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Molecular phenotyping using 
networks, diffusion, and topology: 
soft tissue sarcoma
James C. Mathews   1, Maryam Pouryahya1, Caroline Moosmüller   2, Yannis G. Kevrekidis2, 
Joseph O. Deasy1 & Allen Tannenbaum3

Many biological datasets are high-dimensional yet manifest an underlying order. In this paper, we 
describe an unsupervised data analysis methodology that operates in the setting of a multivariate 
dataset and a network which expresses influence between the variables of the given set. The technique 
involves network geometry employing the Wasserstein distance, global spectral analysis in the form of 
diffusion maps, and topological data analysis using the Mapper algorithm. The prototypical application 
is to gene expression profiles obtained from RNA-Seq experiments on a collection of tissue samples, 
considering only genes whose protein products participate in a known pathway or network of interest. 
Employing the technique, we discern several coherent states or signatures displayed by the gene 
expression profiles of the sarcomas in the Cancer Genome Atlas along the TP53 (p53) signaling network. 
The signatures substantially recover the leiomyosarcoma, dedifferentiated liposarcoma (DDLPS), 
and synovial sarcoma histological subtype diagnoses, and they also include a new signature defined 
by activation and inactivation of about a dozen genes, including activation of serine endopeptidase 
inhibitor SERPINE1 and inactivation of TP53-family tumor suppressor gene TP73.

Modern biological investigations often result in dense, high-dimensional datasets describing genes, proteins, 
mutations, or other variables. A near universal problem arises as the dimensionality of the data grows: how can 
the data be investigated in a relatively unbiased manner, to expose underlying clusters and relational structure? 
To date, there is a lack of robust techniques for exposing the structure of biological data in an unbiased, agnostic 
fashion. Biological relevance is maintained in this work by considering known pathways as an underlying guide. 
The technique we describe involves network geometry via the Wasserstein distance1,2, global spectral analysis in 
the form of diffusion maps3, and topological data analysis using the Mapper algorithm4. We apply the technique 
to gene expression profiles along gene sets participating in known pathways. We discern several coherent states 
or signatures displayed by the gene expression profiles of The Cancer Genome Atlas (TCGA) sarcoma project 
along the TP53 signaling network. The signatures substantially recover the leiomyosarcoma, dedifferentiated 
liposarcoma (DDLPS), and synovial sarcoma histological subtype diagnoses, and they also include a new signa-
ture defined by activation and inactivation of about a dozen genes, including activation of serine endopeptidase 
inhibitor SERPINE1 and inactivation of TP53-family tumor suppressor gene TP73.

The mechanisms that intervene between DNA sequence genotype and overall cell phenotype are complex, 
including the presence of transcription factors, the chemistry of the cell microenvironment, and epigenetic fac-
tors like phosphorylation and methylation. We focus on the determination of transcriptomic molecular pheno-
types. The simplest molecular phenotypes are defined by single marker genes, like the estrogen receptor (ER), 
progesterone receptor (PR), or human epidermal growth factor receptor 2 (HER2/ERBB2) status of breast carci-
nomas. In general a comparatively large number of genes must be considered simultaneously.

Methods falling under the heading of Genome Wide Association Studies (GWAS, typically concerning muta-
tional profiles) or Gene Set Enrichment Analysis (GSEA, typically concerning gene expression profiles) take into 
account data concerning a large number of genes to ascertain statistical significance with respect to given known 
outcomes or endpoints such as disease states. In general, they do not attempt to discern coherent states in gene 
expression quantification profiles in an “unsupervised” manner. That is, these methods do not ascertain existing 
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apparent molecular phenotypes, but rather impose or design molecular phenotypes specifically to serve as pre-
dictors for variables of ultimate interest like prognosis.

Seemann, Shulman, and Gunaratne5 employ degree 0 persistent homology towards the end of unsupervised 
analysis, leveraging the robustness of Topological Data Analysis (TDA) techniques for unsupervised cluster-
ing. One could also use various established unsupervised clustering algorithms such as hierarchical cluster-
ing or k-mean optimization methods, optionally preceded by dimensional reduction techniques like Principal 
Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE), or Multi-Dimensional 
Scaling (MDS). Note, however, that hierarchical clustering has the drawback that the output of the algorithm 
strongly underdetermines the usual heat map visual representation. Every branch of the hierarchy tree creates an 
ambiguity in the order in which the samples are displayed.

From the topological point of view, however, any method within the clustering paradigm is order 0 in the 
sense that it summarizes a dataset in terms of a finite/discrete set of disjoint categories, a “space” of dimen-
sion 0. Lockwood and Krishnamoorthy6 advocate “higher order” methods, e.g. degree 1 persistent homology, 
extracting 1-dimensional features in the space charted by the data points, roughly in order to take account of 
the relations between categories and not just the categories themselves. One major difficulty with this approach 
is that homology classes are defined by cycles; topological features which are not cycles, such as relative cycles or 
branches, are not detectable with existing tools (see7 for general background on topology, or8 for background on 
TDA methods). A second major difficulty is that homology classes do not have canonical representative cycles. 
This means that in theory an almost arbitrary subset of the points of a point cloud can appear along the path of 
a cycle belonging to an observed persistent 1-homology class. In other words, while persistent homologies are 
certainly evidence of important dataset-specific global features, there is an unsolved problem of interpretability 
of such features.

Camara, Emmett, and Rabadan9 calculate persistent 1-homologies in evolutionary/phylogenetic data, sur-
mounting both of these difficulties simultaneously by interpreting the presence of non-trivial cycles (closed 
loops), and not the internal structure of their representative cycles per se, as an indication of the presence of 
genetic recombination events.

We largely follow Nicolau et al.4 in that we use the Mapper algorithm to map our point clouds onto sum-
mary spaces of dimension 1, graphs or networks. This algorithm can be regarded as a discrete version of the 
Morse-theoretic analysis of a smooth manifold with respect to a height function (called the filter func-
tion). Nicolau et al. heavily de-sparsify the point clouds, in order to avoid the normal preprocessing step 
of dimensional reduction (virtually always required for biological datasets), and employ a carefully designed 
deviation-from-normal filter function in accordance with what they call the Progression Analysis of Disease para-
digm. We take a slightly different tack: First, we perform a biologically-motivated intermediate-scale dimensional 
reduction by considering only those genes participating in well-known pathways (we use the Kyoto Encyclopedia 
of Genes and Genomes). Next, we replace the ordinary Euclidean distance metric between gene expression pro-
files with alternative metrics, especially a version of the Wasserstein 1-metric which takes account of curated 
knowledge of the network structure linking the genes (coordinates). Then we employ the dimensional reduction 
and analysis technique of diffusion maps3 to regularize the point cloud with respect to intrinsic or characteristic 
global geometry. We have found that this process results in datasets with favorable properties for the application 
of Mapper and the interpretation of its resultant graph summaries.

Methods
We take as our primary input a gene expression quantification sample set, as a point cloud ⊂S N , and an influ-
ence, regulation, or pathway network G relating the N genes which label the coordinates. Optionally, we include 
an additional control dataset ⊂C N ,  or a function →f S:  with the interpretation as an 
experimentally-determined “degree of progression” with respect to some process (e.g., a disease process).

The output is a list of coherent states or molecular phenotypes, characterized by activated, inactivated, and 
equivocally-activated genes. We now enumerate the steps of our pipeline. Details will be given in subsequent 
sections.

	 1.	 Normalize the values of S
	 2.	 Restrict/project S to the genes appearing in the gene network G
	 3.	 Calculate a network-based distance metric between samples
	 4.	 Evaluate a diffusion map
	 5.	 Perform the Mapper algorithm on the re-mapped ⊂S M

	 6.	 Extract and process the state graph
	 7.	 Plot heat maps and discern coherent states

Normalize the values of S.  We must ensure that the values of S represent gene expression quantification, 
for example, FPKM (Fragments Per Kilobase Million) or TPM (Transcripts Per Kilobase) values as a result of a 
high-throughput sequencing pipeline. These values correspond roughly to the concentration of RNA transcripts 
in the tissue samples, typically across many cells for each sample (bulk sequencing) though sometimes for single 
cells.

Optionally, for comparison between genes and for the purposes of image-rendering, for each of the N genes, 
we replace the values of S in the corresponding coordinate by a truncated translated z-score, 

μ σ− + .x x( )/(3 ) 0 5, where μ and σ are the mean and standard deviation of the values for this coordinate 
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and x is a typical value of this coordinate. The resulting values will be substantially normalized to lie on a scale 
from 0 to 1 with mean 0.5.

Restrict/project S to the genes appearing in the gene network G.  We select a network G whose 
nodes correspond to genes whose presence or absence constitutes participation in a coordinated function or pro-
cess of interest, and whose edges represent the coordinating relationships. Omit the expression values for genes 
not participating in G. The networks we consider are the KEGG (Kyoto Encyclopedia of Genes and Genomes) 
pathways concerning cell cycle regulation, senescence, proliferation, apoptosis, and TP53 signaling.

Calculate a network-based distance metric between samples.  For each sample s ∈ S, define a prob-
ability distribution ps on the set of nodes of G by interpreting the values of s (divided by their sum) as a probability 
density function. Alternatively, use a distribution on the nodes which is the invariant measure for a Markov 
chain stochastic process inferred from the values of the sample s, in the manner of10. It can happen that G is dis-
connected into several components, with no edges/links between components, in which case one should define 
separate distributions for each component. Note that this disconnection may be either genuine or an indication 
of missing biological knowledge, so that a network-connection inference method may be useful. For each com-
ponent c, calculate the Wasserstein 1-metric or Earth Mover’s Distance dc(s, s′) between each pair ps and ps′ with 
respect to the path-length metric on c (weighted by the reciprocal of strength-related edge weights, if present). 
Intuitively, the Earth Mover’s Distance measures the total effort needed, in the best case scenario, to displace one 
distribution into another, taking account of the ground point-to-point distance. This distance is illustrated for 
networks in Fig. 1. Technically, the Earth Mover’s Distance between two mass distributions on a common metric 
space is defined as the infimum of the total mass-weighted displacement among displacement functions from 
the space to itself which map the first mass distribution onto the second. Classically it is only defined if the total 
masses of both distributions are equal1. We use the “direct sum” formula to amalgamate these distances across 
components c into a single distance for each pair of samples (s, s′):

∑′ = ′ .d s s d s s( , ) ( , )
c

c
2

The Wasserstein 1-metric employed in this way is perhaps the simplest alternative to the standard Euclidean 
metric for which a network or pathway structure relating the coordinates is in some way taken into account. 
The principal benefit of this metric is that it greatly increases the distance between two samples in comparison 
with the Euclidean metric in case the main activity of one sample takes places in an area of the network very far 
from the area of main activity of the other sample. One conceivable disadvantage is that isolated changes to a 
given sample, say in the expression of a single gene, can have an outsized effect on the Wasserstein 1-distance of 
the displacement. We also caution that since the KEGG database networks are enriched with nodes for various 
compounds and macromolecules in addition to protein gene products, an analysis which considers only gene 
expressions will not take advantage of the full KEGG pathways and may have some misleading consequences. To 
compute the Wasserstein distance, we used the Hungarian algorithm2.

Evaluate a diffusion map.  In order to reduce the dimension and complexity of the dataset S, while preserv-
ing key information for subsequent analysis, we apply diffusion maps3,11. This manifold learning technique pro-
vides a global parametrization of a low-dimensional, possibly nonlinear manifold on which the high-dimensional 
data is assumed to lie. Such an embedding is obtained by spectral properties (eigenvalues and eigenvectors) of the 
graph Laplacian on a certain weighted graph with nodes S. Its eigenvectors can be used as a coordinate system on 
the dataset S, which is justified by the fact that they approximate the eigenvectors of the Laplace-Beltrami opera-
tor of the underlying manifold3,12. See also some recent work13 for employing diffusion map techniques for data 
whose “points” are weighted graphs.

Following11, for data samples si, sj ∈ S we define a connectivity matrix W using a Gaussian kernel:
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Figure 1.  Left to right, distributions s1, s2, s3, for illustration. Red represents values close to zero, and green more 
positive. The Wasserstein 1-distance d(s1, s2) = 1.10 is much less than d(s2, s3) = 3.08, while the corresponding 
Euclidean distances are approximately equal to each other.
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where d is the Wasserstein 1-metric as defined in1 and ε is the kernel scale parameter. The kernel is intended to 
capture the features of the underlying dataset and it is therefore reasonable to choose the metric d and the scale 
parameter ε based on the application. The parameter ε defines a local connectivity scale, in the following sense: 
If sj is in the ε-ball around si, the kernel induces high weight between si and sj. Otherwise the weights are negligi-
ble. We can choose ε to be almost any value between the minimum and maximum among the pairwise squared 
distances (d(si, sj))2.

Define an adapted kernel

=
∼ − −W D WD (2)1 1

with D the diagonal matrix = ∑ =D Wii j
N

ij1 , N = #S. We use the adapted kernel (2) instead of (1), corresponding to 
the choice α = 1 in the family of kernel normalizations presented in3,14, to recover the Riemannian geometry of 
the underlying data independently of the data sampling.

We build a weighted graph with node set S and weights ∼Wij of the edge connecting si to sj. Now apply weighted 
graph Laplacian normalization to ∼W

∼ ∼−
D W , (3)

1

with ∼D the diagonal matrix = ∑
∼ ∼

=D Wii j
N

ij1 . The associated graph Laplacian is given by

= − .
∼ ∼−

L I D W (4)1

We compute the eigenvalues 1 = λ1 ≥ |λ2| ≥ … ≥ |λN| and eigenvectors ϕ1, …, ϕN of ∼ ∼−
D W

1
. These eigenvectors 

provide an embedding of the data into a space of dimension M < N (for example, as shown in Fig. 2):

ϕ ϕΦ = … .s i i( ) [ ( ), , ( )] (5)i M1

We reiterate that rather than using the Euclidean distance between samples si and sj, we select the “more 
informed” 1-Wasserstein network metric. Unlike dimensional reduction techniques like Principal Component 
Analysis or Local Linear Embedding, but in common with t-SNE or MDS, the technique of diffusion maps can 
function on arbitrary intrinsic-metric representations of the data of the point cloud and does not require this 
point cloud to be presented in some Euclidean space. We prefer diffusion maps over t-SNE or MDS because as far 
as we know the latter are not guaranteed to recover the intrinsic manifold degrees of freedom of the original data-
set, while diffusion maps are so guaranteed in principle. In practice biological datasets of present interest seem to 
represent processes of sufficient complexity that precise quantitative accounting for the relationships between all 
of the variables is rarely proposed, so such theoretical considerations are arguably premature.

We remark that dimensional reduction of gene expression data via diffusion maps is also suggested e.g. in15, 
where the authors combine diffusion maps with a neural network clustering method to differentiate between 
different types of small round blue-cell tumors.

Perform the Mapper algorithm on the re-mapped ⊂S M.  This algorithm results in a simplicial 
complex, in some sense modeling the mesoscopic-scale topology of the support space for the collection of sam-
ples or states S. It works by (1) dividing the point cloud into overlapping “slices” by binning the values of a chosen 
filter function →f S:  into overlapping bins, (2) clustering the points of each slice (e.g. with single-linkage 

Figure 2.  The diffusion re-mapped images of the gene expressions of 355 adipose visceral omentum tissue 
samples from the GTEx database. The first three eigenfunctions of the diffusion operator are used, to make a 
three-dimensional plot.

https://doi.org/10.1038/s41598-019-50300-2


5Scientific Reports |         (2019) 9:13982  | https://doi.org/10.1038/s41598-019-50300-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

clustering), and (3) linking pairs (or tuples) of clusters by edges (or higher-dimensional simplices) depending on 
the amount of overlap between clusters.

A reasonable choice for the filter function is a deviation function devised in comparison with a control dataset 
C, roughly as in Nicolau et al.4, e.g. the Mahalanobis distance function adapted to C in case the size of C is suffi-
ciently large in comparison to the dimension M. We often use the general-purpose network centrality measure 
available in Daniel Müllner’s Python Mapper implementation (http://danifold.net/mapper/).

The algorithm requires the choice of certain resolution or scale parameters: the number nf of filter-level-set bins 
and a threshold t for the single-linkage clustering algorithm applied to each slice. One should select these parameter 
values intermediate between the extreme values which completely divide the sample set into isolated clusters and 
those which completely merge the sample set into a single cluster. In practice a narrow range of such values exists.

Applying the Mapper algorithm in this way is an ad hoc (case by case) form of ascertaining persistent topologi-
cal features. Persistence is meant in roughly the same sense as the technique of persistent homology. Though persis-
tent homology would ordinarily determine preferred values for parameters like nf, existing persistent homology 
tools are seemingly inapplicable to our setting. This is because it is multi-dimensional in that the simplicial com-
plexes of interest depend on multiple parameters nf and t, and because a well-defined relation of containment or 
mapping between the complexes across parameter values is not apparent. Nevertheless appropriate values for nf 
and t are normally apparent.

Extract and process the state graph.  Next, we consider the graph which is the 1-skeleton of the sim-
plicial complex resulting from the Mapper algorithm. We decompose it into linear paths, and concatenate these 
paths for display. An example state graph is shown in Fig. 3.

Plot heat maps and discern coherent states.  We order the samples within each node of the state graph 
according to the filter values. This ordering is combined with the concatenated linear path structure for an order-
ing of the samples S along one or both axes of a two-dimensional plot of:

•	 the expression values
•	 the correlations with subpopulations defined by discrete covariates
•	 1-Wasserstein distance matrix
•	 diffusion map Euclidean distance matrix

Salient coherent states may appear in the expression heat map defined by patterns of activation and inactivation 
of particular genes, especially near the two extreme values for the filter function. This may require approximate 
dichotomization of the expression values (i.e. increasing the contrast, in the terminology of image processing).

From the point of view of topological data analysis, the most interesting states are ones which are not separated by 
the chosen filter function alone, but are nevertheless distinguished by branching of the state graph. We caution that 
although the topological aspect of this pipeline has the benefit of insensitivity to dimensionality, functioning well even 
in very high-dimensional settings, it sometimes provides little insight beyond that already provided by the spectral 
analysis or diffusion map when the number of samples is small. On the other hand, Mapper seems to have the potential 
to function well even without diffusion maps preprocessing or gene network analysis, provided that a filter function can 
be chosen that brings sufficiently rich outside information into the analysis.

Figure 3.  The Mapper state graph of the diffusion re-mapped 355-sample GTEx dataset of Fig. 2, with branches 
highlighted. For illustration, the “core” is not highlighted. The numerical labels indicate the number of samples 
in a cluster. The color indicates the value of the filter function which was used to seed the Mapper algorithm (a 
nearest-neighbor network closeness centrality in this case).

https://doi.org/10.1038/s41598-019-50300-2
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Results
The application of the network-metric/diffusion-map/Mapper pipeline to the 265 gene expression profiles of the 
samples of the TCGA sarcoma project demonstrates the basic efficacy of the method. The state graph is shown in 
Fig. 4, and the heatmaps are shown in Fig. 5, with tissue classification.

Discussion of sarcoma states.  We refer to the KEGG TP53 signaling pathway and indicate in parentheses 
the gene names appearing there, following official HUGO gene symbols. Italics indicate protein products.

The state PS#1 (TP53/P53 Signaling 1) consists almost entirely of samples tagged for leiomyosarcoma, mean-
ing that tissue pathology determined a derivation from smooth muscle cells. As expected, high levels of CCNG1 
(cyclin G), PPM1D (Wip1), and TP73 (P73), as well as MDM2 are all negatively regulating TP53, which is not 
substantially activated. Arrest of the G1 and G2 phases should be frequently triggered since CDK2, CCNB1 (cyc-
lin B), and CDK1 (CDC2), are all activated. Although FAS, PIDD1 (PIDD), PMAIP1 (NOXA), and SIAH1 (SIAH) 
are substantially activated, the apoptosis pathway for which they are precursors is not, including low levels of 
BAX, the death receptor protein TNFRSF10B (DR5), BID, CYCS (cytochrome c), and all caspases. Apoptosis 
seems to have been largely evaded.

PS#3 consists almost entirely of samples tagged for dedifferentiated liposarcoma (DDLPS), and conversely 
almost all of the dedifferentiated liposarcomas among the 265 samples display state PS#3. We emphasize for 
clarity that all of the states were determined in an entirely unsupervised manner, with no input from the his-
tological classification. TP53 is strongly activated, and its negative regulator MDM2 seems to be repressed by 
CDKN2A (P14ARF). A large number of the elements of the normal apoptosis signaling pathway are activated: 
FAS, BAX, TNFRSF10B, BID, ZMAT3 (PAG608), and SIAH1. The downstream caspase CASP3 is substantially 
activated. Apoptosis may occur in dedifferentiated liposarcomas at comparatively high rates. Alternatively, see16 
for a discussion of situations where normally apoptotic caspases are non-lethal to the cell. Substantial activation 
of CDKN1A (P21) is not inhibiting CDK4/6 or CDK2 as expected; rather CDK4/6 over-expression is the most 
salient characteristic of state PS#3. According to Binh et al.17, over-expression of CDK4 and MDM2 is known to be 
a reliable diagnostic marker for well-differentiated liposarcoma (not represented in the TCGA sarcoma project).

Note that both leiomyosarcoma and DDLPS subtypes are known to exhibit complex karyotypes, with no 
apparent characteristic mutation. This seems to be part of the reason why they were selected for inclusion in 
the TCGA sarcoma project (https://cancergenome.nih.gov/cancersselected/Sarcoma). Nevertheless the coher-
ent states PS#1 and PS#3 show that the expression profiles for these subtypes are more organized than their 
mutational profiles. We remark that ordinary unsupervised hierarchical clustering substantially reproduces these 
results, with somewhat less coherence among the apparent states.

On the other hand, synovial sarcoma is known to be well-characterized by a specific translocation resulting in 
gene fusion of SYT with either SSX1, SSX2, or SSX418. So it is not surprising that there is a coherent state, PS#4, 
displayed by precisely the synovial sarcomas.

Finally, we consider the state PS#2. It does not consist mainly of any one histopathological subtype. The most 
obvious feature is that TP53 and almost all of its normal positive regulation targets are inactivated, despite high 
levels of CHEK1 (CHK1) potentially indicating DNA damage. Nearly all of the markers for TP53 negative feed-
back regulation are strongly inactivated, including CCNG1, PPM1D, TP73, and MDM2. CDKN1A inactivation 
is consistent with the appearance of CCND1 (cyclin D) and CDK4/6. With respect to the upstream elements of 
the apoptosis signaling pathway, we observe in state PS#2 the opposite behavior from the state PS#1, namely that 
FAS, PIDD1, SIAH1, and possibly PMAIP1 are absent, but BAX, PERP, TNFRSF10B, and BID transcripts are all 
present.

Figure 4.  (Left) The diffusion re-mapped images of the 265 gene expression profiles from the TCGA sarcoma 
project, restricted to the TP53 signaling network defined in the KEGG database24,25. The first, second, and 
fourth eigenvectors were used. (Right) A schematic of the state graph summary produced by the Mapper 
algorithm.
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A cBioPortal19 query of the TCGA sarcomas displaying the TP73-/SERPINE1+ expression pattern of PS#2 
reveals high probability of loss of some portion of chromosome 18q. SERPINB3, which is located on 18q, and 
TP73 are both associated with negative regulation of JUN kinase activity (GO:0043508) according to the human 
Gene Ontology Annotation database20.

This suggests the following narrative to explain the molecular mechanisms driving the cancers in state PS#2. 
Damage to SERPINB3 on chromosome 18q disrupts serine/cysteine-type endopeptidase inhibitor activity, which 
is then restored by SERPINE1 upregulation by some intermediate process. Normal SERPINB3 would in addition 
inhibit JUN kinase activity, but this inhibitory function is not restored by SERPINE1 upregulation. TP73 also 
normally inhibits JUN kinase activity. Unchecked JUN kinase activity may then be the main driver of tumor cell 
proliferation and transformation21 in state PS#2 since effective TP73 and SERPINB3 both seem to be absent.

Figure 5.  Four coherent states of the KEGG TP53 signaling network displayed by subsets of the TCGA sarcoma 
samples, shown superimposed on the network. The gene names are shown as they appear in the KEGG network.
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The high degree of CCND1 activity of PS#2 is consistent with this hypothesis, since JUN induces transcription 
of CCND122.

Note that a proto-oncogenic role for JUN has long been suspected, and its actual function is complex, includ-
ing alternately pro- and anti-tumor behaviors depending on context23. In this specific case, our finding answers 
the call of Messoussi et al.23 to delineate patients that would potentially benefit from JNK (c-Jun N-terminal 
kinase) inhibitors. In approximately 10% of soft-tissue sarcomas, largely irrespective of histological subtype and 
possibly independent of JUN amplification status, JNK inhibitors that can replace the inhibitory function no 
longer provided by SERPINB3 may restore JNK activity to normal condition.

Conclusion and future research directions.  The network-metric/diffusion-map/Mapper pipeline 
uncovered some latent features of high-dimensional genomic sarcoma data in a relatively robust way. One prom-
ising direction for future research is the inference of phylogenetic trees via mutational data like Single Nucleotide 
Polymorphism (SNP) calls or gene amplifications and deletions in the evolutionary context. This context could 
be spatially dense single-tumor samples or single-patient metastasis or micrometastasis samples. Mapper would 
be especially adapted to the elucidation of branching/inheritance structures when the filter function is a suitable 
quantification of the deviation of a sample from a founder population. For example, a Hamming-type distance 
in the case of SNP sequences, which could also be used for the intrinsic metric between SNP sequences. As an 
alternative to the naive Hamming distance, a network-enriched distance could be obtained by means of linkage 
disequilibrium calculations.
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