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Hypoxia is a ubiquitous feature of cancers, encouraging glycolytic
metabolism, proliferation, and resistance to therapy. Nonetheless,
hypoxia is a poorly defined term with confounding features
described in the literature. Redox biology provides an important
link between the external cellular microenvironment and the cell’s
response to changing oxygen pressures. In this paper, we demon-
strate a correlation between intracellular redox potential (measured
using optical nanosensors) and the concentrations of microRNAs
(miRNAs) involved in the cell’s response to changes in oxygen pres-
sure. The correlations were established using surprisal analysis (an
approach derived from thermodynamics and information theory).
We found that measured redox potential changes reflect changes
in the free energy computed by surprisal analysis of miRNAs. Fur-
thermore, surprisal analysis identified groups of miRNAs, function-
ally related to changes in proliferation and metastatic potential that
played the most significant role in the cell’s response to changing
oxygen pressure.
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The tumor microenvironment can have a profound effect on
the molecular landscape of cells, influencing phenotype at

epigenetic, transcriptional, and posttranscriptional levels (1). A
better understanding is needed regarding the chemical drivers of
these changes and in particular the mechanisms that link micro-
environmental changes with changes in molecular phenotypes.
Hypoxia, a lack of oxygen, is associated with tumor microenvi-
ronments and is thought to drive proliferation and resistance to
therapy. Understanding the connection between hypoxia and tu-
mor progression could equip us with the knowledge to improve the
efficacy of existing therapies, such as radiotherapy, and to design
and screen new therapies (2–4). There is disagreement in the lit-
erature regarding hypoxia and its role in the redox chemistry of the
cell (5): While some studies indicate that the cellular environment
becomes more oxidative as a consequence of hypoxia (5, 6), others
claim that hypoxia imposes a reductive stress on cells (7). A pos-
sible source of this confusion may be the large range of oxygen
pressure quoted in the literature as representing hypoxia; for ex-
ample, 4 recent publications quote hypoxic oxygen pressures
ranging from 5 to 0.2% (8–11). It may be more useful to bench-
mark hypoxia against in vivo oxygen pressures where tumors typ-
ically have oxygen pressures <2%, and healthy tissues have oxygen
pressures between 4% and 6% (12). Furthermore, a subtle aspect
to this controversy is the question of whether the common mea-
sures of “redox status,” e.g., measurements of reactive oxygen
species (ROS) or nitroreductase activity report on redox status as a
cellular global parameter or on a local concentration of particular
analytes. Here, we demonstrate that intracellular redox potential
(IRP) is a key parameter through which hypoxic microenviron-
ments affect the expression of signaling molecules that coordinate
the cell’s response to hypoxia.
IRP is a function of the concentration of all of the oxidants and

reductants in the cell and is a global measure of how oxidative an

environment is (13). Where common fluorescent reporters typi-
cally give information on a local concentration of, e.g., ROS, our
class of surface-enhanced Raman spectroscopy (SERS) nanosensors
quantitatively measure a redox potential (14). We have previously
used these sensors to measure drug and nanoparticle toxicity in 2D
culture (7, 15), to measure the effects of drugs and radiotherapy in
3D culture (4, 16), and have multiplexed pH and redox potential
measurements using complementary SERS sensors (16–18). We
have characterized the interaction of the sensors with various cell
lines (7, 14–18) and with MCF7 cells in particular (17). In these
publications, we have shown that the particles localize to the cy-
toplasm and do not affect cell viability.
The central concept of our investigation is that IRP (E) is a

measure of the free energy (ΔG) of a cell (since ΔG = −n F E,
where n is the number of electrons transferred and F is the Far-
aday constant) and a change in this experimentally determined free
energy (in response to changing oxygen pressure) should correlate
with a free-energy change associated with the cell’s adaptation
(e.g., change in the concentrations of signaling molecules such as
microRNAs [miRNAs]). Here, we determine how cellular redox
potential, E, changes in cells exposed to a range of 21 to 1% ox-
ygen. By using surprisal analysis (SA) (19, 20), a thermodynamic-
and information theory-based approach, we identify links between
changes in the redox potential and in miRNA expression levels as a
consequence of changes in oxygen pressure.

Significance

Cancer is associated with low-oxygen cellular environments.
However, a better understanding of the connection between the
amount of oxygen in a cell’s microenvironment and its behavior
is much needed. By optical measurements, we have character-
ized how the redox chemistry and the intracellular redox po-
tential of cells respond to changes in oxygen pressure. Through
surprisal analysis (a technique based on thermodynamics), we
were able to identify changes in cellular signaling molecules
(microRNAs [miRNAs]) that correlate with redox changes and
found that, at low-oxygen conditions, these miRNAs are asso-
ciated with tumor spread and survival. The changes in miRNA
expression were used to quantify the free-energy variations
with oxygen pressure, variations that reflect the changes in the
measured intracellular redox potential.
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SA is based on the principle that molecular systems are bound
by constraints that prevent the system from reaching its maximal
possible entropy. In cells, these constraints represent biological
pathways that exist as a profile of analyte (metabolite, protein,
RNA) abundances and that change in response to (for example)
environmental or genetic perturbations. SA takes a matrix of
analyte concentrations vs. oxygen pressures and by natural log (ln)
transformation converts it to a matrix of chemical potentials vs.
oxygen pressures. SA seeks to represent the data in the manner
shown in Eq. 1. Using the mathematical tool of singular value
decomposition (20), we can analyze this matrix to identify 2 fea-
tures, the analytes associated with a constraint and the overall
importance of that constraint for every oxygen pressure p. The
importance of a constraint α is given by a Lagrange multiplier
λαðpÞ [i.e., constraints with λαðpÞ furthest from zero are those most
important in defining the cell’s response to a change in oxygen
pressure, p]. The set of analytes associated with a constraint i are
represented as a vector with components Giα (i.e., analytes with
values of Giα furthest from zero are those that contribute most to
the constraint). SA was used here to identify miRNAs that play an
important role in determining the cell’s response to changes in
oxygen pressure by first determining the thermodynamic reference
referred to as “the balanced state,” which is the collection of
analyte levels that are invariant with oxygen pressure (Eq. 1):

lnXiðpÞ
Logarithm  of
abundance  of   analyte
i  at  oxygen  pressure  p

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{The  data

=

lnX0
i
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i  in  the  balanced
state

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{The  Balanced  State

+

X
α=1,2,...

Giα λαðpÞ

Sum  over  all
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Weight  of
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constraint  α
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constraint  α  at
oxygen  pressure  p

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Deviations  from  the  Balanced  State

. [1]

As shown in Eq. 1, there will be separate contributions from the
balanced state and from each of the deviations. The minimal
work needed to drive the system from the balanced state to an
activated state can be written as follows:

P
i
XiðpÞln½XiðpÞ=X0

i ðpÞ�
(21). Thereby, SA enables the free energy of the system to be
computed, and this enables a direct comparison with the changes
in free energy measured via IRP. Furthermore, SA allows us to
identify the analytes that contribute most to the changes in free
energy (those with the largest Giα in Eq. 1). By comparison,
established techniques for analysis of miRNA expression changes
identify pairwise differences between (for example) 1% O2 and
21%O2, and do not identify collective behavioral patterns across a
set of conditions. Furthermore, a limitation of clustering tech-
niques is that strong signals often dominate the outcome by
masking species present in low concentrations that are poten-
tially important in the cell’s behavior.
In this paper, we found that redox potential becomes more

reductive as the pressure of oxygen decreases and found an
excellent correlation between the computed free energy (on the
basis of miRNA concentrations) and the free energy from the
directly measured redox potential. This approach defines links
between redox potential and miRNA signaling and identifies
the miRNAs whose concentration profiles contribute most to
the changes in free energy and the cell’s adaptation to hypoxia.

Results
Measurements of the IRP from 21 to 1% O2. In order to measure
IRP in the cytosol of MCF7 cells grown under varying O2 pres-
sures, we built a homemade device that allowed cells maintained
in conditioned media, at a defined O2 pressure, to be imaged
through a MgCl2 window (with low intrinsic Raman back-
ground) (SI Appendix, Fig. S1). Wemade measurements between
1 and 4% oxygen because they are representative of in vivo con-
centrations and at 21% because it is the most common choice
when culturing cells for biomedical research. Nanoshells (NSs) were
functionalized with the redox-active reporter, N-[2-({2-[(9,10-dioxo-
9,10-dihydroanthracen-2-yl)formamido]ethyl}disulfanyl)ethyl]-9,10-
dioxo-9,10-dihydroanthracene-2-carboxamide (referred to as AQ).
AQ undergoes a reversible 2e−, 2H+ redox reaction (Fig. 1A),
resulting in a change in molecular structure and Raman fin-
gerprint. AQ is sensitive to changes in redox potential in the
hypoxic range between −250 and −400 mV vs. NHE (7, 17), and
redox-sensitive peaks report on the oxidation state through a
change in peak intensity. Fig. 1B shows the signals at 1,666 and
1,606 cm−1 that correspond to the (redox-sensitive) quinone
C=O stretch and (not redox-sensitive) amide stretch/symmetric
ring breathing, respectively. As cellular pH affects the overall
redox potential, cells were also incubated with NSs functionalized
with the pH-sensitive reporter para-mercaptobenzoic acid (MBA),
which has been shown previously to be sensitive to pH changes
between 5.5 and 8.5 (16–18, 22). ANOVA analysis revealed no
significant difference in pH between different conditions (SI Ap-
pendix, Table S1), and we have therefore not adjusted the mea-
sured redox potential measurements as a result of pH.
As shown in Fig. 1C, the trend in measured IRP is a decrease

from 21 to 2% O2 followed by an increase from 2 to 1% O2.
Pairwise t tests indicated that both the drop in IRP toward 2% O2
and the increase between 2% and 1% are statistically significant.
The overall downward trend in IRP is in line with the expectation
that a less oxidative extracellular environment should result in a
more reductive intracellular environment. In order to investigate
whether IRP changes reflect changes in metabolism, we measured
the concentration of ROS and selected metabolites across the
same set of O2 pressures (SI Appendix, Fig. S2). The trend shows
that ROS, glucose, taurine, and lactate increase significantly
between 21% and 4% before either plateauing or decreasing
gradually toward 1%. The opposite trend can be seen in the
concentrations of amino acids such as alanine, tyrosine, and
phenylalanine, which drop between 21% and 4% and then pla-
teau. As a control, we measured metabolite concentrations of
cells grown at 1% O2, at 21% O2, and at 21% O2 treated with
rotenone (an inhibitor of oxidative phosphorylation). When ro-
tenone was used to inhibit oxidative phosphorylation at 21%
oxygen, the NMR analysis showed a similar increase in metab-
olites such as lactate and decrease in amino acids such as alanine
and glutamine. These results suggest a change in metabolism
toward glycolysis since less oxygen is being used to make energy,
lactate is being produced, and glucose uptake is increased to feed
the less efficient energy requirements of glycolysis. An important
point to note is that these data demonstrate not only that IRP
and ROS are not equivalent but also that there are significant
differences in the manner in which they change in response to
changing O2. While the reasons for the differences between IRP
and ROS remain to be fully elucidated, it is worth reiterating
that the nature of the measurements is different—IRP is a
thermodynamic parameter that is a function of many oxidant and
antioxidant concentrations; fluorescent reporters of ROS only
measure a single component of the system. In the context of a
switch from oxidative phosphorylation to glycolysis at lower O2
pressures, it is not surprising that a decreased metabolic demand
for oxygen leads to higher ROS levels; however, our results also
suggest that the switch produces a compensatory increase in
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antioxidants (e.g., NADPH) that leads to a reduced IRP. Such
differences underline the need for caution when using ROS
measurements to discuss redox mechanisms and when general-
izing on the effects of hypoxia based on measurements made at a
single oxygen pressure.

Measurement of miRNA Abundance across a Range of O2 Pressures.
To correlate IRP measurements with cell signaling in response
to hypoxia, we measured miRNA expression using Nextgen se-
quencing. As posttranscriptional gene regulators, miRNAs play
important roles in signaling the cell’s response to environmental
stresses and several miRNAs have well-documented roles in reg-
ulating the response to hypoxia (23). We identified 610 miRNAs
with a measurable expression level in MCF7s and used SA to
look for patterns of collective activity of the miRNAs across the
range of O2 pressures used in this study. We first used SA to
identify the balanced state that should be independent of oxygen
pressure (Eq. 1). In a biological context, the molecules most
expressed in the balanced state can be considered as having a
function unrelated to O2 pressure. Fig. 2A shows the magnitude
of its Lagrange multiplier λ0ðpÞ (which is a measure of its po-
tential) vs. oxygen pressure.
λ0ðpÞ should be invariant with pO2 (which within the bounds of

the error bars it is), and since its magnitude is higher than for any
other λα (see below), it is the major contributor to the free energy
of the cell. These 2 factors are further illustrated by the fact that
the most heavily weighted miRNA members of the balanced
state are highly expressed and display very little variation in
concentration as a function of oxygen pressure (Fig. 2B).

SA also identifies 4 other constraints (λ1 to λ4) where the
miRNA distribution is deviant from the stable state. The weights
of the contributing different constraints are shown in Fig. 3A, and
it is clear that each one of λ1 to λ3 changes sign as a function of
oxygen pressure. It can be seen from Eq. 1 that if λαðpÞ changes
sign between 2 pressures it signifies that a miRNA that was highly
expressed has become less expressed and this suggests that within
the pO2 range investigated, there are regimes in which different
collections of miRNAs play important roles (rather than, e.g., an
even transition from high expressed to low expressed across the
range). (For each constraint, only those values where the error
bars do not span zero are shown in Fig. 3A.)
We can further confirm which constraints are most important at

which oxygen pressures by examining the quality of fit to the data.
Since adding terms to the right-hand side in Eq. 1 improves the
quality of the fit to the data (20), we can determine which λαðpÞ is
most important at a particular oxygen pressure by asking which
constraint(s) we should add to get the best fit. For example, at 1%
O2, addition of λ3 gives the best fit as shown in Fig. 3B. At 2%, the
addition of λ1 gives the best fit, and at 4% and 21%, both λ1 and λ2
are needed to give the best fit (SI Appendix, Fig. S3).
Fig. 3C shows the work done by each of the dominant con-

straints at the relevant oxygen pressure to deviate the distribution
of miRNAs from the balanced state and this mirrors the trend in
the redox potential (the Pearson correlation coefficient between
these datasets is 0.407). Importantly, this shows the direct link
between the experimentally measured free energy (based on the
measurement of the redox potential E) and the computed free
energy (based on the SA of the miRNA concentrations).

Fig. 1. SERS nanosensors measure IRP. (A) Schematic showing the change in structure associated with oxidation/reduction. (B) Spectrum of the oxidized (red) and
reduced (black) form of the nanosensor. (C) Intracellular redox potentials measured in MCF7 vs. pO2. Error bars represent the SD of 3 independent measurements.
Lowercase letters as labels signify a P value < 0.05 for a paired t test vs. 21% (A), 4% (B), 3% (C), and 2% (D).

Fig. 2. The balanced state is independent of the pressure of oxygen. (A) λ0 vs. pO2 is essentially constant within the error bars. (B) Expression of the dominant
miRNAs in the balanced state vs. pO2.
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We reiterate that, as shown in Fig. 3A, the weights λαðpÞ of the
contribution of different constraints are O2 dependent, are dif-
ferent for different constraints, and can change sign as the pO2 is
changed. A change of sign between pressures means that if a
given miRNA is overexpressed in a particular constraint at one
pressure it will be under expressed at the second pressure.
To illustrate what a constraint means in biological terms, Fig.

3D shows a plot of Gi1 for each of the 610 miRNAs for the con-
straint α= 1. The miRNAs that contribute most to this constraint
(with G values furthest from zero) are those at the 2 ends of the
distribution while those in the flat portion of the graph contribute
least. To build upon this view, we now discuss those miRNAs that
contribute most to each λα. The 5 miRNAs with the most positive
value ofGiα and the 5 miRNAs with the most negative value ofGiα
are shown in Fig. 4 for λ1 to λ3. Each column in Fig. 4 shows the
range of oxygen pressures where λαðpÞ changes sign for α= 1,2,3.
The first column in Fig. 4 A and D shows expression levels of

miRNAs that contribute most to the first constraint, λ1ðpÞ. As
seen in Fig. 3A, λ1ðpÞ has a negative sign above 4%, which changes
to positive sign at 2%. This change of sign and the corresponding
change in the expression levels signify the importance of λ1ðpÞ, in
the adaptation from 4 to 2% oxygen. This range of oxygen pres-
sures incorporates pressures that are physiologically relevant to
tissues as well as being pathologically relevant to tumors (12).
Looking at the 2 groups separately, members of the first group
(Gi,  α=1 > 0; Fig. 4A) have clear functional parallels that correlate
an increase in expression with the proliferative phenotype of tu-
mors. The most heavily weighted and well characterized of these
are discussed here; in particular, miR-210 has been shown to
promote metastasis and invasion in prostate cancer by targeting
NF-κB signaling (24). miR-675 has been shown to be up-regulated
in hepatocellular carcinoma (HCC) patient samples and cell lines
and correlates with high levels of alpha fetoprotein (a superoxide
dismutase)—it is thought to play a role in cell cycle regulation and
epithelial-to-mesenchymal transition through targeting Twist1 (25).
miR-483 has been found to be up-regulated in gastric cancer tis-
sues and in cell cultures has been shown to promote proliferation

and invasion, its elevation in pancreatic ductal adenocarcinoma has
been correlated with poor prognosis (26).
Members of the group whose expression drops from 4 to 2%

oxygen (Gi,  α=1 < 0; Fig. 4D) have documented functional charac-
teristics that relate a decrease in expression with a switch toward a
more malignant tumor phenotype. For example, miR-381 sup-
presses growth and proliferation in HCC and osteosarcoma and is
thought to target WNT signaling through down-regulation of
LRH1 and Hes1 (27, 28). miR-2278 has been reported as having
tumor repressor activity through targeting AKT2, STAM2, and
STAT5A (29). miR-485 is down-regulated in cancers including
HCC and metastatic breast cancer tissue and is thought to inhibit
proliferation through targeting PGC-1α (30, 31). Taken together,
the 2 groups of miRNAs point toward an increase in proliferative
and metastatic phenotype as the oxygen pressure falls from the
physiological level (4%) to more pathological level (2%). This
very clear thermodynamic-like transition mirrors that previ-
ously seen using measurements of phosphorylated proteins at the
single-cell level (32).
The second constraint, λ2ðpÞ, contributes only at the 2 highest

pressures, and it changes sign between pressures of 4% and 21%.
It is again clear in this case that the miRNAs most heavily
weighted in this constraint have a distinct change in concentration
between 4% and 21% (Fig. 4 B and E). While 21% oxygen is
commonly used to culture cells in vitro, it is a much higher pres-
sure than experienced by tissues in vivo, and thus these miRNAs
may highlight the differences between a physiological oxygen level
(4%) and a nonphysiological stress (21%).
These 2 groups identified by the constraint α= 2, again have

documented roles in regulating proliferation or survival. For those
where Gi,  α=2 > 0 (Fig. 4B), miR-1185 induces apoptosis in endo-
thelial cells by targeting UVRAG and KRIT1, and miR-889 and
miR-758 appear to play complementary roles in the regulation of
proliferation by targeting DAB2IP and MTOR, respectively. In
the group whose concentration drops from 21 to 4% (Gi,  α=2 < 0;
Fig. 4E), miR-675 is up-regulated in carcinomas (as previously
discussed), miR-1293 may promote metastasis through regulation

Fig. 3. Measurement of the constraints associated with change in oxygen pressure. (A) The values of λ1 to λ4 vs. % O2. (B) Addition of λ3 to the stable state
improves the fit of the data at 1%O2. (C, Left ordinate)Work done to deviate themiRNA distribution from its balanced state. Right ordinate: measured IRP, E. Error
bars show SDs calculated from 3 biological replicates. (D) Expression level of miRNA i in constraint 1, drawn in descending order for each of the miRNAs.
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of MMP activity, and miR-653 promotes proliferation through
targeting TRIM9 (a ubiquitin ligase). miR-1274 has multiple
documented roles including suppression of tumor growth through
targeting Wnt and activation of metastasis through activation of
tumor-associated macrophages.
The third constraint, λ3ðpÞ, contributes only at 1% oxygen,

suggesting that it plays a role in adaptation to the more extreme
hypoxic conditions found in cancers such as prostate and pancreas.
Other than those already discussed (miR-3651, miR-210, miR-
2278, miR-381), miR-1290 and miR-4435 are known to promote
tumor growth and miR-602 has been shown to inhibit proliferation.
For the remainder, their function is less well described in the lit-
erature, but our findings may allow predictions to be made re-
garding their potential role in cancer pathogenesis.
To investigate whether the miRNAs identified by SA also

correlate with ROS, we measured the Pearson correlation co-
efficient between individual miRNA concentrations and ROS
concentrations (SI Appendix, Table S2). While the highest
ranking miRNAs have no overlap with those discussed above,
some of these miRNAs do share characteristics: 2 of the top 6
are from the let-7 family and are thought to act as tumor
suppressors and 3 of the top 6 (miR-769, miR-1306, and let-7g)
are thought to target TGF-β signaling, suggesting a link be-
tween ROS and specific pathways.
The close correlation between the free energy derived from IRP

and that calculated from miRNA profiles suggests a mechanistic
link. For example, the concentration profile of the miRNAs for
whichGi,  α=1 < 0 across all pO2 shows a very strong correlation with
redox potential (SI Appendix, Fig. S4 and Table S3). This corre-
lation suggests that redox potential may play a role in regulating
transcription of the miRNA loci, perhaps via modulating the oxi-
dation state of amino acids such as cysteine in transcription factors.
Indeed, many of the known transcription factors for this group are
known to be redox sensitive, including numerous zinc-finger pro-
teins, NRF2 or YAP (detailed in SI Appendix, Table S4), and this

idea warrants further investigation, for example using transcriptomic,
targeted proteomic, and imaging experiments (33, 34).
Our finding that 3 distinct constraints contribute to the cell’s

response to a decrease in oxygen pressure highlights that hypoxia
is measurably different depending on the oxygen pressure at which
you investigate it. Our finding that the major change in free energy
between 4% and 2% oxygen coincides with a change in miRNA
expression associated with increased pathogenesis correlates well
with previous findings that hypoxia induces a change in kinase
signaling networks between these pressures (34), and that hypoxia
drives resistance to therapy in some cancers (35, 36).
To summarize, our findings demonstrate that redox potential

becomes measurably more reductive as oxygen pressure falls. While
this correlates with changes in metabolism, the changes are not well
correlated with the changes in ROS (a commonly measured sur-
rogate of redox potential). Through the use of SA, we demonstrate
that the measurable free-energy change (from redox potential
measurements) directly mirrors the computed free-energy change
through analysis of miRNA levels. We also identified groups (as
identified by SA) of miRNAs whose free-energy change contributes
most to the cell’s adaptation to hypoxia. In particular, we identified
groups of miRNAs whose function relates to changes in pro-
liferation and metastatic potential. These findings underline the
important role that oxygen and tumor microenvironment play in
driving pathogenesis. The correlation between redox potential and
miRNA expression underlines the important role that redox reac-
tions play in relaying microenvironmental changes to the genome.

Materials and Methods
Cell Culture. Human breast adenocarcinoma (MCF7) cells were grown in
Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% heat-
inactivated FBS, 10,000 units/mL penicillin–streptomycin, and L-glutamine
(200 mM). Cells were seeded at a density of 1 × 105 cells per mL and were
grown at 37 °C under humidified atmosphere (5% CO2). All cell culture
reagents were purchased from Invitrogen.

Fig. 4. The miRNAs identified as contributing most to the 3 constraints. Each column is identified by the constraint index α: A and D, α = 1; B and E, α = 2; C and F,
α = 3. The Top row (A–C) are expression levels of the 5 miRNAs with the most positive value of their weight, Giα in constraint α. The Bottom row (D–F) are the
expression levels of the 5 miRNAs with the most negative value of their weight, Giα in constraint α. The abscissa is the oxygen pressure range over which λαðpÞ
changes sign. Error bars represent the SD of 3 biological replicates.
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Metabolite Extraction. Cells were incubated at 1%, 2%, 3%, 4%, or 21%O2 for
24 h before being washed twice with ice-cold PBS (10 mL). MeOH:CHCl3:H2O
(1:1.5:0.7 mL) was added before vortexing for 60 s. All samples were centri-
fuged at 1,000 × g for 10 min. The aqueous layer was pipetted into a vial
and the solvent was removed under nitrogen. The polar extracts were
reconstituted in pH 7.4 sodium phosphate buffer (0.1 M, 600 μL) containing
100% D2O, to minimize variations in pH, and TSP (50 nM) as a reference.
The process was carried out in a hypoxia incubation chamber.

NMR Analysis. Samples were run on a Bruker Advance 600-MHz spectrometer.
Topspin 2.1 was used to acquire spectra using software implementation of
digital filters, which produced flat baselines but resulted in the reduction of
the signal-to-noise ratio by 25%. Relaxation and acquisition times of 2 and
1.36 s, respectively, and a nuclear Overhauser effect mixing time of 10 ms
were used. Pulsed field gradients were set to 50% and −10% of 50 Gauss/cm.
A total of 356 scans was accumulated into each spectrum. Each NMR spec-
trum was normalized to the spectrum with the highest total peak integral in
order to correct for slight differences in cell numbers between samples.

Small RNA Library Preparation and Analysis. Triplicate samples for each O2

pressure of MCF7 cells were cultured and extracted, once confluent, using the
MiRNeasy Mini Kit (Qiagen). The integrity of RNA was determined using a
Bioanalyser 2100 Nano LabChip kit (Agilent Technologies) with all samples
providing an RNA integrity number of ≥8.8. Small RNA libraries were prepared
using the CleanTag kit (Trilink) and libraries pooled prior to sequencing a
HiSeq4000 (Illumina). Raw fastq sequences required further preprocessing
to remove contaminating primers, etc., which was done using cutadapt soft-
ware (37). Trimmed sequences were collapsed within each sample to gener-
ate a nonredundant set of fasta sequences (singletons were not included). The
reference genome used for alignment was the latest version of the human
genome (hg19); only full-length perfect-match sequences were kept. Se-
quences aligning to the human genome were subsequently used as input for a
mirDeep2 analysis (38). The analysis used humanmature (3p and 5p forms) and
precursor sequences obtained from mirBase (release 21; http://mirbase.org/).
Raw “tag counts” (i.e., sequences aligning) were obtained for 1,427 different
mature miRNAs. miRNAs with an average read count per sample fewer than 5
were discarded, leaving 610 loci. The counts within each sample were nor-
malized by conversion to abundances, which were then multiplied by 1 million
to generate a reads set, 1 count added to all to preclude zero counts instances.
This dataset was used as input for SA.

NS Functionalization. For IRP measurements, NSs were incubated overnight in
100 μM AQ (7) dissolved in 1% DMSO. Functionalized AQ–NSs were washed
3 times with water. For pH measurements, NSs were incubated overnight in
100 μM 4-mercaptobenzoic acid (MBA) dissolved in ethanol. Functionalized
MBA–NSs were washed 3 times in water. NSs (resonant at 782 nm) were
purchased from Nanospectra Biosciences and have a diameter of 150 nm
constituting a 25-nm gold shell.

SERS Measurements. Approximately 75,000 cells were seeded on a MgCl2
imaging window and incubated overnight at 37 °C and fixed O2 pressure.
Functionalized AQ–NSs (10 fM) or MBA–NSs (10 fM) were added to FCS-free
DMEM incubated with cells overnight. Fresh PBS and media were also in-
cubated overnight under same conditions. The following day, cells were then
rinsed with preconditioned PBS to remove excess AQ–NSs or MBA–NSs in the
medium. The imaging window was assembled into a homemade imaging
device into which media, preconditioned at a predetermined O2 pressure, was
injected. The device was designed to keep cells at a fixed O2 pressure with no
air bubbles. A Renishaw inVia Raman microscope and spectrometer equipped
with a 785-nm diode laser in-line focus mode was used for obtaining SERS
spectra. A large map of a cell was analyzed using a 1-s acquisition, delivering
12.8-mW laser power. The spectra were processed using Origin8.5 and Matlab.
Baseline subtraction was performed followed by extraction of peak areas of
interest using publishedMatlab scripts (15). AQ–NS is most sensitive to changes
in redox potential between −250 and −400 mV vs. NHE (7, 18). Redox potential

was calculated from the SERS spectra using a previously published routine,
which measures the ratio of the peaks at 1,666 and 1,606 cm−1 and compares
them to calibration data generated using spectroelectrochemistry (spectra
whose intensity at 1,606 cm−1 were below 100 counts were discarded) (7, 17).
SERS maps were generated, and where multiple pixels within a cell contained
SERS spectra (as a result of multiple nanosensors per cell), an average spectrum
was used (in the data shown, at least 10 spectra were used to generate an
average per cell). At least 3 separate cells were measured to generate an av-
erage redox potential at a given oxygen pressure. The same procedure was
used to measure pH, the only difference being that the reporter molecule
was MBA. MBA–NSs are most sensitive to changes in pH between 5.5 and
8.5 (17, 18). SERS spectra were collected, processed, and baselined as above
(15, 17). For the peak at 1,580 cm−1, spectra with <200 counts were rejected.
pH was calculated by measuring the peaks 1,400 and 1590 cm−1 and com-
paring to calibration data as documented previously (15, 17). At least 3 sep-
arate cells were measured to generate an average intracellular pH at a given
oxygen pressure.

ROS Measurements. For each O2 pressure, 5 cell culture flasks were seeded to
a total density of 3 × 106 cells. Cells were incubated at 1%, 2%, 3%, 4%, or
21% O2 for 24 h. Once confluent, cells were washed twice with PBS (10 mL),
trypsinized, and centrifuged. Fresh media was added to all flasks. H2DFFDA
(10 μM) was added to 4 of the samples. H2O2 (0.03%) was added to one
sample (as a positive control), and one was left untreated of both reagents
(as a negative control). All samples were covered with foil and incubated for
1 h at 37 °C and a given pressure of O2. After incubation, the samples were
centrifuged for 4 min at 2,000 × g before being washed twice and resus-
pended in PBS (5 mL). Fluorescence measurements were taken using a Jobin
Yvon Spex Fluoromax spectrofluorometer at an excitation of 492 nm. The
peak emission of H2DFFDA at ∼525 nm was monitored.

Surprisal Analysis. The use of SA in redox chemistry merits discussion of
relevant key details. More technical aspects of SA (32, 39), in particular the
computation of error bars (32), are discussed together with the experimental
methods that we use in the first section of SI Appendix.

Given the logarithmic representation of the abundances as in Eq. 1, one can
compute the free energy of the system and compare it to the free-energy
changes as measured via the redox potential measurements. There will be 2
contributions, the free energy of the stable state and that of deviations from
it. The second contribution can be written as follows:

P
i
XiðpÞln½XiðpÞ=X0

i ðpÞ�.
This is the (minimal) work needed to drive the system from the stable state to
its actual state (21). Each term in the sum is the contribution of a particular
analyte and the work can be written as a sum over the constraints,
ΔGðpÞ= P

α= 1,2, ...
λαðpÞÆGaæp. ÆGαæp is the mean value of the Giα values computed

over the abundances Xi, ÆGαæp =
P
i
XiðpÞGiα. Technically, the λα values are

Lagrange multipliers. If some λαðpÞ equals zero, then the constraint is not
relevant at this pressure p because it does not change the abundance level as
seen in Eq. 1. Due to the unavoidable experimental noise, there is an error in
determining the λα values from the experimental data. If that error bar spans
zero, then, to within experimental accuracy, that λα should be taken to equal
zero and then that constraint does not contribute to the free energy.

The major term in the free energy is that of the stable state itself. To have a
uniform notation, we formally add a zeroth constraint and thereby write
ln X0

i ðpÞ= λ0ðpÞGi0. Then the free energy of the stable state can be written as

for the other constraints, λ0ðpÞÆG0æp. In much of cell biology, the stable state is
themajor contributor to the free energy, and this is also the case here (39). This is
a reflection of the inherent stability of the cell state even when it is a cancer cell.
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