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Abstract

The role of free fatty acids (FFA) on Type 2 diabetes mellitus (T2DM) progression has been 

studied extensively with prior studies suggesting that individuals with shared familial genetic 

predisposition to metabolic-related diseases may be vulnerable to dysfunctional plasma FFA 

regulation. A harmful cycle arises when FFA are not properly regulated by insulin contributing to 

the development of insulin resistance, a key indicator for T2DM, since prolonged insulin 

resistance may lead to hyperglycemia. We introduce a hypothesis-driven dynamical model and use 

it to evaluate the role of FFA on insulin resistance progression that is mathematically constructed 

within the context of individuals that have genetic predisposition to dysfunctional plasma FFA. 

The dynamics of the nonlinear interactions that involve glucose, insulin, and FFA are modeled by 

incorporating a fixed-time delay with the corresponding delay-differential equations being studied 

numerically. The results of computational studies, that is, extensive simulations, are compared to 

the known minimal ordinary differential equations model. Parameter estimation and model 

validation are carried out using clinical data of patients who underwent bariatric surgery. These 

estimates provide a quantitative measure that is used to evaluate the regulation of lipolysis by 

insulin action measured by insulin sensitivity, within a metabolically heterogeneous population 

(non-diabetic to diabetic). Results show that key metabolic factors improve after surgery, such as 

the effect of insulin inhibition of FFA on insulin and glucose regulation, results that do match prior 

clinical studies. These findings indicate that the reduction in weight or body mass due to surgery 

improve insulin action for the regulation of glucose, FFA, and insulin levels. This reinforces what 
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we know, namely, that insulin action is essential for regulating FFA and glucose levels and is a 

robust effect that can be observed not only in the long-term, but also in the short-term; thereby 

preventing the manifestation of T2DM.
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1. Introduction

According to the CDC, nearly 9.4% of the U.S. population has diabetes (30.3 million) 

including individuals with type 1, type 2 and gestational diabetes [1]. Type 2 diabetes 

mellitus (T2DM) is usually diagnosed in adulthood when the body cannot regulate glucose 

levels properly without medication or treatment. T2DM accounts for 90–95% of diabetes 

cases (29.1 million) and manifests in 15–30% of pre-diabetes cases (86 million), a 

population where 9 out of 10 individuals do not know that they are pre-diabetic [2]. In 2017, 

an estimated 84.1 million adults had prediabetes, a condition defined by higher than average 

blood glucose levels but not high enough to be diagnosed with diabetes [1]. Individuals with 

prediabetes have a higher risk of developing T2DM and other cardiovascular diseases [1]. In 

fact, an estimated 15–30% of the U.S. population with prediabetes are more likely to 

develop T2DM within 5 years. This is sobering information that must be understood by a 

subpopulation where 9 out of 10 individuals are unaware of their pre-diabetic status [3,4].

Since T2DM is a chronic disease, the quality of life of patients with diabetes decreases in the 

long-term depending on severity and other co-existing health conditions. Diabetes increases 

risk for blindness, kidney failure, high blood pressure, heart disease, stroke, amputations, 

dental disease, depression, and pregnancy complications [2]. Prevalence levels are high 

among American Indians and Alaska Natives (15.9%), Non-Hispanic blacks (13.2%), and 

Hispanics (12.8%) when compared to its prevalence among Non-Hispanic whites (7.6%) and 

Asian Americans (9.0%) [5]. Diabetes is unfortunately also correlated with increases in 

individuals’ economic and health burdens, thereby increasing mortality and morbidity risks. 

The annual costs of diabetes has been estimated to be about 245 billion dollars, 176 billion 

attributed to direct and 69 billion costs that include (disability, premature death, and work 

absenteeism) [2]. Among diagnosed diabetes cases seeking treatment, 14% use insulin only 

(2.9 million adults), 56.9% use oral medication only (11.9 million adults),14.7% use both 

insulin and oral medication (3.1 million adults), and 14.4% use neither insulin nor oral 

medication (3 million adults) [2].

1.1. The role of free fatty acids on the progression of diabetes

The clinical manifestation of T2DM is characterized by hyperglycemia (prolonged blood 

glucose level above normal), hyperinsulinaemia (a condition in which there are excess levels 

of insulin circulating in the blood) along with insulin resistance. Insulin resistance (IR) is 

considered an indicator of the inability of cells in muscle, fat, or liver tissue to respond to 

insulin, which in turn, limits the ability of the individual take up glucose from the blood 

easily. Hence, the pancreas must produce and secrete additional insulin, which is needed to 
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bring glucose levels back to the normal range. IR can also develop in the liver, known as 

hepatic insulin resistance, which is defined as impaired insulin signalling affecting the liver. 

Clinical studies show that insulin resistance in skeletal muscle and adipose tissue are 

common in individuals with T2DM [6–9], and thus IR is considered a strong predictor for 

the development of T2DM.

Several studies support the hypothesis that prolonged presence of free fatty acids (FFA) 

circulating in the bloodstream or in organs (e.g., skeletal muscle, pancreas, or liver) 

contributes to the development of T2DM by impacting insulin signalling, glucose transport, 

insulin secretory function, or other mechanisms leading to disruptions in glucose-insulin 

regulation [10–12]. FFA is used as fuel for the liver, resting skeletal muscle, renal cortex, 

and myocardium [10]. During starvation or exercise, the demand for FFA as a fuel source 

increases, where after an overnight fast lipid oxidation can account for over 70% of total 

body energy expenditure [10]. When FFA is needed as a source of energy, then triglycerides 

(TG) are broken down into FFA and released into the bloodstream via lipolysis. Hence, FFA 

can be approximated by TG. Since TG is associated with cardiovascular diseases [13], then 

high TG levels coexisting with normal or impaired fasting glucose further increase risk of 

metabolic-related diseases, such as T2DM. FFA is stored in adipocytes (adipose cells) from 

TG which are made up of three FFA molecules and one glycerol molecule. As of today, 

several hypotheses have been proposed characterizing the mechanistic role of FFA on the 

progression of insulin resistance (summarized in Table 1). It is widely accepted that elevated 

FFA levels promote insulin resistance in skeletal muscle and liver [10, 14, 15] and yet the 

mechanisms underlying the progression of T2DM based on obesity levels are not well 

understood. Here we formulate a mathematical framework based on what is currently known 

about the role of FFA on IR progression as a starting point, or baseline model, to be 

expanded upon in future work to test different hypotheses through computational studies.

1.2. Bariatric surgery as a treatment strategy

Obesity, characterized by excessive body fat, is considered a risk factor for diabetes since 

among those individuals diagnosed, 84.7% turned out to be overweight, with 56.9% obese 

[1]. In many cases, patients with severe obesity and diagnosed with T2DM can have 

improved metabolic health following bariatric surgery, which is a treatment strategy for 

patients with severe obesity. These procedures may include: gastric banding (such as 

adjustable and nonadjustable bands), gastric bypass (such as Rouxen-Y variations or any 

other procedure combined with gastric bypass), gastroplasty (such as vertical banded 

gastriplasty), biliopancreatic diversion or duodenal switch (such as various modifications), 

or a combination of these methods [24]. In a review of 134 studies [24], it was found that 

76.8% patients who underwent bariatric surgery improved diabetes-related outcomes, and a 

total of 85.4% patients had either resolved or improved diabetes-related outcomes. Bariatric 

surgery patients with diabetes have demonstrated recovery of acute insulin response, also 

referred to as the “first phase” of insulin secretion [25], decreases of inflammatory indicators 

(C-reactive protein and interleukin 6) which are associated with cardiovascular and 

metabolic health [26], improvement in insulin sensitivity [27, 28], significant changes in the 

response of enteroglucagon, defined as a peptide hormone that helps to facilitate the 

absorption of nutrients in the presence of glucose and fats, to glucose levels[29], significant 
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reduction in ghrelin, also referred to as the “hunger hormone” which triggers appetite[30], 

and significant improvement in beta-cell function [31]. Hence, a reduction of body fat 

following bariatric surgery leads to improvements in the patient’s metabolic health.

In this paper, we consider the case of a prototypic individual with genetic susceptibility to 

T2DM, that is, an individual who self-identified as having a family member with T2DM or 

other metabolic-associated diseases, and thus, could be susceptible defined by its inability to 

regulate FFA or by a disruption on the regulation of FFA. We refer to this process as the 

“harmful cycle hypothesis” and define the mechanism as follows. A dysfunctional regulation 

of FFA that leads to an increase demand for insulin, a demand that is stimulated by both 

glucose and FFA, which in turn, puts the individuals at higher risk of hyperglycemia when 

beta-cell compensation fails. In the long-term, insulin resistance is observed when insulin 

does not effectively regulate plasma glucose and FFA. We introduce a model, a hypothesis-

driven model, built off of models previously used to study the joint dynamics of insulin, 

glucose, and FFA. These dynamics are studied quantitatively and qualitatively within a 

framework that includes model validation. Parameters are fitted to data obtained from a 

heterogeneous sample of patients ranging from non-diabetic and non-obese to diabetic and 

obese so that the model results to may provide insights into the physiological factors that 

govern glucose homeostasis. By fitting the model to clinical data of patients who underwent 

bariatric surgery, we explore to what extent does a reduction of body fat following surgery 

alter a patient’s metabolic health by recovering insulin sensitivity, beta-cell function, and 

other related parameters. This paper is organized as follows: In section 2 the mathematical 

models are described including the classic minimal model (in section 2.1) of insulin, 

glucose, and FFA as described in the work of [32] and an explicit time-delay model of 

insulin, glucose, and FFA dynamics (in section 2.2) incorporating the harmful cycle 

hypothesis with corresponding analytical results, in section 4 the results of the model 

validation and parameter estimates are shown to compare both the minimal model and 

explicit time delay model, and in section 5 the conclusions and future work is described.

2. Mathematical modeling framework

The insulin sensitivity is defined through the clamp protocol. Although the clamp protocol is 

the gold standard for assessing insulin sensitivity, not only do the subjects suffer pain from 

the procedure, but also the test is labor-intensive and financially expensive. The intravenous 

glucose tolerance test (IVGTT) has been clinically considered the most accurate protocol 

next to the clamp protocol to determine insulin sensitivity and glucose effectiveness through 

the approach of mathematical modeling with curve-fitting [34–38]. The data provided 

through an IVGTT offer rich information and offer a more realistic picture of a subjects 

metabolic portrait of insulin sensitivity and glucose effectiveness by differentiating glucose 

production from the liver and the exogenous glucose administered during the study protocol 

[39]. Furthermore, the IVGTT protocol has been extended to gain a better understanding of 

the dynamical regulations underlying FFA, insulin and glucose [32,40], in which, as the 

original IVGTT, subjects fast overnight and then are given a bolus of glucose infusion 

intravenously (e.g., 0.33 g/kg of body weight or 0.3 g/kg body weight of a 50% solution), 

which is administered into the antecubital vein in approximately 2 minutes [39, 41]. FFA, 

plasma glucose and insulin levels are sampled over the duration of the test.
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The short dynamics captured by the mathematical model begins with a rise in plasma 

glucose due to bolus infusion, which triggers pancreatic beta-cells to quickly secrete insulin 

into the bloodstream. Insulin mediates glucose removal, also referred to as insulin-dependent 

removal, which in turn, lowers plasma glucose to basal level and then the demand for insulin 

is inhibited, i.e. negative feedback. Meanwhile, FFA production is inhibited by insulin when 

glucose supply is high (see Figure 1). On the other hand, some prior studies suggest that 

insulin inhibition of FFA is weak in individuals genetically predisposed to metabolic-related 

diseases. Furthermore, it is known that FFA may enhance basal and glucose-stimulated 

insulin secretion among individuals including those with diabetes [10]. We hypothesize and 

validate that insulin ineffectively regulates FFA and higher FFA may reduce glucose 

transport, which leads to a harmful cycle promoting hyperglycemia and developing insulin 

resistance in the long-term.

2.1. Minimal model of glucose, insulin, and FFA

The minimal model was introduced in 1979 and 1980 by Bergman, Cobelli and their 

colleagues. It was the first model to define two significant indices, the glucose effectiveness 

index and the insulin sensitivity index, which quantify two clinically and physiologically 

relevant features [34, 35], and to date, continues to be used in clinical settings or improved 

in modeling studies. Insulin kinetics, including both first phase and second phase insulin 

secretion, reflects pancreatic responsiveness. Insight into an individual’s glucose tolerance 

or intolerance are obtained via the estimation of pancreatic responsiveness, glucose 

disappearance, and insulin sensitivity. The minimal model has been extended and is now 

widely used in various experimental settings. The software MINMOD based on the minimal 

model is used by clinicians and researchers who are interested in quantifying insulin 

sensitivity and beta-cell responsiveness [42]. However, fewer mathematical models have 

been proposed that link insulin, glucose, and FFA [32, 40, 43, 44]. The model developed by 

Chow and his colleagues [40] captures the interactions between remote insulin X(t), glucose 

G(t), and FFA F(t). Glucose enters the body intravenously and then it is removed from 

immediate use by other tissues at a constant glucose effectiveness rate S G or via insulin-

mediated removal modeled by the interaction term S I XG, where S I represents insulin 

sensitivity. A proportion of insulin is available for use at rate cX, while the remainder is 

removed either by natural degradation or by the kidney and liver. The maximal lipolysis rate 

is given by l0 + l2. Insulin inhibition of lipolysis is denoted by X2 with the exponent A, and 

the clearance rate of FFA is denoted by cf. The system of equations describing these 

dynamics is given by
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G′(t) = SGGb − SG + SIX G,

X′(t) = cX I(t) − X − Ib ,

F′(t) = l0 +
l2

1 + X
X2

A − c f F,

(2.1)

where I(t) represents the insulin concentration in the body over the time t. In minimal model 

and its siblings in ordinary differential equation systems, the known physiological delay of 

insulin secretion into the body in response to the rise of glucose level is incorporated using 

compartment-split techniques, where the insulin compartment is split into two equations I(t) 
and X′(t) leading to higher dimensional systems of ordinary differential equations [34, 35, 

41, 45–47]. The Model (2.1) is next modified via the incorporation of an explicit fixed time-

delay that is explicitly linked to insulin secretion.

2.2. Explicit time delay model of glucose, insulin, and FFA

A time delay for the insulin secretion in the body is a key physiological factor in the 

endocrine regulation of insulin, glucose and FFA, since without insulin is essential for 

lowering glucose levels and suppressing the production of FFA during the hyperglycemic 

state [7]. This delay can be incorporated explicitly in a system of delay differential equations 

in order to investigate more realistic intrinsic phenomena in the biological process [39,41]. 

More recent models incorporating an explicit time delay provide more accurate 

quantification of insulin sensitivity and glucose effectiveness since these models are more 

robust [39,41]. Mathematical analysis and numerical simulations [39,48,49] show that these 

models generate results that can match the observations generated by clinical studies 

[50,51,55], both in the short- and long-term dynamics (see work by [39, 48, 52–54]). The 

above model is an extension of the insulin and glucose model studied in [39] and the 

equation representing FFA was adapted from the work in [40]. We hypothesize that when 

insulin ineffectively regulates FFA, then higher FFA may reduce glucose transport, leading 

to a harmful cycle promoting hyperglycemia and thus contributing to the development of 

insulin resistance in the long-term.

Next, we consider the interplay of glucose denoted by G(t), insulin denoted by I(t), and FFA 

denoted by F(t). The parameter (S iIb + S g)Gb represents the rate of constant average hepatic 

glucose input in the short dynamics, that is, in the beginning of the IVGTT protocol. The 

elevated glucose is either immediately used from other cells at a rate S g or by insulin-

mediated removal by the interaction term S iGI at the rate S i representing insulin sensitivity. 

Both glucose-stimulated and FFA-stimulated insulin production follow the dynamics of 

Hill’s function, 
σ1G(t − τ)γ

αγ + G(t − τ)γ
 and 

σ2F(t)β

σβ + F(t)β , respectively. Here τ represents the explicit time 
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delay for glucose-stimulated insulin secretion. Insulin has a natural degradation rate di. For 

FFA, g0 + g1 represents the maximal lipolysis rate. The concentration of insulin inhibition of 

lipolysis is I2 with the exponent k, and the FFA clearance rate is denoted df. The model is 

illustrated in Figure 2.

Hence, this system is given by

G′(t) = SiIb + Sg Gb − SiG(t)I(t) − SgG(t),

I′(t) =
σ1G(t − τ)γ

αγ + G(t − τ)γ +
σ2F(t)β

σβ + F(t)β − diI(t),

F′(t) = g0 +
g1

1 + I(t)
I2

κ − d f F(t),

(2.2)

with positive initial conditions, where the parameters β and γ represent the Hills function 

coefficient and σ and α represent the values of half-saturation, respectively. The descriptions 

of the parameters for Model (2.2) are shown in Table 3.

3. Mathematical treatment of explicit time delay model

Basic properties of the model. In this paper we only show some biologically relevant results 

of Model (2.2). First we show that the basal levels of glucose, insulin and FFA are the only 

equilibrium point of the model.

Theorem 3.1. Model (2.2) assumes a unique steady state Eb = (Gb, Ib, Fb), where Gb, Ib and 

Fb are basal levels of glucose, insulin and FFA, respectively.

Proof. In fact, it is obvious that (Gb, Ib, Fb) is a steady state of Model (2.2). Suppose Model 

(2.2) has another steady state (G*, I*, F*), a solution of the following system

SiIb + Sg Gb − SiG*I* − SgG* = 0 (3.1)

σ1 G* γ

αγ + G* γ +
σ2 F* β

σβ + F* β − diI* = 0 (3.2)
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g0 +
g1

1 + I*
I2

κ − d f F* = 0 (3.3)

We will show that G* = Gb, I* = Ib and F* = Fb. If G* > Gb, then (3.1) implies that I* < Ib, 

and thus F* > Fb by (3.3). Therefore G* > Gb, F* > Fb and (3.2) lead to a contradiction I* > 

Ib.

If G* < Gb, then (3.1) implies that I* > Ib, and (3.3) implies that F* < Fb. Again G* < Gb, F* 

< Fb and (3.2) lead to a contradiction I* < Ib.

Theorem 3.2. All solutions of Model (2.2) with positive initial conditions are positive and 

bounded.

Proof. Let (G(t), I(t), F(t)) be a solution of Model (2.2) with G(0) > 0, I(0) > 0 and F(0) > 0. 

Assume that G(t) is non-positive for some t, then there must exist a t0 > 0 such that G(t0) = 0 

and G(t) > 0 for 0 ≤ t < t0. Moreover, then 
dG t0

dt ≤ 0, which contradicts the following

dG t0
dt = SiIb + Sg Gb − SiG t0 I t0 − SgG t0

= SiIb + Sg Gb > 0 .

(3.4)

Therefore G(t) > 0 for all t > 0. Similarly, for I(t), assume that ∃ t1 > 0 such that I(t1) = 0 and 

I(t) > 0 for 0 ≤ t < t1. Then, 
dI t1

dt ≤ 0, which is a contradiction to

dI t1
dt = σ1 f 1 G t1 + σ2 f 2 F1 − diI t1 = σ1 f 1 G t1 + σ2 f 2 F t1 > 0. (3.5)

Therefore I(t) is positive for t > 0. Finally, the similar and standard approach as above 

ensures F(t) > 0 for t > 0.

For the boundedness, clearly G′(t) ≤ (SiIb + S g)Gb – S gG, and thus 0 ≤ G ≤ (SiIb + S g)Gb/S 

g. Similarly, it can be shown that F ≤
g0 + g1

d f
, and I(t) < (σ1 + σ 2)/di for t > 0 by standard 

treatments.

Remark 1. Theorems 1 and 2 assure that the system of equations in Model (2.2) is well 

posed, that is, it supports positive bounded solutions under any positive initial condition.
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3.1. Equilibria and local stability

The steady state is obtained by setting equations in Model 2.2 equal to 0 shown in Eqs (3.1)–

(3.3). Rearranging terms and substituting G* and F* into Eq (3.2), yields the equilibrium 

point implicitly in terms of I*:

0 =
σ1

SiIb + Sg Gb
SiI* + Sg

γ

αγ +
SiIb + Sg Gb
SiI * + Sg

γ +

σ2
1

d f
g0 +

g1

1 + I*
I2

K

β

σβ + 1
d f

g0 +
g1

1 + I*
I2

K

β − diI* (3.6)

In order to determine the number of roots in the system, let us consider:

y1 I* =

σ1
SiIb + Sg Gb

SiI* + Sg

γ

αγ +
SiIb + Sg Gb

SiI* + Sg

γ +

σ2
1

d f
g0 +

g1

1 + I*
I2

K

β

σβ + 1
d f

g0 +
g1

1 + I*
I2

K

β

y2 I* = − diI*

It is easy to see that y1(I*) and y2(I*) must intersect once, which indicates that (3.6) has at 

least one positive root. Further, we can show that y1(I*) < 0, and therefore the system (2.2) 

has a unique steady state. Let us define z1 I* =
SiIb + Sg Gb

SiI* + Sg

γ

 and 

z2 I* = 1
d f

g0 +
g1

1 + I*
I2

K

β

. Substituting z1(I*) and z2(I*) into (3.6) yields,
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y1 I* =
σ1z1 I*

αγ + z1 I*
+

σ2z2 I*

σβ + z2 I*
.

Next, obtaining d
dI* y1 I*  gives,

d
dI* y1 I* =

σ1z1′ I* αγ

αγ + z1 I* 2 +
σ2z2′ I* σβ

σβ + z2 I* 2,

where

z1′ I * = γ
SiIb + Sg Gb
SiI * + Sg

γ − 1
⋅ − SiIb + Sg Gb SiI * + Sg

−2
Si

and

z2′ I * = β 1
d f

g0 +
g1

1 + I *
I2

k

β − 1

⋅ −
g1
d f

1 + I *
I2

k −2
.

It is easy to see that d
dI * y1 I * < 0, and since σ2 << σ 1, then this statement is true and there 

is one unique steady state. This conclusion is consistent with findings of other glucose-

insulin regulation models in the literature and demonstrate that our model is well-posed 

[32,34,35,39–41,43,44].

We now turn to study the stability of the unique steady state. It is straightforward that the 

characteristic equation of Model (2.2) is given by

Δ(λ) = λ3 + λ2 b1 + b2 + λ b1b2 + b3 − λb4e−λτ + b1b3 − b4d f e
−λτ (3.7)

where b1 = S iIb+S g, b2 = di + df, b3 = did f − BC, b4 = SiGbA, A = −
αγγσ1Gb

γ − 1

αγ + Gb
γ 2 , 

B = −
σ2βFb

β − 1σβ

σβ + Fb
β 2 , and C =

g1κ
Ib
I2

κ − 1

I2 1 +
Ib
I2

κ 2 .

Case with no delay. We analyze the local stability of a positive equilibrium point Eb for our 

system with no time delay by evaluating Eq (3.7) with τ = 0, which gives
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Δ(λ) = λ3 + λ2 b1 + b2 + λ b1b2 + b3 − b4 + b1b3 − d f b4 (3.8)

Applying Routh-Hurwitz Stability Criterion [59] for a cubic polynomial, that is, for the 

cubic polynomial:

a0s3 + a1s2 + a2s + a3 = 0,

where all ai are positive. The Routh array is

s3 a0 a2

s2 a1 a3

s1 a1a2 − a0a3
a1

s0 a3

so the condition that all roots have negative real parts is a1a2 > a0a3. Therefore, in this case, 

the equilibrium point is asymptotically stable if

b1 + b2 b1b2 + b3 − b4 > b1b3 − d f b4 .

Case with delay. Next, we investigate the stability for the case τ > 0. Notice that the 

equilibrium point Eb is stable for τ = 0. If there is some τ > 0 such that Eb is unstable, then 

the characteristic Eq (3.7) must have a pair of pure imaginary roots ±wi with w > 0 [48, 49, 

56, 57]. Thus the characteristic equation becomes

Δ(ωi) = ωi 3 + b1 + b2 ωi 2 + b1b2 + b3 ωi − b4ωie−ωiτ

+ b1b3 − b4d f e−ωiτ

= − ω3i − b1 + b2 ω2 + b1b2 + b3 ωi + b1b3 − b4hcosωτ

+ b4d f isinωτ − b4ωicosωτ − b4ωsinωτ

= 0

After algebraic rearrangement,

− b1 + b2 ω2 + b1b3 − b4d f cosωτ − b4ωsinωτ

= i −ω3 + b1b2 + b3 ω + b4d f sinωτ − b4ωcosωτ .

Then we have,
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− b1 + b2 ω2 + b1b3 = b4d f cosωτ + b4ωsinωτ

−ω3 + b1b2 + b3 ω = − b4d f sinωτ + b4ωcosωτ
(3.9)

which leads to

ω6 + ω4 b1 + b2
2 − 2 b1b2 + b3 + ω2 b1b2 + b3

2

− 2b1b3 b1 + b2 − b4
2 + b1b3

2 − b4d f
2 = 0

Let u = w2 > 0, then

p(u) = u3 + c2u2 + c1u + c0 = 0, (3.10)

where c2 = [(b1 + b2)2 ‒ 2(b1b2 + b3)], c1 = b1b2 + b3
2 − 2b1b3 b1 + b2 − b4

2 , and c0 = 

[(b1b3)2 ‒ (b4df)2].

According to Descartes’ Rules, Eq (3.10) has no positive root if c2, c1, c0 > 0. Numerically, 

we test these conditions and observe that the conditions are met for all groups (see Table 4). 

Therefore we summarize the above results in the following.

Theorem 3.3. If c2, c1, c0 > 0, the unique equilibrium point Eb is asymptotically stable.

4. Results of model validation and parameter estimation

To determine whether Model (2.2) could capture the metabolic profile of an individual, we 

fit the model to the clinical data in order to estimate the physiologically relevant parameters. 

Data were obtained from a study [58], where an IVGTT was given to N = 38 patients (14 

men and 24 women) with severe obesity who underwent bariatric surgery and varied 

metabolically. The control group was neither obese nor diabetic and did not undergo 

bariatric surgery. It consisted of 6 men and 6 women (N = 12). The treatment group 

consisted of 14 men and 24 women (N = 38) and included severely obese individuals 

divided into 3 groups: First, the normal fasting glucose (NFG) tolerance group (N = 9); 

second, the impaired fasting glucose (IFG) group (N = 17); and third, the T2DM group (N 

=12). Participants in the control and NFG groups were in similar age groups: 36.7 ± 1.9 and 

35.9 ± 3.4 years, respectively. Similarly, the IFG and T2DM groups were closer in age: 45.2 

± 2.5 and 44.6 ± 2.4, respectively. The body mass index (BMI) calculated as weight divided 

by height squared (kg/m2) were significantly reduced post-surgery. The control group had an 

average BMI of 23.1 ± 0.7 at baseline. Participants in the NFG, IFG, and T2DM groups 

underwent bariatric surgery and were considered to have severe obesity (BMI > 40kg/m2). 

The average BMI decreased from baseline levels in the: NFG group from 48.6 ± 1.7 to 32.4 

± 1.4, IFG group from 58.1 ± 1.4 to 39.6 ± 1.4, and T2DM group from 53.9 ± 1.7 to 39.6 

± 1.5 after surgery.
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Plasma glucose, insulin, and FFA levels were measured by the IVGTT before and seven 

months after undergoing bariatric surgery (N = 38). The control group did not undergo 

bariatric surgery and were sampled at baseline and at follow-up in seven months. The 

IVGTT study protocol was performed after a 10 to 12 hours fast. Baseline blood samples 

were obtained before glucose administration at 15, 10, and 5 min time marks. At time 0 

glucose was administered (50% dextrose; 11.4 g/m2 body surface area) in less than one min. 

Blood samples were obtained after 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 22, 25, 30, 40, 50, 60, 

70, 80, 100, 120, 140, 160, and 180 min to measure glucose, insulin, and FFA concentration 

levels [58]. Here the minimal model (Model (2.1)) and the explicit time delay model (Model 

(2.2)) are fit to a dataset [58] and model parameters were estimated using the function 

fmincon for nonlinear programming in MATLAB R2019a. The data are the average values 

of multiple individual data. The data was extracted from the paper using “Plot Digitizer.” 

Initial conditions from the data are considered for time t = 0.

4.1. Validation of the explicit time delay model

The performance of each model on predicting the qualitative trends of the clinical data were 

determined through many computational studies and numerical simulations. The estimated 

model parameters for the explicit time delay model is shown in Table 5 and simulations are 

shown in Figure 3. Qualitatively, comparing the plasma glucose levels pre- and post-bariatric 

surgery, show a significant improvement, where the NFG, IFG, and T2DM data nearly 

resembles the glucose trends of the control group. The overall glucose trends for each group 

pre- and post-surgery were captured by Model (2.2) (shown in Figure 3). The constant rate 

of glucose effectiveness (S g) and constant insulin sensitivity rate (S i) had insignificant 

changes in the control group but significantly improved (e.g. increased) for the NFG, IFG, 

and T2DM groups.

The plasma insulin levels significantly improved comparing pre- and post-bariatric surgery 

results, where the NFG, IFG, and T2DM data closely match the overall trends of the control 

group. Model (2.2) captures the overall trends for insulin (shown in Figure 3). The constant 

insulin degradation rate (di) decreased from post- compared to pre-surgery for all groups and 

remained constant for the control group. The maximum secretion rate (σ1) decreased post-

surgery for IFG and T2DM but not for NFG nor control groups. The constant rate of FFA-

stimulated insulin secretion (σ 2) increased for all groups except for T2DM.

We also evaluated changes in the estimated explicit time delay parameter τ. As expected, the 

time delay in the control group pre- and post-surgery were similar since they did not have 

surgery. The estimated time delay decreased after surgery in the NFG and IFG groups, 

which supports prior findings that have observed improvements in acute insulin response 

and beta-cell function after bariatric surgery [25, 31]. In contrast, an overall increased time 

delay was observed in patients with T2DM. One possible explanation is that the treatment 

strategy implemented for changes and/or the presence of other clinical health factors may 

explain variations in these metabolic parameters.

The variance for plasma FFA levels significantly reduced comparing pre- and post-bariatric 

surgery results, where the NFG, IFG, and T2DM data nearly overlap. The model results 

qualitatively match the overall trends, except for the NFG group (shown in Figure 3). The 
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maximal lipolysis rate (g0 + g1) reduced significantly from pre- to post-surgery for the IFG 

and T2DM groups. The insulin inhibition (I2) rate also decreased post-surgery compared to 

pre-surgery in the NFG, IFG, and T2DM groups, whereas no changes in FFA clearance rate 

(df) were observed.

4.2. Comparison of minimal model and explicit time delay model

Model validation and parameter estimation were completed for Model (2.1) and Model (2.2) 

with the estimated model parameters for each model shown in Tables 5 and 6, respectively. 

The numerical results are shown in Figure 3. Both models qualitatively predicted the overall 

trends for the control, NFG, IFG, and T2DM groups of plasma glucose. In this case, both 

models fit the data well. Overall, both Model (2.1) and (2.2) fit the insulin data adequately 

well for all groups. However, the steady state values produced by Model (2.1) 

underestimated solutions in comparison to the actual data for the control, NFG, IFG, and 

T2DM groups both pre- and post-surgery. In the control, NFG, and T2DM groups, the 

solutions of Model (2.1) falls below the actual data; and the results of Model (2.2) matches 

the data much better. For the IFG group, Model (2.2) performs much better with describing 

the insulin dynamics pre- and post-surgery, whereas Model (2.1) does not closely match the 

data. Qualitatively, the trends were not closely matched by Model (2.1) pre-surgery for the 

NFG, IFG, and T2DM groups. In this case, Model (2.2) approximated the overall trends 

more accurately than Model (2.1).

Model validation for plasma FFA levels indicate that the overall trends for FFA were 

captured slightly better using Model (2.2) for the Control, NFG, IFG and T2DM groups. It 

also appears that, qualitatively, the FFA dynamics vary more in the transient phase for Model 

(2.1) compared to Model (2.2). For the control group, Model (2.1) reached the true steady 

states better compared to Model (2.2). In the NFG group, Model (2.1) fitted the overall 

trends better than the Model (2.2). However, for the IFG group, Model (2.2) fitted the data 

better than Model (2.1). Similarly, in the T2DM group, Model (2.2) also fitted the data better 

than Model (2.1).

To determine the overall goodness of fit, the Akaike information criterion (AIC) was 

calculated (see Table 7). The AIC allows us to determine the overall quality of the statistical 

model for a given set of data and estimated parameter values. The delay model performed 

better for the NFG (Total AIC = 1014.47), IFG (Total AIC = 811.09), and T2D (Total AIC = 

799.56) group settings in comparison to the minimal model (see Table 7). In summary, the 

AIC for all groups combined was lower for the delay model (AIC = 2625.12) than in the 

minimal model (AIC = 2910.85).

5. Discussion

We investigated the efficacy of insulin suppression on lipolysis and assessed the hypothesis 

that FFA-stimulated insulin secretion might play a vital role on the progression of insulin 

resistance. While the role of FFA-stimulated insulin secretion on the progression of insulin 

resistance is known, we formulated a mathematical model that incorporates FFA-stimulated 

insulin secretion explicitly and were able to quantify differences in this effect pre- and post-

surgery. In Table 5, we found that ˙1 and estimated pre-surgery is much greater than the 
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estimated values post-surgery in the impaired fasting glucose (IFG) and T2DM settings. 

Hence, our findings indicate that the effect of FFA-stimulated insulin secretion on insulin 

and glucose levels in patients with IFG and T2DM resembled the estimates obtained for the 

control group indicating that the bariatric surgery patients could recover moderate insulin 

secretion activity stimulated by FFA. Similarly, the efficacy of insulin inhibition of FFA. 

Similarly, I2, which represents the efficacy of insulin inhibition of FFA production, on the 

regulation of FFA, insulin and glucose in patients with NFG, IFG, or T2DM resembled the 

control group after surgery. These findings indicate that the reduction in weight or body 

mass due to surgery improve insulin action. This reinforces what we know, that insulin 

action is essential for regulating plasma FFA and glucose levels. Our results highlight the 

robust effect of insulin, that is, it can be observed not only in the short-term dynamics during 

an IVGTT protocol but also in the long-term in longitudinal epidemiological studies.

Overall, it seems that the inclusion of the explicit time delay in Model (2.2) was able to 

capture the overall qualitative trends well except for the NFG group when compared to 

Model (2.1). Particularly, Models (2.1) and (2.2) captured the peak and steady states for 

glucose concentration levels pre- and post-surgery in all groups. Both models captured the 

initial peak in insulin levels as well as the steady states for the control group. Though the 

steady states and rapid decline of insulin levels predicted by the models were not exactly 

equivalent to the averaged data for the NFG group, both models were able to predict the rise 

and decline in insulin with (Model (2.1)) and without (Model (2.2)) time delay. As shown 

for the IFG group, the explicit time delay in Model (2.2) captured the two peaks in insulin, 

which has been shown in previous studies [39,41]. Further, both models captured overall 

rise, decline, and steady state for insulin levels in the IFG and T2D groups. In contrast, the 

models fit FFA levels over time less precisely. Among the control group, the initial high 

basal levels and decrease in FFA were predicted by both models. Among the IFG, NFG, and 

T2D groups the fit to the FFA data were less precise. However, both models had an initial 

decline and rise of FFA levels until reaching steady states. Overall, obtaining the final steady 

states for FFA were difficult to compute across all groups due to the complexity of the model 

as well as large variance in study participants that could be driven by several biological 

factors, such as age, gender, stage of diabetes or diabetes-related conditions, and other 

factors.

The results show that the incorporation of an explicit time delay in the model led to better 

approximations of the qualitative dynamics when compared to those generated by the 

minimal model. In previous studies [22, 38], a key feature of τ is not only the biological 

interpretation given by quantitatively estimating the fixed time delays across patients and 

comparing their differences, but also its ability to capture different qualitative behaviors (or 

peaks) that may give insight into beta-cell function among patients with and without 

impaired fasting glucose. In this study, it was shown that the explicit time delay model could 

capture the two peaks for the averaged data of the impaired fasting glucose group, but the 

interpretation of τ for a sample average of this group and between groups is limited due to 

the data being averaged since the proposed model is intended to model the dynamics of a 

single person, and not a group of individuals. In our future work, we plan to analyze 

individual patient data and explore the heterogeneity in estimates of τ across different 

groups based on metabolic health, gender, and age.
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The novelty of our work is proposing a dynamic model of glucose, insulin, and FFA with the 

inclusion of an explicit fixed time delay. Additionally, our model was constructed to directly 

study the harmful cycle that is activated when FFA is not regulated properly by insulin and, 

in turn, FFA continues to circulate in the bloodstream, eventually promoting insulin 

resistance. Though we used averaged data for our model validation, our computational 

studies demonstrated that the model qualitatively captured the glucose, insulin, and FFA 

levels trends over time after an IVGTT protocol. However, the use of average data instead of 

individual patient data limits the conclusions of this model, and hindered our ability to 

measure insulin sensitivity for each individual, which is needed to understand and assess 

insulin suppression by FFA. Individual patient data is needed to better assess models’ results 

since the use of averages eliminates the variance that needs to be quantified in each group. 

Further work is needed to fit more data to evaluate this observation in depth at the patient 

level. That is, the variabilities in glucose effectiveness, insulin suppression, and insulin 

sensitivity cannot be assessed at the individual level using average data between groups, and 

therefore, patient level data is needed. More specifically, the dynamics of insulin, glucose, 

and FFA need to be better understood for individuals within and across metabolic groups 

(e.g., nondiabetic or prediabetic, type 2 diabetic) in order to understand the conditions in 

which FFA is suppressed effectively and in which cases it is not, and how bariatric surgery 

impacts the FFA dynamics. Lastly, the physiological parameters adjusted to fit the data 

matched findings from the literature on bariatric surgery, an indicator that the model 

captures some of the observed phenomena. Future work would require individual patient 

data and possibly a new model that better captures the impact of bariatric surgery on insulin 

regulation of glucose and FFA. Furthermore, while the results of our analyses were similar 

to the work shown in [40], our work provided new insight by the inclusion of τ in our model 

as well as other terms to explore the effect of FFA on insulin action. Additionally, models 

modified to include specific mechanisms corresponding to different bariatric surgery types 

would also provide greater insight into the roles of FFA and how it is impacted by bariatric 

surgery.
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Figure 1. 
A schematic diagram illustrating insulin, glucose, and FFA regulation after a meal. Adapted 

from [33].
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Figure 2. 
A schematic diagram illustrating the mathematical model of glucose, insulin, and FFA 

adapted from previous work shown in [40].
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Figure 3. 
Numerical simulations for Model (2.1) and (2.2) are fit to the data for parameters 

summarized in Tables 2 and 3, respectively. A description of estimated values for both 

models can be found in Table 6. Simulations for Model (2.1) are presented (in pink) and 

Model (2.2) glucose (in red), insulin (in blue), and FFA (in green) for all clinical data.
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Table 1.

Evidence supporting the mechanistic role of FFA on diabetes progression.

Organ Observation [Reference]

Skeletal 
Muscle High FFA disrupt the insulin signaling process [11, 16–18]

Higher FFA interfere with the action of insulin to skeletal muscle or hinder insulin signaling, and reduce glucose transport [14, 
19, 20]

Liver High FFA levels increase hepatic glucose production in diabetes [18, 21]

Excessive endogenous glucose production increase when FFA levels influx rise in the liver from lipolysis of visceral adipose 
depots [10, 14, 18, 22]

Pancreas Prolonged high FFA levels impair insulin secretory function and have toxic effects (e.g., “lipotoxicity hypothesis”) on 
pancreatic beta-cells [12, 14]

Adipose Suppressed inhibitory effect of insulin on lipolysis increases FFA levels [18, 21]

Increased release of FFA from adipocytes can induce IR [18]

Imbalanced production of adipokines (or cell signalling proteins secreted by adipose tissue) promote IR [18, 23]
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Table 2.

Description of the minimal model parameters corresponding to the system of equations in Model (2.1).

Parameter Unit Description

Gb
mg
dl Basal glucose levels

Ib
μU
ml Basal insulin levels

S G
1

min Glucose effectiveness

S I
ml

μU ⋅ min Insulin sensitivity

cX
1

min Rate of available remote insulin

l0
μM
min Baseline nonsupressible lipolysis rate

l2
μM
min Difference between maximum and nonsuppressible lipolysis rate

X2
μM
ml The activation threshold for the effect of insulin on FFA

A unitless Hill function coefficient

cf
1

min Free fatty acid degradation rate
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Table 3.

Summary of the definitions of the explicit time delay model parameters corresponding to the system of 

equations in Model (2.2).

Parameter Unit Description

S i
ml

μU ⋅ min Insulin sensitivity

(S iIb + S g)Gb
mg

dl ⋅ min Average rate of glucose input

di
1

min Insulin degradation rate

σ1
μU

mg ⋅ min Secretion rate stimulated by glucose with time delay r

S g
1

min Glucose effectiveness rate

σ2
1

min Secretion rate stimulated by FFA

g0
μM
min Baseline nonsupressible lipolysis rate

g1
μM
min Difference between maximum and nonsuppressible lipolysis rate

I2
μU
ml The activation threshold for the effect of insulin on FFA

df
1

min Free fatty acid degradation rate

κ unitless Hills function coefficient

β unitiess Hills function coefficient

γ unitless Hills function coefficient

α
mg
dl Half-saturation

σ μM Half-saturation

τ min Delay constant
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Table 4.

The constants of p(u) are calculated numerically for each group pre- and post-surgery using model parameters 

to prove Theorem 3.3. It is observed that there is no solution for the characteristic equation with time delay 

under these conditions and the parameter values used in our analyses in Table 5.

Group Time c2 c1 c0

Control Pre 0.0226 8.8352e-05 1.8503e-08

Post 0.0170 5.3361e-05 8.4283e-09

NFG Pre 0.7534 0.0024 1.5065e-07

Post 0.2103 0.0026 1.2182e-06

IFG Pre 0.2033 4.2060e-04 1.4666e-08

Post 0.1302 5.8821e-04 9.2784e-08

T2DM Pre 0.0151 1.7324e-05 6.1817e-10

Post 0.0305 7.4847e-05 7.6775e-09
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Table 5.

Parameter estimates for Model (2.2).

Control NFG IFG T2DM

Parameter Pre Post Pre Post Pre Post Pre Post

S i 1.06e-7 1.06e-7 1.2e-4 2.5e-6 1.8e-4 4.06e-5 5.06e-6 4.06e-5

(S iIb + S g)Gb 2.16 2.16 2.16 2.16 4.16 2.16 3.15 2.16

di 0.072 0.072 0.8 0.3 0.4 0.3 0.1 0.12

σ1 10.434 10.434 12.434 12.434 20.11 12.434 25.11 12.434

S g 0.04 0.04 0.013 0.04 0.01 0.0315 0.022 0.0236

α 250 250 150 165 119 150 215 150

γ 1.45 1.45 3.18 3.5 3.4 2.45 4.5 2.45

τ 8.25 8.25 3.8 1.2 15.24 4.2 6.25 8.25

g0 2.5 1.5 0.65 10.5 1.5 0.5 1.5 0.5

g1 30.5 18.5 28.85 35.5 30.85 19.85 24 18.85

I2 10.5 9.5 31.10 20.10 33.025 18.10 30.5 24.1025

κ 2.68 2.68 3.2 10.5 6.2 4.5 2.8 3.68

df 5.8 5.8 0.08 0.08 0.08 0.08 0.08 0.08

β 4.6 4.6 4.6 4.6 12.6 4.6 12.6 4.6

σ 650 650 150 150 150 150 150 150

σ2 0.1 0.1 0.2 0.5 0.001 0.1 1.093 0.09
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Table 6.

Parameter estimates for Model (2.1).

Control NFG IFG T2DM

Parameter Pre Post Pre Post Pre Post Pre Post

S G 0.042 0.042 0.04 0.09 0.03 0.038 0.023 0.023

S I 2.07e-5 2.07e-5 0.07e-5 5.07e-5 5.07e-5 5.07e-6 5.07e-6 1.07e-7

cX 3.5 4.2 0.08 0.25 2.1 0.075 0.105 0.12

l0 0.95 2.2 5.2 10.02 20.2 16.2 40.2 34.2

l2 12.85 12.85 16.85 33.5 46.85 44.5 34.85 60.5

X2 4.25 3.25 20.25 5.2 41.25 4.2 12.25 14.2

A 4.2 2.5 3.5 3.5 2.5 2.5 3.5 6.5

cf 0.0295 0.031 0.038 0.065 0.12 0.099 0.09 0.15
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Table 7.

AIC values for the each model estimate pre and post surgery.

Glucose Insulin FFA Total

Pre Post Pre Post Pre Post

NFG Group

Delay Model 116.20 162.42 200.73 162.95 149.76 222.41 1014.47

Minimal Model 146.89 139.13 212.02 178.92 111.34 228.86 1017.16

IFG Group

Delay Model 125.53 110.10 161.72 107.56 122.97 183.21 811.09

Minimal Model 134.33 57.85 241.19 90.24 149.86 231.29 904.58

T2D Group

Delay Model 96.38 138.10 175.56 99.76 96.64 182.12 799.56

Minimal Model 106.99 138.94 235.86 130.30 132.58 244.44 989.11

Total

Delay Model 338.11 410.62 538.01 370.27 369.37 587.74

Minimal Model 390.21 538.01 689.07 399.46 393.78 704.59
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