 

the compact germline micronucleus (MIC) and the transcriptionally active somatic 

macronucleus (MAC) within each cell (Katz 2001; Prescott 1994). The streamlined and 

Chen et al. Page 2

Mol Ecol Resour. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://evan.ciliate.org/


efficient MAC genome is developed from a zygotic nucleus during sexual reproduction 

(conjugation) through a series of genome wide rearrangements, including chromosome 

fragmentation, micronuclear DNA elimination, and DNA amplification (Chalker & Yao 

2011; Chen et al., 2014; Nowacki et al., 2011; Riley & Katz 2001). However, conflicting 

models suggest a variety of mechanisms for genome rearrangement within the investigated 

ciliates (Chen et al., 2014; Feng et al., 2017; Maurer-Alcalá et al., 2018), Second, the 

nuclear genetic code in ciliates is diversified and flexible as standard stop codons are often 

reassigned to amino acids; even stranger, in some ciliates all three standard stop codons can 

either code for amino acid or terminate translation in a context-dependent manner (Swart et 

al., 2016). More relevant for the current study, euplotid ciliates exhibit widespread 

programmed ribosomal frameshifting (PRF) at stop codons, 60-fold higher than other 

organisms, for instance, human, mouse, flies, C. elegans, yeast and E. coli (Wang et al., 

2016). Stop codon is indicated not sufficient for translation termination in euplotids and 

frameshifting is sequence context-dependent (Lobanov et al., 2017). Third, ciliates have 

great ability to survive in a wide range of harsh conditions, and feature strong tolerance to an 

array of environmental stressors. Many of these conditions, such as heavy metal 

contamination, are believed to induce evolutionarily conserved molecular defense 

mechanisms (Kim et al., 2018). It is therefore important to elucidate the molecular 

mechanisms employed by the single cells in response to external stresses.

In the present study, we analyze the germline (MIC) and somatic (MAC) genomes of 

euplotid ciliates to reveal the deeper mechanisms of how single celled organisms survive in 

diverse environments. Euplotids, one of the most common families of free-living ciliates, 

play important roles as both predators of microalgae and preys of multicellular eukaryotes in 

global waters (Dhanker et al., 2013; Sheng et al., 2018; Zhao et al., 2018). They have been 

widely used for decades as model organisms in studies of predator/prey relationships (Kusch 

1995; Wiąckowski & Szkarłat 1996), cell signaling (Hadjivasiliou et al., 2015; Jerka-

Dziadosz et al., 1987), toxicology of marine pollutants (Trielli et al., 2007) and experimental 

ecology (Day et al., 2017; Walton et al., 1995; Xu et al., 2004). Euplotids are notable for 

their ability to survive in extreme environmental stresses. Euplotes vannus, the focus of this 

work, in particular is known to tolerate the high levels of ammonia surrounding its 

microzooplanktonic prey, potentially causing great damage in the ammonium-rich 

aquaculture systems necessary to the microalgal industry (Day et al., 2017; Xu et al., 2004).

Here we have produced and analyzed sequence data for the somatic genome and a partial 

germline genome of a new marine model organism Euplotes vannus, and performed 

transcriptomic profiling for this species under varying harsh conditions. Through 

bioinformatics analysis, we revealed its extensively fragmented somatic genome and high 

frequency of programmed ribosomal frameshifting (PRF). By genome comparison, we 

analyzed its chromosomal rearrangements patterns focusing on IES excision and 

chromosome breakage, and compared with that of other ciliates. We then performed 

differential gene expression analysis to reveal the molecular basis of its strong tolerance to 

extreme environmental stresses. These data reveal insights into its unique features of the 

dual genomes, and provide clues to the ability of E. vannus to tolerate the different 

environmental stresses it encounters.
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2. METHODS

2.1. Cell culture and sample preparation

Euplotes vannus was collected from seawater along the Yellow Sea coast at Qingdao 

(36°06′ N, 120°32′ E), China. Four cells were picked and cultured in filtered marine water 

(pH 7.8) at 20°C and 30 psu (practical salinity unit), with a monoclonal population of 

Escherichia coli as a food source, until reaching 106 cells/L. Cells used for macronuclear 

and micronuclear genomic sequencing, as well as control cells for transcriptome sequencing, 

were harvested from this stock population.

Experimental cells were further cultured under identical conditions, except for those noted 

below. Each group including the control began with 106 cells had two biological replicates. 

To simulate the stress from nutrient scarcity, 106 cells of E. vannus were starved in 1L of 

filtered seawater for 48 hours before harvest. For the temperature and salinity stresses, we 

chose the most extreme conditions that E. vannus can survive after a series of gradient test 

(Figure S1). For stresses from low and high temperature, 106 cells of E. vannus were 

cultured at 4 °C and 35 °C, respectively, for 6 hours before harvest. For stresses from low 

and high salinity, 106 cells were cultured under salinity levels of 10 psu and 60 psu, 

respectively, for 6 hours before harvest. For stress from the presence of free ammonia, 106 

cells were cultured in filtered marine water with 100 mg/L NH4Cl (pH 8.2, 20 °C and 30 

psu), as described previously (Xu et al., 2004). To account for the effect of an alkaline 

environment when free ammonia exists, parallel sample cells were grown and harvested in 

pH 8.2 marine water without the presence of free ammonia.

2.2. High-throughput sequencing and data processing

For transcriptomic sequencing and genomic sequencing to acquire macronucleus (MAC) 

genome information, cells were harvested by centrifugation at 300 g for 3 min. The genomic 

DNA was extracted using the DNeasy kit (QIAGEN, #69504, Germany). Total RNA was 

extracted using the RNeasy kit (QIAGEN, #74104, Germany) and digested with DNase. The 

rRNA fraction was depleted using GeneRead rRNA Depletion Kit (QIAGEN, #180211, 

Germany).

For single-cell whole-genome amplification to acquire micronucleus (MIC) genome 

information, a single vegetative cell of E. vannus was picked and washed in PBS buffer 

(without Mg2+ or Ca2+). MIC genomic DNA was enriched and amplified as described in 

Maurer-Alcalá et al., (2018), by using the REPLI-g Single Cell Kit (QIAGEN, #150343, 

Germany), which was based on the whole-genome amplification (WGA) technology and 

tended to amplify longer DNA fragments.

Illumina libraries were prepared from MAC genomic DNA, mRNA and amplified single-cell 

MIC genomic DNA of E. vannus using Nextera DNA Flex Library Prep Kit (Illumina 

#20018704) and TruSeq RNA Library Prep Kit (Illumina #RS-122–2001) according to 

manufacturer’s instructions. Paired-end sequencing (150 bp read length) was performed 

using an Illumina HiSeq4000 sequencer. The sequencing adapter was trimmed and low-

quality reads (reads containing more than 50% bases with Q value <= 5) were filtered out by 

FASTX-Toolkit (-q 5 -p 0.5) (Gordon & Hannon 2010).
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2.3. Genome assembly and annotation

MAC and MIC genomes were assembled using SPAdes v3.7.1 (-k 21,33,55,77), respectively 

(Bankevich et al., 2012; Nurk et al., 2013). Mitochondrial genomic sequences of ciliates and 

genome sequences of bacteria were downloaded from GenBank as BLAST databases to 

remove contamination caused by mitochondria or bacteria (BLAST E-value cutoff = 1e-5) 

and 6.6% of MAC and 1.6% of MIC genome assemblies were removed as potential 

contamination. CD-HIT v4.6.1 (CD-HIT-EST, -c 0.98 -n 10 -r 1) was employed to eliminate 

the redundancy of contigs (sequence identity threshold = 98%) (Fu et al., 2012). Poorly 

supported contigs (coverage < 5 and length < 300 bp) in the MAC genome were discarded 

by a custom Perl script. RNA-seq data of E. vannus were mapped to the MAC genome 

assembly by HISAT2 v2.0.4 (Kim et al., 2015). Telomeres were detected using a custom 

Perl script that recognized the telomere repeat 8-mer 5’-(C4A4)n-3’ at the ends of contigs, as 

described in a previous study (Swart et al., 2013). Contigs without neither telomeres nor 

RNA-seq reads mapped were further removed by a custom Perl script to avoid potential 

germline genome DNA contamination, which were about 10.8% of MAC genome. Repeats 

in the somatic MAC genome assembly were annotated by combining de novo prediction and 

homology searches using RepeatMasker (-engine wublast -species ‘Euplotes vannus’ -s -

no_is) (Tarailo-Graovac & Chen 2009). The tRNA and other ncRNA genes were detected in 

the MAC genome by tRNAscan-SE v1.3.1 and Rfam v11.0, respectively (Burge et al., 2013; 

Lowe & Eddy 1997).

2.4. Gene modeling and stop codon detection

The transcriptome and gene models were generated using StringTie v1.3.3b (Pertea et al., 

2015). Genome and transcriptome assemblies of E. octocarinatus (accession numbers: 

PRJNA294366) were acquired from NCBI and previously published studies (Wang et al., 

2018; Wang et al., 2016). Mapping results for RNA-Seq reads were visualized on GBrowse 

v2.0 (Stein 2013). Predicted protein products were annotated by alignment to domains in the 

Pfam-A database by InterProScan v5.23 and to ciliate protein sequences from NCBI 

GenBank by BLAST+ v2.3.0 (E-value cutoff = 1e-5) (Camacho et al., 2009; Jones et al., 

2014). Two-gene chromosomes were detected using a custom Perl script that recognized 

chromosomes containing multiple genes. The frequency of stop codon usage was estimated 

by a custom Perl script that recognized the stop codon TAA or TAG in transcripts of 

euplotids.

2.5. Detection of frameshifting events

Frameshifting events were detected using a custom Perl script modified from the protocol in 

a previous study (Wang et al., 2016). Transcripts of euplotids were compared using 

BLASTX to conserved protein sequences of other ciliates (E-value cutoff = 1e-5), and frame 

changes between adjacent BLASTX hits were identified. To avoid false-positives created by 

introns, the results were limited to adjacent hits separated by a strict inner distance of <= 10 

bp. Sequences from 30 bp upstream and downstream of each type of frameshifting site (+1, 

+2 or −1) were extracted, and sequence motifs in information content (bits) within these 

regions were identified and illustrated by WebLogo 3 (Crooks et al., 2004). We assessed 
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statistical significance in comparison of transcript with or without frameshifting using a two-

tailed Student’s t-test, considering a value of p < 0.05 as significant.

2.6 Genome rearrangement analysis

The MIC and MAC genome assemblies and annotations for macronuclear-destined segments 

(MDSs), internally-eliminated segments (IESs), and pointers of Oxytricha trifallax and 

Tetrahymena thermophila were acquired from the database <mds_ies_db> (Burns et al., 

2015). The MIC and MAC genome assemblies of Paramecium tetraurelia strain 51 were 

acquired from ParameciumDB (Arnaiz & Sperling 2010). Scrambled and non-scrambled 

MDSs were identified by homologous search between MAC and MIC genomic sequences in 

each species by MIDAS (Jonoska & Saito 2015), which utilized BLAST+ v2.3.0 (Camacho 

et al., 2009). Non-scrambled MDSs were further identified by analyzing qualified BLASTN 

hits (E-value cutoff = 1e-5 and match length cutoff = 100 nt) between MAC and MIC 

genomes. IESs were assigned between MDSs from the same MAC chromosomes. Non-

scrambled pointers were identified as the overlap regions of adjacent MDSs on MAC 

chromosomes. Chromosome breakage sites (CBSs) were identified as the regions between 

MDSs from different MAC chromosomes mapping to the adjacent regions of MIC genome. 

Motifs in information content (bits) of pointers, CBSs and their flanking regions were 

illustrated by WebLogo 3 (Crooks et al., 2004).

2.7. Differential gene expression analysis

Transcript abundances were estimated by using featureCounts (Liao et al., 2013). 

Differential gene expression analysis and principal component analysis (PCA) were 

performed by R package “DESeq2” (adjusted p-value by Benjamini-Hochberg procedure < 

0.01) (Love et al., 2014). Starvation induced genes were defined by an average RPKM value 

of gene expression in starved samples > 1 and an average value of RPKM of gene expression 

from vegetative samples < 0.1. Weighted gene co-expression eigengene network analysis 

was performed by WGCNA (Langfelder & Horvath 2008). Gene Ontology (GO) term 

enrichment analysis was performed by using BiNGO v3.0.3 (adjusted p-value by Benjamini-

Hochberg procedure < 0.05), which was integrated in Cytoscape v3.4.0, and the plot was 

generated by the R package, ggplot2 (Kohl et al., 2011; Maere et al., 2005; Wickham 2016).

2.8. Homolog detection of environmental stress-related genes

Homologous Hsp70 (gene id: MSTRG.11315) and its two relatively distant homologs, BiP 

(Binding immunoglobulin protein, gene id: MSTRG.32307) and mtHsp70 (mitochondrial 

Hsp70, gene id: MSTRG.32363), were identified in E. vannus using BLAST+ v2.3.0 (E-

value cutoff = 1e-5), according to the Hsp70 protein sequences of E. focardii and E. nobilii 
from previous studies (GenBank accession number: AAP51165 and ABI23727, 

respectively) (La Terza et al., 2001; La Terza et al., 2007) and NCBI Non-redundant protein 

sequences (nr) database. The complete sequences of the E. focardii and E. nobilii HSP70 

genes are available at NCBI with the accession numbers AY295877 and DQ866998 (La 

Terza et al., 2004; La Terza et al., 2007). The consensus amino acid sequence of Hsp70 (La 

Terza et al., 2004; La Terza et al., 2007) and essential amino acid positions of Hsp70 

(Morshauser et al., 1999; Sriram et al., 1997) were reported in previous studies.
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2.9. Phylogenetic analysis

The DNA and amino acid sequences of Euplotes pheromone homologs (Vallesi et al., 2014) 

were acquired from NCBI, and aligned by MUSCLE v3.8.31 and ClustalW v2.1, 

respectively (Chenna et al., 2003; Edgar 2004). A Maximum Likelihood tree based on amino 

acid sequences was reconstructed by MEGA v7.0.20, using the LG model of amino acid 

substitution, 500 bootstrap replicates (Kumar et al., 2016; Le & Gascuel 2008).

Phylogenomic analysis was performed using the supertree method (Chen et al., 2018). 

Predicted protein sequences from Euplotes vannus identified in this work, from 31 other 

ciliates collected from previous studies (Aeschlimann et al., 2014; Keeling et al., 2014; 

Slabodnick et al., 2017; Wang et al., 2018), and from transcriptome sequencing by the 

Marine Microbial Eukaryote Transcriptome Sequencing Project (data available on iMicrobe: 

http://imicrobe.us/, accession number and gene ID see Table S1), were used to generate a 

concatenated dataset (Chen et al., 2018; Gentekaki et al., 2017). A Maximum Likelihood 

tree based on the concatenated dataset covering 157 genes was reconstructed by using GPSit 

v1.0 (relaxed masking, E-value cutoff = 1e-10, sequence identity cutoff = 50%) (Chen et al., 

2018) and RAXML-HPC2 v8.2.9 (on CIPRES Science Gateway, LG model of amino acid 

substitution + Γ distribution + F, four rate categories, 500 bootstrap replicates) (Stamatakis 

2014). Trees were visualized by MEGA version 7.0.20 (Kumar et al., 2016).

2.10. Euplotes vannus Genome Database

The genome, annotated gene and protein sequence files produced in this work are available 

at Euplotes vannus Genome Database (http://evan.ciliate.org), based on the architecture of 

Tetrahymena Genome Database (Stover et al., 2012). Sequence data are available for search 

using NCBI BLAST (Altschul et al., 1997) and display in GBrowse2 (Stein et al., 2002). 

Functional annotations including Gene Ontology, domains and gene names can be accessed 

by keyword search and updated using a community annotation interface.

3. RESULTS

3.1. General description of genome sequencing and assembly of Euplotes vannus

We assembled the 85.1 Mb somatic MAC genome and 120.0 Mb germline MIC genome of 

Euplotes vannus (Table 1, 2, S2 and Figure S2). We compared E. vannus to the previously 

sequenced euplotid E. octocarinatus to assess somatic genome size, gene number, telomere 

length, number of 2-telomere contigs and N50 value (Table 1, Figure 1 and Figure S3a). 

Most chromosomes in E. vannus are “nanochromosomes” bearing a single gene, with an 

average size distribution around 1.5 kb, and telomeric repeats of C4A4 and T4G4 on both 

ends (37501/38245, 98.1%) (Figure 1c), similar to that of E. octocarinatus (Wang et al., 

2016). The distance between the transcription start site (TSS) for each gene and the 

upstream telomere is generally less than 80 nt (Figure S3b). 32755 protein-coding genes 

were identified in the final somatic genome assembly, along with 109 tRNAs comprising 48 

codon types for 20 amino acids (Table S3). Most E. vannus introns are around 25 bp in size, 

with a canonical sequence motif 5’-GTR (N)nYAG-3’ at the respective ends (Figure 1d and 

Figure S4). The annotation of gene functions and repeat regions are summarized in Table S4 
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and Table S5. A model for nanochromosome structure in the E. vannus MAC is summarized 

and illustrated in Figure 1e.

A small proportion of chromosomes were found to contain more than one gene (Figure S3c). 

We divided these two-gene nanochromosomes into two groups according to the direction in 

which the genes they contained are transcribed, and compared these data to those of E. 
octocarinatus. Trans-nanochromosomes containing genes on different strands were similar in 

number between E. vannus (283; 0.74% of total chromosomes) and E. octocarinatus (373; 

0.89%). However, our estimate of Cis-nanochromosomes where all genes on the 

chromosome are transcribed from the same DNA strand, were 2-fold more abundant in E. 
octocarinatus (1211; 2.89%) than E. vannus (461; 1.21%).

3.2. Frameshifting events in euplotids

Frameshifting events in E. vannus and E. octocarinatus, defined as recoding events that 

shifts the ribosome reading frame at a specific position during translation, and then continue 

translation in this frame, were detected by identifying adjacent BLASTX hits targeting the 

same protein sequence in different frames (illustrated by Figure 2a). An E-value cutoff 

(1e-5) ensured the accuracy of the prediction process and a small inner distance cutoff (10 

nt) was applied to remove interference of introns, all of which are larger than 20 nt as 

described above (Figure 1d). 1,208 (2.8% of all transcripts) and 1,016 (3.5%) frameshifting 

events were detected in E. vannus and E. octocarinatus, respectively. Figure 2b and 2c 

showed that the high frequency of +1 programmed ribosomal frameshifting (PRF) at a 

canonical motif of 5’-AAA-TAR-3’ (R = A or G) is a conserved feature in euplotids. 

Intriguingly, more +2 and −1 PRF events were found in E. vannus (16.6% of all PRF events) 

than in E. octocarinatus (4.4%). In the cases of +2 and −1 PRF events, the novel motif 5’-

WWW-TAR-3’ (W = A or T) rather than the +1 PRF signal was preferred (Figure 2bc). 

Frameshifting sites using a non-AAA upstream codon are associated less frequently with 

TAA codons, and are preferentially found upstream of TAG codons (Figure S5a). The 

impact of frameshifting on the abundance of transcripts with or without frameshifting was 

tested. No significant differences by T-test (p > 0.05) were observed among abundance of 

transcripts without frameshifts and those subject to +1, +2 or −1 frameshifting (Figure 2d).

Stop codon usage at translation termination sites in the non-slippery transcripts and at the 

slippery sites of PRF were compared between E. vannus and E. octocarinatus (Figure S5b). 

In these two euplotids, UAA was preferentially used at the termination signal (73.7% and 

76.0%, respectively) and in the slippery signal (91.3% and 91.0%, respectively). The 

frequency of UAA codon usage in the slippery signal is significantly higher than that in the 

termination signal (p = 0.005024 < 0.01, by analysis of variance), indicating that UAA may 

be favorable for frameshifting in both E. vannus and E. octocarinatus.

3.3. A new model for genome rearrangement featuring conserved pointers and 
palindromic chromosome breakage sites

Genome rearrangement from MIC to MAC includes two important events: IES excision and 

chromosome breakage (Figure 3 and Figure 4). We analyzed MDSs in two ciliates in the 

class Spirotrichea – E. vannus and O. trifallax – and two in Oligohymenophorea – T. 
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thermophila, and P. tetraurelia – through comparisons of the MAC and MIC genome 

sequences (Figure 3a). The results showed great variability among these ciliate lineages in 

both the number and size of MDSs (Figure 3b). E. vannus and P. tetraurelia have large 

MDSs (>1 kb) while O. trifallax and T. thermophila feature much smaller MDSs. The IES 

sequences that separate MDSs in the MIC also vary in number, but their lengths are 

comparable – most IESs are smaller than 200 nt (Figure 3c).

Based on our analyses, 97.3% of genome rearrangement events are non-scrambled in E. 
vannus (Table S6). We identified the boundary repeats shared by adjacent MDS and IES, 

known as “pointers”, in non-scrambled genome rearrangement events (Figure 3d). The 

length of the pointer consensus sequence in these species is 2 bp, except for O. trifallax, 

where pointers average 5 bp. The 8,108 pointers identified in E. vannus have a highly 

conserved motif 5’-TA-3’. This 5’-TA-3’ motif is also seen in most P. tetraurelia pointers 

and in the 2 bp pointers flanking nonscrambled MDSs in O. trifallax, despite the vast 

evolutionary distances between these three species.

To investigate the chromosome breakage mechanism in E. vannus, we first identified 

complete MAC chromosomes containing telomeres at both ends, then mapped these to 

homologous regions in the MIC genome to determine CBS boundaries (denoted as “m” and 

“n” in Figure 4a). We identified the size of each CBS and calculated the distance between 

adjacent CBS boundaries using the value of “n - m”. Unlike the well-studied species T. 
thermophila and P. tetraurelia (both in class Oligohymenophorea), where most MAC 

chromosomes are separated by a positive number of base pairs that are excised and lost from 

the MAC genome, most of these are negative values in E. vannus (Figure 4b). O. trifallax, 

another spirotrich ciliate featuring nanochromosomes, also shows negative values in CBSs 

boundary distances. These negative values can be explained by overlapping loci in the MIC, 

resulting in duplicated sequences in the MAC genome.

To search the potential conserved sequence motifs, 20–25 bp upstream and downstream of 

the 1204 predicted CBS regions were extracted and analyzed using WebLogo. These loci in 

E. vannus and O. trifallax show the consensus CBS motifs and their flanking regions in an 

overall palindrome structure (Figure 4bc). Furthermore, we found that most (92%) CBSs and 

their reverse complementary counterparts are present at a similar frequency (difference ≤ 1) 

in the MAC genome (Figure 4d). The findings above suggest that ciliates with 

nanochromosomes follow a novel model of genome rearrangement, in which chromosome 

breakage sites are duplicated and retained in the somatic genome. This model bears 

similarity to IES deletion, whose removal depends on the direct repeats at their boundaries, 

lending support to the idea that these two processes may share a homologous mechanism in 

these species.

3.4. Molecular basis of strong tolerance to extreme environmental stresses

We conducted principal component analysis (PCA) based on the differential gene expression 

of E. vannus cells under different extreme environmental stresses (Figure S6 and Figure S7). 

The analysis revealed changes in the gene expression profile of cells under high temperature 

(35 °C), low temperature (4 °C), and high or low salinity (60 and 10 psu, respectively). The 

presence of ammonia also had a substantial impact on transcription patterns (Figure S7). 
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Surprisingly, cells under high salinity and low salinity shared a similar gene expression 

profile (Figure S6a).

To further dissect the relationships between co-expressed genes associated with the 

regulation of cellular processes and pathways under substantial environmental changes, we 

constructed a weighted gene co-expression eigengene network (Figure 5a). The network 

clustered different eigengenes into six modules based on their co-expression profile (Figure 

S6b). A strongly co-expressed eigengene module was up-regulated in cells under both high 

and low salinity stresses (colored in steel blue in Figure 5a and Figure S6b). This module 

indicated an extensive activation of many pathways, mainly related to tRNA aminoacylation, 

tRNA and rRNA processing, nucleosome assembly and pseudouridine synthesis (adjusted p-

value by Benjamini-Hochberg procedure < 0.05). In addition, two small eigengene modules 

were up-regulated in cells under high salinity stress (purple) and low salinity stress (dark 

green), respectively. Low salinity stress activated an extra pathway related to the glutamine 

metabolic process. Intriguingly, low temperature stress induced a large cluster of eigengenes 

(blue module in Figure 5 and Figure S6b) related to small GTPase mediated signal 

transduction. Cells exposed to high levels of ammonia were very similar to those under high 

temperature stress, and induced a small cluster of eigengenes related to lipid metabolic 

process (Figure 5 and Figure S6b). However, the normal expression of many genes also 

changes under high ammonia concentrations (Figure S6b and Figure S7), and the lipid 

metabolic pathway overall is severely impacted (Figure 5b).

As many other organisms upregulate heat-shock protein 70 (HSP70) genes under heat stress 

(Clark & Peck 2009), we compared the sequence of the E. vannus HSP70 homolog to its 

counterparts in Euplotes nobilii and Euplotes focardii, as well as other two relatively distant 

homologs of Hsp70, BiP (Binding immunoglobulin protein) and mtHsp70 (mitochondrial 

Hsp70) (Figure S8). This comparison revealed that only the E. focardii HSP70 sequence, 

previously noted for its lack of response to temperature stress (La Terza et al., 2004), had 

numerous amino acid substitutions within its ATP-binding and substrate-binding domains 

(Figure 6a). While a few eigengenes co-expressed under high temperature (pink module in 

Figure 5a), transcription of either the highly conserved HSP70 or BiP gene in E. vannus did 

not respond to temperature stresses, whereas chemical stress significantly changed the 

expression of this gene in E. vannus (Figure 6b and Figure S7). However, the other HSP70 

homologous gene mtHSP70 that located in mitochondria, responds actively when cell faces 

stress from low temperature.

To investigate the molecular basis of HSP70 gene expression in euplotids, we analyzed the 

structure of non-coding regions flanking the gene in E. vannus and E. focardii (Figure 6c 

and Figure S9). We observed no substantial difference in the 5’ promoter region between the 

HSP70 gene between these two species. Both bear canonical regulatory cis-acting elements 

that bind transcriptional trans-activating factors, including heat-shock elements (HSE) and 

stress-response elements (StRE) (Figure 6c and Figure S9a). However, the sequences of 

HSEs in these two species are poorly conserved. Furthermore, neither E. vannus nor E. 
focardii contained the motif 5’-ATTTA-3’ in their 3’ promoter region, an mRNA 

destabilization adenine-uridine rich element (ARE) commonly found in other species 

(Figure 6c and Figure S9b).
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4. DISCUSSION

4.1. Programmed ribosomal frameshifting does not affect transcript abundance

Comparative genome analysis in the present study reveals that E. vannus shares similar 

patterns of frameshifting and stop codon usage with E. octocarinatus (Figure 2). Our 

analyses are consistent with previous studies demonstrating that euplotids have a large 

number of genes requiring programmed ribosomal frameshifting (PRF), and this 

phenomenon is more prevalent in this clade of ciliates than in the viruses, prokaryotes and 

other eukaryotes where it has been studied (Karamysheva et al., 2003; Wang et al., 2016). 

Previous study reported a putative suppressor tRNA of UAA, which may play an important 

role in +1 frameshifting in E. octocarinatus (Wang et al., 2016). Unfortunately, we did not 

find strong evidence to show the presence of “suppressor” tRNA based on the present data. 

A more recent study suggested that the function of stop codons as frameshifting or 

termination is determined by their proximity to poly(A) tails (Lobanov et al., 2017). It was 

observed that ribosomal frameshifting was slower than the standard decoding of sense 

codons (Lobanov et al., 2017). Our results show no significant difference between the 

abundance of transcripts that incorporate a frameshifting event and those without 

frameshifting and thus implied that the decoding delay induced by ribosomal frameshifting 

would not be compensated by transcript abundance change.

Frameshifting will typically occur when the codon upstream of a UAA/UAG is AT-rich 

(usually a AAA codon) (Figure 2c). Our results here indicate that transcripts with +2 / −1 

frameshifting (associated with non-AAA upstream codon) have a slightly higher abundance 

compared to transcripts with either a +1 (associated with AAA upstream codon) or no 

frameshifting (Figure 2d). Besides, frameshifting sites using a non-AAA upstream codon are 

preferentially found upstream of UAG codons (Figure S5a). The previous study 

demonstrated that the observed frameshifting efficiencies of loci with AAA and non-AAA 

upstream codons are similar, but the ribosome pausing signal at frameshifting sites was 

stronger for TAA codons than for TAG codons (Lobanov et al., 2017). One possible 

explanation for these observations is that the non-AAA upstream codon, when in 

combination with the following TAG stop codon, results in decreased ribosomal pausing and 

increased efficiency of frameshifting.

Euplotes MAC genome are extensively fragmented to gene-sized nanochromosomes, which 

facilitates the evolution of genetic code. Previous studies indicate that ciliates evolved 

diversified and flexible nuclear genetic code from their ancestors with ambiguous genetic 

codes (Swart et al., 2016). For most species, UGA remains as stop while UAA and UAG are 

reassigned to code glutamine, tyrosine or glutamic acid (Swart et al., 2016). It is opposite in 

Euplotes, whose UGA codon is reassigned to code cysteine while UAA and UAG are stops 

(Lozupone et al., 2001). However, euplotids evolves another important mechanism of 

programmed ribosomal frameshifting at the stop codons UAA and UAG, which can solve 

the same problem of canonical stop codons residing in the coding regions. It is proposed that 

translation (either through reassignment or frameshifting), rather than termination, is the 

default recognition mode for “stop”; codons while termination is due to the context-specific 

override provided by transcript ends (Lobanov et al., 2017; Swart et al., 2016). This would 
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be much more robust when the MAC genome are extensively fragmented to 

nanochromosomes, where stop codons will potentially even be unnecessary.

4.2. Pointers and CBSs are duplicated after genome rearrangement to increase homology 
in MAC of euplotids

A novel insight from our study, based on more than 4,000 identified IESs, is that pointers 

with the motif 5’-TA-3’ are universal and highly conserved in E. vannus (Figure 3d). This is 

consistent with previous studies that IESs containing Tec transposable elements in euplotids 

were precisely excised at pointer sequences with a consensus motif 5’-TA-3’ (Jacobs & 

Klobutcher 1996; Karamysheva et al., 2003). This sequence is identical to that found in 

Paramecium, which also utilizes it as a universal dinucleotide pointer (Steele et al., 1994). 

Most Tetrahymena IESs are flanked instead by 5’-AT-3’, but a greater variety of pointer 

sequences are seen in this species, perhaps due to the existence of more IESs (Hamilton et 

al., 2016). An even more complicated set of pointers may be necessary in Oxytricha, which 

excises more than half a million IESs and reorders the MDS segments by inversion or 

permutation (Figure 3c). Together with a previous study (Chen et al., 2014), our result 

suggests that pointers evolve to larger sizes under selective pressure in genomes with higher 

rearrangement complexity.

Our study reveals that chromosome breakage sites (CBSs) are duplicated and retained in the 

Euplotes MAC genome. Previous studies identified a conserved CBS element with the 

sequence motif 5’-TTGAA-3’ at several breakage loci in euplotid MIC chromosomes (Baird 

& Klobutcher 1989; Klobutcher et al., 1998). However, the role of the conserved element in 

specifying chromosome fragmentation was still unclear, since a number of CBS regions 

lacked this sequence. Our study has determined 1,204 CBSs with high confidence and 

identified the sequence motif 5’-TTGAA-3’ within downstream (or 5’-TTCAA-3’ upstream) 

flanking regions, with an inner distance of 11 nt (Figure 4c). These observations, along with 

similar observations in Oxytricha, strongly support previous models of chromosome 

breakage that involve a short staggered cut in ciliates containing gene-sized 

nanochromosomes (Baird & Klobutcher 1989; Klobutcher et al., 1998).

We have also demonstrated that copies of the CBS region remain at the ends of both 

resulting MAC chromosomes after genome rearrangement, by showing the conservation of 

the frequencies of the CBS sequences and their reverse complement counterparts in the 

MAC genome (Figure 4d). Notably, the Euplotes nanochromosomes have extremely short 5’ 

untranscribed regions (the average size of 27 bp, Figure 1e), and the distance between the 

transcription start site (TSS) for each gene and the upstream CBS is generally less than 80 nt 

(Figure S3b). Furthermore, the first three periodic peaks of the distance between CBSs and 

TSSs is 10–11 bp (Figure S3b), i.e. the characteristic number of bases in one turn of DNA 

double helix. This might indicate regular spacing of transcription factors relative to the CBS/

telomere addition site, indicating potential interactions or constraints between telomere-

binding proteins and transcription complex. Based on these observations, we speculate that 

the AT-rich CBSs may serve as TATA boxes. These facts show that ciliates with 

nanochromosomes retain sizable regions of unique, repeated sequence in MIC-adjacent 
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MAC chromosomes. These sequences may allow for the co-regulation of one or more 

aspects of MAC chromosome biology, such as telomere addition and gene co-expression.

Together with previous studies, the current result indicates that genome rearrangement 

patterns and mechanisms in ciliates are highly diversified. For example, the extent of 

chromosomal fragmentation varies from limitedly (e.g. Tetrahymena and Paramecium) to 

extensively (e.g. Oxytricha and Euplotes). Extensive fragmentation has been found to occur 

in members of three separate classes, Spirotrichea (including Oxytricha and Euplotes), 

Phyllopharyngea (e.g. Chilodonella), and Armophorea (e.g. Metopus), which demonstrates 

multiple origins within ciliates (Riley & Katz 2001). The types of DNA elimination are also 

quite diverse among different ciliates (Chalker & Yao 2011; Nowacki et al., 2011). Excision 

of IESs is generally not precise in Tetryhmena while must be precise in Paramecium, 

Chilodonella, Oxytricha and Euplotes. Moreover, gene scrambling is widespread in 

Oxytricha (Chen et al., 2014) and Chilodonella (Maurer-Alcalá et al., 2018; Zhang et al., 

2018), but not frequently observed in Tetrahymena, Paramecium and Euplotes. As to the 

Euplotes in the present study, which is most closely related to Oxytricha based on 

morphology and phylogeny, its chromosomal fragmentation is similar to Oxytricha (Figure 

4); however, its DNA elimination resembles Paramecium (Figure 3). The mechanisms 

underlie the genome rearrangement in Tetrahymena, Paramecium and Oxytricha are 

different, though that of Euplotes is still largely unknown (Wang et al., 2017b). This again 

demonstrates the plasticity of genome rearrangement among different species of ciliates, 

which likely contributes to the biodiversity and adaptability of ciliates.

4.3. Absence of trans-acting sequence elements prevents HSP70 response during 
temperature stress

Extensive gene networks are co-expressed in E. vannus cells under different extreme 

environmental stresses (Figure 5). However, the HSP70 gene of E. vannus can be activated 

when faced with chemical stresses, but is not upregulated in response to thermal changes 

(Figure 6b). This is similar to a previous study that E. focardii is able to tolerate temperature 

stresses without inducing a typical HSP70 response (La Terza et al., 2001). The previous 

study also found that HSP70 gene expression in E. nobilii differed from E. focardii in 

response to both gradual and abrupt temperature changes. When transferred from 4 to 20 °C, 

a strong transcriptional activity of HSP70 gene was induced in E. nobilii cells, whereas no 

measurable change was found in cells of E. focardii. In contrast, HSP70 expression in both 

species increased with oxidative and chemical stresses, such as tributyltin and sodium 

arsenite (La Terza et al., 2004). Furthermore, the HSP70 protein of E. focardii carries unique 

amino acid substitutions of potential significance for cold adaptation, which are absent in E. 
nobilii (La Terza et al., 2007). The current work indicates the protein product of E. vannus’ 
HSP70 gene is not evolved for cold adaptation and resembles that of E. nobilii (Figure 6a). 

However, the other HSP70 homologous gene mtHSP70 responds actively when cell faces 

stress from low temperature, which might be a survival strategy of E. vannus in low 

temperature.

Further, in our analyses neither HSP70 nor its two relatively distant homologs BiP and 

mtHsp70 respond to the stress of high temperature (Figure 6b). While it is possible that 
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35 °C is not high enough to induce heat shock, even though they cannot survive at higher 

temperatures in the lab. More likely, the divergence of trans-activating sequence elements 

controls HSP70 gene expression profiles. E. focardii harbors cis-acting elements like heat-

shock elements (HSE) and stress-response elements (StRE) in the 5’ promoter region of its 

HSP70 gene. These elements bind trans-acting transcriptional activators and are associated 

with stress-inducible genes in a variety of organisms (Fernandes 1994; Kobayashi & 

McEntee 1993; Ruis & Schüller 1995). HSP70 gene transcription in response to temperature 

stress is believed to be modulated by HSE binding, whereas StRE binding mediates HSP70 

transcription under a broad range of non-temperature stresses (La Terza et al., 2007). In E. 
vannus the HSP70 HSE element is poorly conserved, which may explain its insensitivity to 

temperature stress (Figure 6c and Figure S9). Furthermore, HSP70 mRNAs typically contain 

an adenine-uridine rich element (ARE) in the 3’ regulatory region to allow rapid degradation 

of the message; this signal is absent in both E. vannus (Figure 6c and Figure S9b) and E. 
focardii (La Terza et al., 2007). These observations together argue that divergence of trans-

activating sequence elements underlies the lack of change in HSP70 gene expression in 

response to temperature stress in E. vannus.

5. CONCLUSION

In the current study, we de novo assembled a high-quality MAC genome of the single celled 

ciliate Euplotes vannus, which features “gene sized” nanochromosomes and is much more 

streamlined and efficient compared to the MIC genome. The MAC genome is produced by a 

genome rearrangement process including two important events: IES excision and 

chromosome breakage. Its MDS and IES boundaries are universally flanked by conserved 

5’-TA-3’ pointer sequences and gene scrambling is not widespread. The chromosome 

breakage sites and their flanking regions display a consensus motif in an overall palindrome 

structure and CBS regions are duplicated on adjacent MAC chromosomes to increase 

homology in MAC genome. Programmed ribosomal frameshifting is widespread in this 

species, predominantly at 5’-AAATAA-3’ sites leading to a +1 frameshift, but with many 

examples of +2 and −1 shifts at 5’-ATATAA-3’ and 5’-ATATAG-3’ sites. PRF at these 

sequences was not shown to impair transcript abundance in this species. When facing 

dramatic environmental changes, especially low temperature and low/high salinity, extensive 

gene networks are co-expressed. Under osmotic and chemical stresses, E. vannus rapidly 

enhances transcription of the highly conserved HSP70 gene, but does not induce this gene 

due to temperature stresses. Although the putative E. vannus HSP70 protein does not contain 

cold-adapted amino acid substitutions proposed in E. focardii, it has lost the temperature 

stress-sensitive HSE and ARE elements used in other species to regulate HSP70 expression 

in response to temperature shifts. These results shed light on several of the most intriguing 

aspects of euplotid biology, and establish the genomic tools needed for future discoveries in 

this unique model organism.
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Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Macronucleus (MAC) genome assembly and features of chromosome and introns of 

Euplotes vannus as compared to other ciliates. (a) Maximum likelihood phylogenomic tree 

by supermatrix approach based on a 158-gene dataset. S: class Spirotrichea; L: class 

Litostomatea; O: class Oligohymenophorea; C: class Colpodea; P1: class Protocruzia; M: 

class Mesodiniea; P2: class Prostomatea; H: class Heterotrichea. The scale bar corresponds 

to 10 substitutions per 100 nucleotide positions. The red, black and blue triangles denote the 

positions of E. vannus, E. octocarinatus and three other model ciliates Tetrahymena 
thermophila, Paramecium tetraurelia and Oxytricha trifallax. (b) Photomicrographs in vivo, 

protargol-stained specimen, DAPI staining and morphology and infraciliature schema of E. 
vannus. Ma, macronucleus; Mi, micronucleus. Scale bars are 25 μm. (c) Size distribution of 

2-telomere MAC scaffolds of E. vannus and E. octocarinatus (Wang et al., 2018). (d) Size 

distribution of introns within E. vannus MAC genes and sequence motif of tiny introns in 
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most abundant size category (8792 introns of 25 bp in length). The weblogo is generated and 

normalized to neutral base frequencies in intron regions. (e) A schema illustrates the 

canonical structure of nanochromosomes in MAC of E. vannus. “Tel” denotes telomere and 

“gene body” denotes the gene transcription region. “UTR” denotes the untranscribed region. 

The mean sizes of different regions are shown in the parentheses.
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FIGURE 2. 
Programmed ribosomal frameshifting (PRF) does not impair the transcript abundance in 

Euplotes vannus. (a) A schema illustrates the criteria for detecting +1 frameshifting events. 

Blue boxes indicate the different BLASTX hits of a CDS region to a same target protein 

sequence (E-value cutoff = 1e-5). Grey boxes indicate the adjacent region between two 

BLASTX hits of a CDS region (inner distance cutoff = 10 nt). The brackets above denote the 

0-frame codons and the brackets underneath denote the +1-frame codons. Yellow dots 

denote the nucleotides while the red ones denote the slippery site where frameshifting events 

occur. (b) Percentage of +1, +2 and −1 PRF frameshifting events detected among all 

transcripts in E. vannus (43040 transcripts) and E. octocarinatus (29076 transcripts). 

Numbers in the labels shows the frequencies of frameshifting events in these two species. (c) 

Conserved sequence motif associated with frameshift sites. Sizes of letters denote 

information content, or sequence conservation, at each position. The analysis is based on the 

alignment of 30 bp upstream and downstream the frameshifting motif from predicted 

frameshifting events that involves stop codon TAA or TAG. Note the canonical motif 5’-

AAA-TAR-3’ (R = A or G) in +1 PRF and noncanonical motif 5’-WWW-TAR-3’ (W = A or 

T) in +2 and −1 PRF. (d) Abundance comparison of transcripts without frameshifting (NF) 

and with different types of frameshifting (+1 / +2 / −1) in E. vannus. “ns” denotes not 

significant.
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FIGURE 3. 
Comparison of micronuclear genome features among ciliates. The pointers joining adjacent 

macronuclear-destined sequences (MDSs) during the genome rearrangement are in a highly 

conserved “TA” motif in Euplotes vannus and Paramecium tetraurelia. (a) A cartoon 

illustrating the genome rearrangement model for MAC chromosome development from 

MIC. The MDS regions are joined by pointers that located at the boundaries of MDSs and 

internally-eliminated sequences (IESs) after IESs are removed. The blue boxes at the end of 

MAC chromosomes denote the telomeres. (b) The size distribution of MDSs of E. vannus, 

Oxytricha trifallax, Tetrahymena thermophila and P. tetraurelia. (c) The size distribution of 
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IESs of E. vannus, O. trifallax, T. thermophila and P. tetraurelia. (d) The size distribution of 

pointers of E. vannus, O. trifallax, T. thermophila and P. tetraurelia. The weblogos show the 

sequence motif in information content (bits) of the pointers in most abundant size in each 

species.
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FIGURE 4. 
MIC chromosome breakage sites (CBSs) are retained in MAC genome of Euplotes vannus 
and Oxytricha trifallax, but not in Tetrahymena thermophila and Paramecium tetraurelia. (a) 

A cartoon illustrating two genome rearrangement models for chromosome breakage from 

MIC to MAC during ciliate sexual reproduction. “M” and “N” denote the end of two 

adjacent MAC chromosomes, corresponding to the breakage points “m” and “n” in the MIC 

genome. The blue boxes at the end of MAC chromosomes denote the telomeres. The CBS 

regions are identified by homologous search between MAC and MIC genomes in each 

species. (b) Distribution of the relative distance between the chromosome breakage points 

(“m” and “n”) in the MIC genome of E. vannus, O. trifallax, T. thermophila and P. 
tetraurelia. The positive value of relative distance between “n” and “m” indicates a CBS is 

not retained in the MAC genome while a negative value of relative distance means a CBS is 

overlapped in the MIC genome and retained in the MAC genome. The weblogos show the 

sequence motif in base possibilities of the CBSs in most abundant size in E. vannus and O. 
trifallax. (c) The sequence motif in information content (bits) of flanking regions (20 bp on 
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each side) around the CBSs in most abundant size in E. vannus and O. trifallax. Grey boxes 

denote the consensus elements near CBSs. (d) The difference between frequencies of CBSs 

and their reverse complementary counterparts in the MAC genome of E. vannus. “Matched 

CBSs” refer to a pair of a CBS and its reverse complementary counterpart. 60% CBSs and 

their reverse complementary counterparts are present with equal frequency (difference = 0), 

32% with the frequency difference of one (difference = 1), 2% with the frequency difference 

of two (difference = 2), 6% with the frequency difference of three (difference = 3).
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FIGURE 5. 
Differential gene expression analysis reveals several large cohorts of co-expressed genes 

under temperature, salinity and ammonia stresses. (a) Heatmap of weighted gene co-

expression network of Euplotes vannus genes (both x-axis and y-axis), in accordance with 

different stress-response gene groups. Blue dots denote the co-expression relationship 

between different genes. (b) GO term enrichment analysis on different stress-response gene 

groups shows many pathways are activated when E. vannus faces environmental stresses 

(adjusted p-value by Benjamini-Hochberg procedure < 0.05). Dot size denotes the ratio of 

genes activated in each pathway. Dot color denotes the adjusted p value for activation of 

each pathway.
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FIGURE 6. 
Sequence and gene expression analysis of HSP70 in Euplotes vannus shows changes that 

may explain its insensitivity to temperature change. (a) Amino acid substitutions that occur 

in Euplotes focardii at the level of its HSP70 ATP- and substrate-binding domains and are 

unique with respect to Euplotes nobilii and other organisms. Asterisks denote identities. 

Numbers indicate essential amino acid positions of Hsp70. (b) Fold change of gene 

expression level of E. vannus Hsp70 (gene id: MSTRG.11315) as well as its two relatively 

distant homologs, BiP (Binding immunoglobulin protein, gene id: MSTRG.32307) and 

mtHsp70 (mitochondrial Hsp70, gene id: MSTRG.32363), under different environmental 

stresses (4 °C, 35 °C, 10 psu, 60 psu, pH 8.2 or with the presence of free ammonia) with 

respect to the control (20 °C, 30 psu and pH 7.8). The dashed line in grey denotes the normal 

level of HSP70 and the other two homologous genes. (c) A schema illustrates the sequence 

alignment of 5’ and 3’ regulatory regions of Hsp70 genes in Euplotes vannus and E. focardii. 
Sequence motifs bearing agreement with HSE and StRE elements, putative sites for the 

transcription initiation and polyadenylation motifs are denoted by red, blue, yellow and 

green boxes, respectively; neither of E. vannus and E. focardii carries ARE elements in the 

3’ regulatory region. The dashed red box shows the poorly conserved HSE element in E. 
vannus. “Tel” denotes telomere and “gene body” denotes the gene transcription region. The 

sequence alignment of 5’ and 3’ regulatory regions see Figure S9.
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Table 1.

MAC genome assembly and transcriptome-informed gene annotation of Euplotes vannus in comparison with 

that of E. octocarinatus (Wang et al., 2018).

E. vannus E. octocarinatus

Genome size (Mb) 85.1 88.9

%GC 37.0 28.2

Contig # 38245 41980

Contig N50 (bp) 2685 2947

2-telomere contig # 25519 29532

1-telomere contig # 7835 4842

0-telomere contig # 4890 7606

2-telomere contig percentage (%) 66.7 70.3

Genome size (with telomere) (Mb) 75.9 83.1

Scaffold (with telomere) # 33354 34374

%Scaffold (with telomere) 87.2 81.9

Scaffold N50 (bp) 2714 2999

Gene # 32755 29076

Exon # 175735 96843

Transcript # 43040 29076

Notes: A contig/scaffold with telomeres refers to containing telomere on at least one of its two ends.
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Table 2.

MIC genome assembly information of Euplotes vannus and recognition of MDS-containing contigs and those 

that contain multiple MDSs.

MIC genome Total With MDS Multi-MDS

Genome size (Mb) 120.0 49.8 31.8

%GC 36.0 35.7 35.9

Contig # 104988 13140 5166

Contig N50 (bp) 1953 5597 7718
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