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Network motifs are often called the building blocks of networks.
Analysis of motifs has been found to be an indispensable tool for
understanding local network structure, in contrast to measures
based on node degree distribution and its functions that primar-
ily address a global network topology. As a result, networks that
are similar in terms of global topological properties may differ
noticeably at a local level. This phenomenon of the impact of
local structure has been recently documented in network fragility
analysis and classification. At the same time, many studies of
networks still tend to focus on global topological measures,
often failing to unveil hidden mechanisms behind vulnerability
of real networks and their dynamic response to malfunctions. In
this paper, a study of motif-based analysis of network resilience
and reliability under various types of intentional attacks is pre-
sented, with the goal of shedding light on local dynamics and
vulnerability of networks. These methods are demonstrated on
electricity transmission networks of 4 European countries, and the
results are compared with commonly used resilience and reliabil-
ity measures.

complex networks | network resilience | multivariate reliability |
network motifs | data depth

The past 2 decades have seen increasing interest in the appli-
cation of tools developed in the interdisciplinary field of

network analysis to improve our understanding of complex sys-
tems and critical infrastructures—e.g., transportation systems,
power grids, food supplies, financial systems, and ecosystems.

Such complex systems are vulnerable to failure from various
causes, including natural disasters, aging, and intentional attacks
such as terrorism. Furthermore, these systems are intrinsically
interdependent; as a result, failure of 1 system can lead to a catas-
trophic cascade of failures. Therefore, to minimize the risk of
failure, the quantification of resilience and reliability is critically
important and is of increasing concern in the analysis of a broad
range of complex systems.

Most available approaches for assessing network resilience
explore global topological characteristics—e.g., node degree dis-
tribution, mean degree, small-world properties, and, to a lesser
extent, betweenness centrality (BC) measures—that is, primar-
ily lower-order connectivity features that are investigated at the
level of individual nodes and edges (1–5). However, many stud-
ies show that higher-order network features, or network motifs,
play a fundamental role in understanding the organization, func-
tionality, and hidden mechanisms behind many complex systems,
from brain connections to protein–protein interactions to trans-
portation congestion (6–10). Furthermore, recent studies of
power system reliability indices and stability estimation suggest
that robustness of the power grid is also intrinsically connected to
network motifs (11, 12). The existence of motifs in a complex net-
work are not by chance or random, and motifs tend to perform
important functions (13). A recent study (14) shows how motifs
throughout a complex network work together and coordinate
their collective functions.

The existing methods for computing reliability of a network—
e.g., reliability polynomials, network signatures, and survival

signatures—assume that each network component (e.g., node or
edge) works independently with a certain known reliability (15–
18). Among them, some methods—e.g., network signatures—are
based on the assumption that under random failures, com-
ponent lifetimes are independent and identically distributed
(i.i.d.) random variables (19–21). However, in real-world com-
plex networks, the component lifetimes are not independent
and, in most cases, are unknown. Another shortcoming of
these methods is that they primarily consider random fail-
ures and do not address component failures from targeted
attacks.

In this paper, we introduce a number of concepts to incor-
porate local higher-order structures into resilience and reli-
ability analysis of complex networks that overcome some of
the above-mentioned caveats of the existing methods. We start
from emphasizing that the notion of network robustness is not
uniquely defined, and an objective validation of vulnerability
might require some ground-truth data on network behavior
under attacks and failures, which are typically unavailable in
many real-world scenarios due to, for example, data privacy and
confidentiality. Nevertheless, we argue that a system’s resilience
and robustness can be quantified in terms of its ability to
maintain its original properties. In this paper, we assess how
long a network can preserve its geometry; in turn, motifs offer
an intrinsic description of network geometric properties. First,
we present a motif-based analysis of network resilience under
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different intentional attack strategies. The previous methods in
this area measure network resilience on the basis of some global
network properties—e.g., the largest connected component, the
average shortage path length (APL), diameter (D), etc.—and
tend to ignore the local robustness of a network. We propose
a motif-based performance measure, motif concentration, which
represents local robustness of a network rather than measur-
ing the global network characteristics. In particular, we analyze
network motif dynamics under 2 intentional attack strategies—
namely, attacked nodes are selected based on degree centrality
and BC.

Second, to evaluate network reliability, we considered higher-
order network features—i.e., motifs—as the components of a
network. To illustrate these ideas, we considered power-grid net-
works as a case study, although the techniques described here can
be applied to complex networks more generally. In the evaluated
power-grid networks, we observed 6 types of 4-node connected
motifs. We used these 6 types of 4-node connected motifs as the
components of a network system, assuming that the reliability
of the entire network depends on the lifetime of these 6 com-
ponents. We evaluated the component (motif) lifetimes under
failures from specific targeted attacks and combined them to
obtain the reliability of the entire network. Here, we did not
assume that the lifetimes of components are i.i.d., which over-
comes limitations of the above-listed methods. Furthermore, the
currently available approaches for assessing network robustness
combine component reliability on the basis of either the minimal
cut set, a minimal component set whose failure assures network
failure, or the minimal path set (17, 21). However, these coeffi-
cients depend only on network design; therefore, finding them is
computationally expensive for reasonable size networks.

Third, we introduce a nonparametric data depth approach to
study characteristics of the multivariate motif concentrations and
motif lifetimes distribution. We also compare multivariate con-
centration distributions of different networks using simple and
easily interpretable 1- or 2-dimensional plots.

Finally, we present results of motif-based resilience and reli-
ability analysis of 4 European power-grid networks. We also
compare the results of our method with the results from exist-
ing techniques. We find that local motif-based properties as well
as reliability of fragile and robust networks noticeably differ in
terms of their sensitivity to the type of attack. These findings
suggest that motifs can be useful metrics to characterize a level
of network resilience to various types of attacks and that certain
motifs can potentially serve as early warning indicators of system
failure.

Graph Representation of Networks
We consider an undirected graph G = (V ,E) as a model of a
complex network. Here, V is a set of nodes, and E is a set of
edges. The order and size of G are defined as the number of
nodes and edges in G—i.e., |V | and |E |, respectively. We assume
that if an edge euv ∈E , then u 6=v . A graph G is connected if
there exists a path from any node to any other node in G . The
distance d(u, v) is defined as the minimum path length from
u to v in G . The degree of a node u is the number of edges
incident to u .

A graph G ′= (V ′,E ′) is a subgraph of G , if V ′⊆V and
E ′ ∈E . If G ′= (V ′,E ′) is a subgraph of G and E ′ contains all
edges euv ∈E such that u, v ∈V ′, then G ′ is called an induced
subgraph of G . Two graphs, G ′= (V ′,E ′) and G

′′
= (V

′′
,E

′′
),

are called isomorphic if there exists a bijection h :V ′→V
′′

such
that any 2 nodes u and v of G ′ are adjacent in G ′ if and only if
h(u) and h(v) are adjacent in G

′′
.

Analysis of higher-order structures of G , or multiple-node sub-
graphs, provides invaluable insights into network functionality
and organization beyond the trivial scale of individual nodes and

M1 M2 M3

M4 M5 M6
Fig. 1. All connected 4-node network motifs.

edges. A motif here is broadly defined as a recurrent multinode
subgraph pattern. Network motifs were introduced by ref. 6 in
conjunction with the assessment of stability of biological net-
works and later have been studied in a variety of contexts (see
the review in ref. 8). Formally, a motif G ′= (V ′,E ′) is an n-node
subgraph of G , where |V ′| is n .* If there exists an isomorphism
between G ′ and G

′′
, G

′′
∈G , we say that there exists an occur-

rence, or embedding of G ′ in G . Fig. 1 shows all connected
4-node motifs. Throughout our study, we consider motifs which
are induced subgraphs.

Resilience and Reliability of Complex Networks
While there exists no unique definition, network resilience is
broadly understood as the tolerance to errors or perturbations,
which measures the ability of a network to maintain its func-
tions under component failures from random errors or external
causes. Resilience metrics of a network are typically topology-
based measures—e.g., giant component, degree distribution,
APL, D, clustering coefficient (CC), BC, etc. (4, 22, 23). Lower
APL and higher CC are typically considered indicators of the
small-world-ness property and are sometimes associated with
higher resilience (3, 24). Networks with higher BC nodes tend
to be more vulnerable to intentional attacks, but tend to exhibit
higher robustness to random failures. This phenomenon is also
typically valid for networks with high degree centrality (25, 26).

Furthermore, in the case of power-grid networks, refs. 27
and 28 propose an empirical robustness criterion, hypothesiz-
ing that a higher deviation of a degree distribution from the
Poisson distribution tends to imply higher fragility of a power
grid. In particular, the cumulative degree of a power-grid net-
work is assumed to follow an exponential distribution P(K ≥
k) =C exp (−k/γ), where C is a normalization constant, k is the
node degree, and γ is a characteristic parameter. According to
refs. 27 and 28, a power grid is considered to be robust if γ < 1.5
and fragile if γ > 1.5.

In examining robustness to failures, the aim is to evaluate
how a network behaves when a fraction of random or selec-
tive nodes are removed. In failure simulation, if the node to be

*Originally, motifs were defined as subgraphs G′ that occur more or less frequently than
expected by chance (6). However, nowadays motifs are typically defined more broadly
as any n-node subgraphs (8).
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removed at each step is selected at random, then the result is
called a random failure. Random failures are considered to be
errors, mainly due to component failures, errors in operations,
storms, and other natural disasters. In the case of intentional
attacks, the targeted node(s) to be removed at each iteration
is selected based on its importance. For instance, if the nodes
are selected in the decreasing order of their degree or BC, the
resulting attack is called a degree-based attack or betweenness-
based attack, respectively. In both random failures and targeted
attacks, the nodes are removed until some stopping criterion
is achieved—e.g., a predefined fraction of nodes removed. The
current methods of measuring resilience and robustness under
failures are predominantly based on global network properties.
In these techniques, vulnerability under failure is commonly
determined on the basis of the remaining connectivity, largest
connected component, APL, etc., after a fraction of nodes have
been removed (29). To investigate vulnerability properties at a
local level, we present 3 motif-based methods: motif concentra-
tion, network reliability under a system-components framework,
and nonparametric multivariate network lifetimes based on
data depth.

Motif Concentration. The typical resilience metrics described
above are all global network characteristics and do not con-
sider local higher-order structures. Analysis of higher-order
network structures or motifs gives important insights into net-
work functionality and organization beyond the global metrics.
For instance, we can calculate the concentration (Ci) of an
n-node motif of type i as the ratio of its number of occur-
rences (Ni) to the total number of n-node motifs in the
network—i.e., Ci =Ni/

∑
i Ni , where

∑
i Ni is the total num-

ber of n-node motifs. Remarkably, in their studies of European
power-grid networks, Rosas-Casals and Corominas-Murtra (28)
find that power-system fragility seems to increase as the ele-
ments of the grid become more interconnected and the num-
ber of {3, 4}-node subgraph patterns such as stars begins to
increase. More recently, ref. 30, which studies the impact of
removing transmission lines with a high BC, suggests that fewer
connections imply higher security. Therefore, we can say that
there likely exists some functional nonlinear interaction among
low connectivity, detour motifs (i.e., cycles) (12), and network
resilience.

In this study, we introduce a motif-based performance mea-
sure, where we focus on remaining motif distributions, particu-
larly, the decaying rate of a specific motif concentration, under
targeted attacks and random failures. Algorithm 1 outlines how
motif concentrations are calculated under a node-centrality-
based attack. The method is the same for betweenness-based
attacks, except that sorting of nodes is performed in terms of
descending order of node BC.

Algorithm 1: Attack Tolerance of Networks

Input: Network G= (V , E).
Output: Motif concentrations C i under attacks.

1: Ni: the number of occurrences of n-node motifs of
type i in G, i = 1, . . . , mn, where mn is the
number of distinct n-node motifs

2: Concentration, Ci =Ni/
∑

i Ni

3: Dv -degree centrality of node v. Calculate Dv , ∀v ∈V
4: H(G)← sorted V by Dv (descending)
5: for t = 1 to |H(G)| do
6: V =V −H(t)
7: E = E−{(x, y)∈ E : x =H(t) or y =H(t)}
8: Count Ni for i = 1, . . . , mn

9: Calculate concentrations Ci[t] =Ni/
∑

i Ni

10: end for

By considering motif concentration as a measure of resilience,
we emphasize the response of a power grid to hazardous scenar-
ios at a local level. Furthermore, commonly used performance
measures—e.g., network connectivity and giant component—are
affected by network order (31, 32), which obstructs direct com-
parison of multiple networks of different orders. One way to
control for this confounding factor is to normalize the perfor-
mance measures by their initial values. In contrast, the proposed
measure, motif concentration, is a standardized metric which
does not require extra normalization.

Network Reliability. In many applications, from telecommuni-
cations to finance to power grids, it is often of interest to
study a network’s resilience in terms of its lifetime distribution
or reliability—i.e., how long the network system performs or
operates effectively its intended functions. Most of the current
methods for network reliability—e.g., reliability polynomials,
and network signatures—assume that component (node/edge)
lifetimes are known (16, 17, 20, 21). However, in real-world
settings, especially under targeted attacks, node and edge life-
times are not known. Here, we focus on 4-node motifs and their
dynamics under failures and attacks as an alternative network-
vulnerability indicator. In particular, we view each of the 4-node
motifs—i.e., M1, M2, M3, M4, M5, and M6—as a component
of a network since the lifetime of each 4-node motif affects
the entire network reliability. [The proposed methodology is
applicable to n-node motifs; however, due to challenges in
motif estimation (8), current studies are limited to at most 4-
node motifs.) We evaluate the reliabilities of the motifs Mk ,
k = 1, 2, . . . , 6, under a given attack strategy, and combine them
to obtain a measure of the entire network’s reliability. Under
a targeted attack, let Ak be the event that a motif Mk , k =
1, 2, . . . , 6, survives till time t , where time refers to the number
of attacks. Then, the survival/reliability function of Mk can be
written as Rk (t) =Pr (Ak ) =Pr (Tk > t), where Tk is a nonneg-
ative random variable representing the lifetimes—i.e., waiting
time until the death of individual motifs in Mk—and FTk = 1−
Pr (Tk > t) is the cumulative distribution function of Tk , k =
1, 2, . . . , 6 (33).

The reliability function Rk (t) can be modeled with vari-
ous parametric and nonparametric methods (for an overview,
see, e.g., refs. 34 and 35). For example, if the risks of fail-
ure for all Mk motifs are equal and do not change with time,
we can estimate the reliability function Rk (t) with the expo-
nential model. That is, we assume that lifetimes Tk follow
an exponential distribution with parameter λk > 0—i.e., Tk ∼
Exponential (λk ), k = 1, 2, . . . , 6. The reliability function of the
motif Mk can be written as Rk (t) = exp [−λk t ]. The mean life-
times for motif Mk under the exponential model is 1/λk . In
our study, to determine component (motif) lifetimes Tk under
different attack strategies, we employ a survival analysis tech-
nique in the epidemiological sense. Algorithm 1 counts the
number of remaining motifs Nk at each time t in a degree-
based attack. We can extend Algorithm 1 to count the number
of motif deaths at time t as nDk =Nk (t)−Nk (t − 1). The life-
times of nDk motifs are then considered to be t—i.e., Tk = t .
After determining lifetimes Tk , we fit the reliability function
and mean lifetimes of each Mk motif using a suitable model as
described above.

The rationale behind our approach is based on 2 interrelated
hypotheses. First, we assume that the network fails if all n-node
motifs fail (i.e., disappear). Second, we say that the network is
more robust if it tends to preserve longer its original geometric
structure under random failures and attacks. In turn, network
motifs can be used as 1 of the characterizations of a network
geometry and hence as a characterization of network resilience.
The next question is then how to integrate information from
multiple n-node motifs.
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Fig. 2. Dynamics of 4-node motif concentrations under degree based
attack. (A) German power grid. (B) Spanish power grid.

We can combine individual motif reliabilities under the
system-components framework to obtain the reliability of the
entire network, where the entire network is considered as a par-
allel system and motifs as its components (36). A parallel system
continues to operate as long as at least 1 of its components con-
tinues to function. We can define the reliability function of the
entire network as

Rs(t) =Pr (Ts > t)= 1−Pr

(
6⋂

k=1

Ac
k

)
, [1]

where Ts is the lifetime of the entire network. If the life-
times of the 6 types of motifs Tk are mutually independent, the

network-reliability function becomes Rs(t) = 1−
6∏

k=1

Pr (Ac
k ),

where Pr (Ac
k ) = 1−Rk (t), k = 1, 2, . . . , 6. However, in practice,

lifetimes of the 4-node network motifs may not necessarily be
mutually independent, since motifs may share the same edges,
and when a particular type of motif fails, it can affect the lifetimes
of other motifs. Network components—i.e., 6 motif concentra-
tions or 6 motif lifetimes—can be modeled with some appro-
priate multivariate distributions. In this paper, we introduce a
nonparametric data-depth approach to study the characteris-
tics of the multivariate distribution of the motif lives. Although
nonparametric data depth-based tools are widely used in mul-
tivariate and functional data analysis—e.g., for visualization,
clustering, and anomaly detection—data depth yet remains an
unexplored concept in reliability analysis.

A data depth D(x, ·) is a function with range [0, 1] that mea-
sures how deep or central an observed point x∈Rp , p≥ 2, is
relative to a certain finite data cloud S ∈Rp , or with respect to
F , a probability distribution in Rp . For instance, in our case, x
can correspond to motif lifetimes T = (T1, . . . ,T6). One com-
monly used data depth is a Mahalanobis (MhD) depth (37, 38).
The MhD depth of x with respect to a set S is

MhD(x | S) = [1 + (x−µ)′Σ−1(x−µ)]−1,

where µ and Σ are, respectively, the (sample) mean vector and
covariance matrix of S. There are a number of depth functions;
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Fig. 3. Comparisons of 2 European power-grid multivariate concentrations.
(A) DD plot, degree-based attack. (B) DD plot, betweenness-based attack.

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0

p

Italian grid
German grid 
Spanish grid
French grid

V
ol

um
e

S
n

p
1e

−1
5

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0

p

V
ol

um
e

S
n

p
1e

−1
5

Italian grid
German grid 
Spanish grid
French grid

A B

Fig. 4. Comparisons of the European power-grid multivariate concentra-
tions. (A) Scale curve, degree-based attack. (B) Scale curve, betweenness-
based attack.

for a comprehensive list, one may refer to refs. 37–39. Using a
specific depth function, we can compute the depths of all sam-
ple points {X1,X2, . . . ,Xn} in the data cloud S. A higher depth
value implies a more central x with respect to S.

We can compare 2 multivariate distributions (e.g., F and G , in
Rp) with their depth versus depth plot, which is commonly known
as a DD plot. The 2-dimensional DD plot will be very close to a
45◦ line if the 2 distributions are identical. Deviation from a 45◦

line suggests that there are differences between the distributions
either in location, skewness, scale, kurtosis, or other aspects. The
p-th central region Cp is defined as the smallest region enclosed
by the depth contours to accumulate probability p. A sample
estimate of Cp is the convex hull Cn,p that contains the [np]
deepest points. The volume of Cn,p is a sample estimate of the
volume of Cp :

Cn,p = convex hull
{
X[1],X[2], . . . ,X[np]

}
, [2]

Sn(p) = volume {Cn,p} ,

where [np] =np if npis an integer, and otherwise np is rounded
up to an integer. The plot of Sn(p) versus p displays how the vol-
ume of the central region expands as p increases and is referred
to as the scale curve. If the scale curve of the multivariate distri-
bution F is constantly above that of the multivariate distribution
G , then F is more dispersed and of larger scale than G (37). The
scale of 2 multivariate distributions can also be compared with a
data-depth-based multivariate Wilcoxon rank sum test described
in refs. 39 and 40.

We can compare multivariate motif concentration or life-
time distributions of networks, under a specific attack strategy,
on the basis of data-depth techniques—i.e., the DD plot, scale
curve, and data-depth-based scale test. Another technique for
assessing network reliability for dependent components could be
a square-root model (41) in a system-components framework,

where Pr

(
6⋂

k=1

Ac
k

)
in Eq. 1 is approximated by the geometric

mean of its upper and lower bounds. The square-root model is a
simple heuristic bounding technique that can be used to eval-
uate common-cause system failures when the components are
dependent (36).

Case Study on Robustness of European Power-Grid Networks
We illustrate the utility of the proposed methodology in assessing
the fragility of electricity transmission networks of 4 European
countries—i.e., Germany, Italy, France, and Spain. The data
were obtained from the Union for the Coordination of the
Transmission of Electricity. Network nodes correspond to power
stations/substations, and edges represent physical transmission
lines connecting 2 nodes. Maps of the 4 power-grid networks,
along with the information on numbers of nodes and edges, are
shown in SI Appendix. SI Appendix, Table S2 presents global
topological properties for the 4 power grids, and SI Appendix,
Fig. S2 compares their degree distributions.
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Table 1. Scale/dispersion (1e-15) of the 4 power-grid
concentration distributions, under degree- and
betweenness-based attacks

Sn(p= 0.8) Sn(p= 0.8)
Network (degree-based) (betweenness-based)

Italian grid 70.31 341.19
German grid 27.45 296.32
Spanish grid 4.95 14.82
French grid 6.91 8.48

We studied the resilience of the 4 European networks under
degree-based targeted attacks on the basis of 1 commonly
used performance measure, the size of the giant component,
and we compared the results with our proposed performance
measures. SI Appendix, Fig. S3 shows the normalized giant
component, after a fraction of nodes have failed. We found
that the giant components in the French and Spanish net-
works disappeared more quickly as nodes were removed than
did the giant components of the German and Italian net-
works. The Italian power grid exhibited the highest degree of
robustness.

In the 4 European power-grid networks, we only observed 5
types of 4-node connected motifs: M1, M2, M3, M4, and M5.
Thus, we considered these 5 types of 4-node connected motifs
as the components of the power-grid networks. Fig. 2 and SI
Appendix, Figs. S4 and S5 show the remaining motif concentra-
tions of the 4 European power grids, after a fraction of nodes
have been removed by degree- and betweenness-based attacks.
We found that under both types of attacks, motif concentrations
in the French and Spanish networks disappeared more quickly
as the fraction of nodes were removed, than did the motifs of
the German and Italian networks. Furthermore, there was a
marked distance among motif concentration curves in the Ger-
man and Italian networks, whereas the gap between the curves
in the French and Spanish networks was narrower. This also
suggests that the motif vanishing rates for the German and Ital-
ian power grids are slower than for the French and Spanish
power grids.

Instead of comparing their motif concentrations under attacks,
we can more systematically compare networks in terms of their
lifetime distributions. We estimate a reliability function Rk (t)
for motif Mk with the exponential model, where the lifetimes
Tk are assumed to follow an exponential distribution with con-
stant hazard rate λk > 0, k = 1, 2, . . . , 5. SI Appendix, Table S3
lists the estimated mean lifetimes of the 5 motifs. We found
that under both degree- and betweenness-based targeted attacks,
the mean motif lifetimes for the German and Italian networks
were considerably greater than the mean motif lifetimes for the
French and Spanish networks. Again, we assume that the motif
lifetimes follow exponential distributions with parameters λk ,
k = 1, 2, . . . , 5. We assessed goodness of fit of exponential mod-
els for each motif Mk in all 4 networks. We found that for
all motifs in all 4 networks, the exponential model appropri-
ately represented the motif lifetime data (see, e.g., SI Appendix,
Fig. S6).

Since there are unknown and generally unstructured depen-
dencies among the 5 motif lives, concentrations, or lifetimes, a
more flexible data-driven approach to studying their lives is to
use a 5-dimensional multivariate distribution. We computed dif-
ferent features of the multivariate concentration distribution of
a power grid and compared them with multivariate concentra-
tion distributions of other power grids, on the basis of different
data-depth techniques—e.g., the DD plot, scale curve, scale test,
etc.—as described earlier.

We first considered the pairwise DD plots, for both degree-
and betweenness-based attacks, in Fig. 3 and in SI Appendix,

Fig. S7, which clearly indicate a location difference in the Ger-
man and Spanish power-grid concentration distributions, and
also in the French and Italian distributions. The concentra-
tion distributions of the German and Italian power grids look
similar, as do the French and Spanish power grids. Though
in our study, we used the MhD depth function, other depth
functions—e.g., projection depth, spatial depth, etc.—yield
similar conclusions.

Second, we evaluated the scales of the 4 concentration dis-
tributions using Fig. 4. The scale curve of the Italian grid lies
consistently above those of the other grids, and the Spanish
and French grid scale curves are consistently below the Italian
and German grid scale curves. This implies that the concentra-
tion distributions of the Italian and German power grids have
larger scales than those of the Spanish and French power grids.
For example, Table 1 lists the volume of the convex region,
Sn(p), amassing 80% central probability. We found that the
volumes for the German and Italian grids were significantly
larger than those of the Spanish and French grids. That is,
the observations in the Spanish and French grid-concentration
distributions are clustered tightly around their respective cen-
ters, while the observations in the Italian and German power
grids’ concentration distributions are scattered at outlying
positions.

Finally, Table 2 summarizes the tests for scale differences
of 4 power-grid concentration distributions. We see that the
Italian and German power grids have higher scales than the
Spanish and French grids. We also find that there is no scale
difference between the Italian and German grids, or between
the Spanish and French grids. From the test results and the
scale curves in Fig. 4, we can conclude that under both degree-
and betweenness-based targeted attacks, the Italian and Ger-
man power grids survive longer than the Spanish and French
grids. The data-depth-based results support our previous findings
based on concentrations in Fig. 2. We also evaluated reliabil-
ity of a network under the framework of a parallel system with
dependent components (SI Appendix, Fig. S8). We found that
under degree-based attacks, the Italian power grid exhibited the
highest resilience, followed by the German grid. However, under
betweenness-based attacks, the German power grid showed the
highest resilience, followed by the Italian power grid. In both
cases, the French and Spanish power grids showed the least
resilience, since their survival probabilities rapidly decayed under
attacks.

Note that the global performance measure—i.e., giant compo-
nent (SI Appendix, Fig. S3) —categorized the Italian power grid
as robust and tended to yield somewhat inconclusive results on
the German power grid. In turn, all of the motif-based perfor-
mance measures showed that both the Italian and German power
grids are comparatively more robust than the French and Span-
ish power grids, which supports the results described in ref. 28.
Analyses for other types of attack strategies were omitted for the
sake of brevity, but they gave similar conclusions. (For a detailed
study of all attack strategies, see ref. 42.)

Table 2. Multivariate Wilcoxon rank sum test for dispersion of 4
power-grid concentration distributions, under degree- and
betweenness-based attacks

P P
Ho: Scale (grid i) = scale (grid j) (degree) (betweenness)

Ha: Scale (Italian grid) > scale (Spanish grid) <0.01 <0.01
Ha: Scale (Italian grid) > scale (French grid) <0.01 <0.01
Ha: Scale (German grid) > scale (Spanish grid) <0.01 <0.01
Ha: Scale (German grid) > scale (French grid) <0.01 <0.01
Ha: Scale (German grid) 6= scale (Italian grid) 0.15 0.62
Ha: Scale (French grid) 6= scale (Spanish grid) 0.94 0.60
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Conclusion and Discussion
Assessing vulnerability of complex networks is a rapidly evolving
research area, with applications ranging from brain connectome
to the ecosystem of cryptocurrencies to power grids. Increasingly
more studies in a broad range of disciplines involving complex
networks indicate that network robustness appears to be intrin-
sically linked to network local geometrical properties. We have
proposed a method to assess and classify fragility of complex net-
works based on the analysis of local network geometry—namely,
network motifs. Motifs can be viewed as building blocks of a
network and have received increasing attention in complex net-
work analysis. Indeed, even basic {3, 4}-node motifs have been
proven to unravel hidden mechanisms behind the functionality
of various complex systems; however, to our knowledge, there
are no previous studies assessing the relationship between motifs
and system robustness. To integrate information from multiple
motifs and their roles in network resilience, we have introduced a

nonparametric data-depth approach to simultaneously evaluate
different characteristics of the multivariate distributions of motif
lives. As a case study, we have illustrated the utility of the method
in application to resilience analysis of 4 European power-grid
networks under targeted attacks. We have found that power
systems exhibit different degrees of local sensitivity and degra-
dation with respect to the type of attack and the type of motif.
Hence, motif characteristics, such as motif concentrations, can be
potentially used as alternative local metrics of network resilience,
both in power grids and more generally in complex networks,
as well as early warning indicators of system degradation
and failure.
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