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Complementary vibrational spectroscopy
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Vibrational spectroscopy, comprised of infrared absorption and Raman scattering spectro-

scopy, is widely used for label-free optical sensing and imaging in various scientific and

industrial fields. The two molecular spectroscopy methods are sensitive to different types of

vibrations and provide complementary vibrational spectra, but obtaining complete vibrational

information with a single spectroscopic device is challenging due to the large wavelength

discrepancy between the two methods. Here, we demonstrate simultaneous infrared

absorption and Raman scattering spectroscopy that allows us to measure the complete

broadband vibrational spectra in the molecular fingerprint region with a single instrument

based on an ultrashort pulsed laser. The system is based on dual-modal Fourier-transform

spectroscopy enabled by efficient use of nonlinear optical effects. Our proof-of-concept

experiment demonstrates rapid, broadband and high spectral resolution measurements of

complementary spectra of organic liquids for precise and accurate molecular analysis.
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V ibrational spectroscopy is a fundamental method for
chemical analysis used in a variety of scientific fields such
as organic/inorganic chemistry, geology, biomedical,

material, food, environmental, and forensic science1–5. The label-
free noninvasive molecular spectroscopy enables us to acquire
bond-specific chemical information of specimen, and it is known
that infrared (IR) absorption and Raman scattering spectroscopy
provide complementary information of molecular vibrations: the
former is active for anti-symmetric vibrations that alter the dipole
moment, while the latter for symmetric vibrations that alter the
polarizability1. IR absorption spectroscopy, which is active for
polar bonds such as O–H or N–H, is often used for identification
of functional groups of molecules, while Raman scattering spec-
troscopy, active for bonds such as C=C, S–S, or C–S4, is used for
identification of skeletal structures. The group theory states that
fundamental vibrational modes of molecules with the center of
symmetry cannot be both IR and Raman active (which is known
as the rule of mutual exclusion1,6, while there are some
exceptions6,7). Therefore, to acquire the complete information of
molecular vibrations for more accurate and precise chemical
analysis, both the IR and Raman spectra must be measured.
Measuring the complete information of molecular vibrations
enables us to analyze complex molecular phenomena such as
catalytic chemical reactions8–11.

Simultaneous measurement of IR and Raman spectra is a grand
challenge in spectroscopy because wavelength regions of these
two spectroscopy methods are largely separated, that is, mid-
infrared (2.5–25 µm, corresponding to 400–4000 cm−1) for IR
spectroscopy and visible to near-infrared (0.4–1 µm, corre-
sponding to 10,000–25,000 cm−1) for Raman spectroscopy,
respectively. Since this large wavelength discrepancy causes the
difficulty of sharing light sources and optics, a primitive combi-
nation of conventional Fourier-transform infrared spectroscopy
(FT-IR) and Raman spectrometers12,13 has never been a con-
vincing approach. Such a system requires a complex instrument
comprises different spectroscopy methods based on a Michelson
interferometer and a dispersive spectrometer with two indepen-
dent light sources such as an incoherent lamp source and a visible
continuous-wave laser. Additionally, these conventional methods
do not provide state-of-the-art sensitivity and data acquisition
speed because of the low brightness of the lamp source for FT-IR

(especially when spatial mode filtering is required to have a small
focusing spot) and the inherent weakness of spontaneous Raman
scattering. Meanwhile, the technical advancement of nonlinear
optics based on ultrashort pulsed lasers has enabled us to have
higher brightness of coherent IR sources and stronger Raman
signals through the coherent Raman scattering5,14, and some
approaches have been made towards IR/Raman dual-modal
spectral acquisition with a single pulsed laser15,16. However,
these techniques neither have capability of simultaneous acqui-
sition of complementary IR/Raman spectra nor broadband and
high-resolution spectral acquisition covering the molecular fin-
gerprint region (800–1800 cm−1), where the richest vibrational
modes exist.

Here, we propose and demonstrate a simple yet powerful
technique, called complementary vibrational spectroscopy (CVS),
that allows us to simultaneously measure broadband IR and
Raman spectra covering the fingerprint region at the same posi-
tion. CVS is dual-modal Fourier-transform spectroscopy (FTS)
enabled by an ultrashort near-infrared (NIR) pulsed laser and a
Michelson interferometer. The IR spectroscopy is implemented as
FT-IR with a coherent mid-infrared (MIR) pulsed source gener-
ated via intra-pulse difference-frequency generation (IDFG) from
the NIR pulses17–19, while the Raman spectroscopy as Fourier-
transform coherent anti-Stokes Raman scattering spectroscopy
(FT-CARS) with the same NIR pulses20. The former uses a
second-order and the latter a third-order nonlinear phenomena,
respectively. The system is simple and robust because it shares a
single laser source and an interferometer. Note that our proposed
method can be applied to advanced FTS techniques such as dual-
comb spectroscopy21–23, empowering the emerging technique
further in respect to data acquisition rate, spectral resolution, and
frequency accuracy.

Results
Principle of CVS. The schematic representation of the system is
shown in Fig. 1a. In CVS, both FT-IR and FT-CARS are imple-
mented in a single FTS system that consists of a Michelson
interferometer with a NIR femtosecond laser (10-fs Ti:Sapphire
mode-locked laser at a repetition rate of 75MHz in this study) as
a light source. The pulses emitted from the laser are coupled in
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the interferometer and double NIR pulses are created from each
pulse with an optical path length difference (OPD) set by the
delay line in the interferometer. The NIR double pulses are
focused onto a χ(2) nonlinear crystal (GaSe crystal in this case)
and a portion of the NIR pulses are converted to MIR pulses
through the IDFG process. The generated MIR and undepleted
NIR pulses collinearly irradiate the sample. The MIR pulses are
absorbed, while the NIR pulses are inelastically (Raman) scattered
by molecules. The MIR and NIR pulses are spatially separated by
a dichroic mirror after passing through the sample and are
simultaneously detected by a HgCdTe (MCT) photodetector and
a Si avalanche photodetector (APD), respectively. Here, the NIR
pulses are optically filtered before the detector so that only the
blue-shifted scattered photons reach the APD. The detected sig-
nals are A/D-converted by a digitizer and the digitized inter-
ferograms are Fourier-transformed. The full schematic of the
CVS is depicted in Supplementary Fig. 1.

The working principle of CVS is shown in Fig. 1b. In CVS-IR
process, the MIR double pulses are modulated by IR-active
molecular absorptions and their optical interference is detected by
the MIR detector. Since the delay between the first and second
MIR pulses is determined by that of the NIR pulses, the MIR
absorption interferogram is measured as a function of the OPD
between the NIR double pulses. Fourier-transforming the IR
interferogram shows a broadband IR spectrum. On the other
hand, in CVS-Raman process, the first NIR pulse excites the
molecular vibrations and the second NIR pulse probes them and
generates blue-shifted photons via anti-Stokes Raman scattering.
By scanning the OPD between the NIR pulses, optical frequency
of the second NIR pulse can be shifted by the refractive index
modulations caused by the Raman active molecular vibrations
induced by the impulsive stimulated Raman scattering process. A
CARS interferogram that represents the molecular vibrations is
obtained as an intensity modulation of the blue-shifted part of the
second NIR pulses, which can be separated out by the optical
short-pass filter. Finally, a broadband Raman spectrum is
obtained by Fourier-transforming the CARS interferogram.

Characterization of NIR and MIR pulses. We first characterize
the NIR and MIR pulses. The spectrum of our 10-fs Ti:Sapphire
laser spans over 10,870–14,490 cm−1 (690–920 nm) at the center
wavelength of 12,500 cm−1 (800 nm), and its pulse duration is
evaluated by autocorrelation measurement as 11.9 fs at the sample
position. This ultrashort NIR pulses with the broadband spectrum
spanning more than 3400 cm−1 allows us to measure broadband
FT-CARS spectrum covering the molecular fingerprint region
(800–1800 cm−1) and C–H stretching region (2800–3300 cm−1)24.
The spectrum of the MIR pulses generated by the IDFG process in
a 30-µm GaSe crystal is measured by a homemade FT-IR spec-
trometer and it spans from 790 to 1800 cm−1, which covers the
fingerprint region. In this study, the lowest wavenumber of the IR
spectrum is limited by the detection range of the MCT detector
and the highest wavenumber is possibly limited by the phase-
matching condition of the IDFG process. Note that the IR spectral
region can be shifted by changing the angle of the crystal and also
expanded by changing the crystal and/or laser system.

Complementary vibrational spectroscopy. As a proof of concept
demonstration, we measure complementary vibrational spectra of
liquid toluene. Figure 2a shows sequential CVS interferograms of
toluene, where the IR and CARS interferograms are simulta-
neously detected. They show the synchronized bursts at zero-
path-difference (ZPD) of the interferometer. The OPD is scanned
over 2 cm at a rate of 0.8 Hz. Figure 2b shows 15-times coherently
averaged IR/CARS interferograms, which clearly show signature

of molecular vibrations. In the configuration where the MIR
pulses are generated after the NIR interferometer, the raw IR
temporal waveform contains components other than the desired
IR interferogram. A detailed retrieval procedure of the IR inter-
ferogram is described in Supplementary Note 4 and Supple-
mentary Fig. 3. The double-sided IR interferogram is apodized
and Fourier-transformed, whereas the single-sided CARS inter-
ferogram is apodized and Fourier-transformed by omitting the
center-burst caused by the non-resonant four-wave mixing pro-
cess at ZPD.

The complementary vibrational spectra Fourier-transformed
from the interferograms shown in Fig. 2 are displayed in Fig. 3
with the reference spectra individually measured by conventional
spectrometers. The upper panel shows the CVS-IR spectrum
together with the reference spectrum measured by a standard FT-
IR spectrometer (FT/IR-6800, JASCO). The CVS-IR transmit-
tance spectrum of toluene agrees well with the reference spectrum
and clearly displays the vibrational modes of, for example, C–H
bending at 896, 1179, and 1495 cm−1, ring stretching at 1030,
1082, and 1605 cm−1, CH3 rocking at 1042 cm−1, C–CH3

stretching at 1211 cm−1 and CH3 deformation at 1379 and
1462 cm−1 (ref. 25–28) with a triangular-apodized spectral
resolution of 3.5 cm−1. The lower panel shows the CVS-Raman
spectrum and the reference spectrum measured by a standard
spontaneous Raman spectrometer (inVia, Renishaw). The
CVS-Raman spectrum at the apodized spectral resolution of
5.5 cm−1 clearly shows the vibrational modes of ring stretching at
1003 cm−1 and 1030 cm−1, C–CH3 stretching at 1211 cm−1 and
CH3 deformation at 1380 cm−125,27,28, which also agrees well
with the reference spectrum. Note that the wavenumbers of the
CVS spectra are calibrated with the same interferometer, so that
we can compare the spectra in a precise manner. The sensitivity
evaluation of the CVS is described in Supplementary Note 5 and
Supplementary Figs. 4 and 5.

To show the applicability of this system for other samples, we
measure the complementary spectra of three different kinds of
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liquid samples: benzene, chloroform and a 4:1 mixture of benzene
and dimethyl sulfoxide (DMSO) (Fig. 4). Here, we show the CVS-
Raman spectra up to around 3000 cm−1, showing its ultra-
broadband measurement capability. This capability of measuring
ultra-broadband spectra with high spectral resolution is a unique
feature given by using Fourier-transform spectroscopy technique.
Detailed assignment of these spectra are discussed in Supple-
mentary Note 2. The small spikes at 500–550, 750, 1250, and
2500 cm−1 in the CVS-Raman spectra are attributed to the

instrumental noise, which is discussed in Supplementary Note 2
and Supplementary Fig. 2.

Discussion
Our CVS technique can be improved further. The measurable
spectral span of the IR absorption spectrum (limited to 1000 cm−1

in this study) can be largely expanded by using other nonlinear
crystals or light sources29–32, and/or by implementing the EO-
sampling technique for detecting the IR interferograms19,30,33. In
addition, since the CVS is based on FTS, it can be more rapid, robust
and compact by using dual-comb FTS21–23 or ultra-rapid-scan
FTS24,34–36. The higher scan rate allows us to measure dynamically
changing complex phenomena or hyper-spectral multi-modal wide-
area images. Furthermore, we could use the second harmonic pulses
generated from the nonlinear crystal, together with the IDFG pulses
for adding other spectroscopic modalities in CVS.

The CVS have the potential to provide means of chemical
analysis. The simultaneous measurement of IR and Raman
broadband spectra at the same spot can be essential for studying
dynamic change in structure of complex molecules11. In addition,
the highly accurate and common frequency axis for IR and
Raman spectra would allow us to have fundamental study on
molecules via precise analysis on relative line position or peak
intensity between the IR and Raman spectra, which is essential
for, for example, determination of molecular symmetry37,38 or
two-dimensional correlation spectroscopy39,40.

Methods
NIR interferometer. A detailed schematic of the CVS is shown in Supplementary
Fig. 1. The system is based on dual-modal FTS equipped with an ultrashort NIR
pulsed laser, a Michelson interferometer, a nonlinear crystal for MIR pulse gen-
eration and photodetectors. The NIR pulsed laser (Ti:Sapphire Kerr-lens mode-
locked laser) generates ultrashort pulses centered at 800 nm with a pulse duration
of 10 fs at a repetition rate of 75 MHz (Synergy Pro, Spectra-Physics). The NIR
pulses are coupled into the Michelson interferometer after passing through a half-
wave plate to generate double NIR pulses with an OPD between the first and
second pulses, which is scanned by a motorized stage in the interferometer. The
OPD is measured at interferometric precision by continuous-wave (CW)
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interferograms of a HeNe laser that monitor the motion of the scan mirror. The
measured OPD is used for phase error correction of the interferograms. By using a
polarization beamsplitter and quarter-wave plates to construct the Michelson
interferometer, the double pulses generated from the Michelson interferometer are
orthogonally polarized to each other. A long-pass filter at a cutoff wavelength of
700 nm (FELH0700, Thorlabs) and a chirped mirror pair (DCMP175, Thorlabs)
tailors the NIR pulses spectrally and temporally. After the long-pass filter the
spectral range of the NIR pulses spans from 10,870 to 14,340 cm−1.

MIR pulse generation. The NIR double pulses are focused onto the 30-µm GaSe
crystal (EKSMA OPTICS) using an off-axis parabolic mirror (OAPM) with a focal
length of 25.4mm for generating MIR pulses. The polarization of the focused pulses
is adjusted with a half-wave plate. The pulse energy of the NIR pulse is 2–5 nJ, and
that of the generated MIR pulse is tens of fJ. The remaining NIR pulses and
generated MIR pulses are collimated by another OAPM with a focal length of
25.4 mm. Since the NIR pulses are slightly chirped by passing through the GaSe
crystal, it is compensated by another chirped mirror pairs by separating the NIR and
MIR pulses with a NIR/MIR dichroic mirror. The NIR and MIR pulses are com-
bined again by another dichroic mirror. Here, to avoid spurious nonlinear effects at
the sample, we intentionally have the NIR and MIR pulses separated in time. A
pulse duration of the NIR pulses at the sample position is 11.9 fs evaluated by
fringe-resolved autocorrelation measurement.

Irradiation onto the sample. The NIR and MIR pulses are focused onto the
sample by an OAPM with a focal length of 15 mm. The NIR pulse energies irra-
diated onto the sample are 1.1 nJ and 2.4 nJ for the first and second pulses,
respectively. The liquid samples are contained in a cuvette made of 3-mm thick
KBr windows, which is transparent in a wide spectral range covering both NIR and
MIR. A teflon spacer with a thickness of 50 µm is inserted between the KBr win-
dows for adjusting the sample thickness.

Acquisition of the interferograms. The focused light onto the sample is collected
and collimated by another OAPM with a focal length of 15mm. After the collimation,
the NIR and MIR pulses are spatially separated by a NIR/MIR dichroic mirror. The
MIR pulses are detected by a N2-cooled MCT detector (KLD-0.5-J1-3/11, Kolmar
Technologies) after passing through a linear polarizer, while the optically filtered NIR
pulses are detected by an APD (APD410A2/M, Thorlabs), respectively. To detect the
anti-Stokes scattering only, two short-pass filters (FESH0700, Thorlabs) are inserted in
front of the APD. The detectors’ signals are low-pass-filtered and A/D-converted by a
digitizer (ATS9440, AlazarTech). The CW interferogram of the HeNe laser is also
digitized simultaneously. A part of the system where the MIR pulses travel through is
enclosed by a box and purged with N2 gas in order to suppress undesired absorptions
of the ambient gases, especially H2O vapor.

Data processing. The sequentially measured interferograms are segmented into
single interferograms and coherently averaged. The reference CW interferogram of
HeNe laser is used for resampling the digitized interferograms. The MIR inter-
ferogram is processed as double-sided, while the CARS interferogram as single-
sided. The MIR interferogram is retrieved numerically (See Supplementary Note 4
and Supplementary Fig. 3). A strong peak that appears at ZPD in the CARS
interferogram caused by the non-resonant background is omitted from the Fourier-
transform window. Both the interferograms are apodized by triangular function
and Fourier-transformed. To show the IR transmittance, we measure spectra with
and without the sample.

Code availability
The Matlab code used for analyzing the data of this study are available from the
corresponding author upon reasonable request.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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