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Abstract

As machine learning models continue to increase in complexity, collecting large hand-labeled 

training sets has become one of the biggest roadblocks in practice. Instead, weaker forms 

of supervision that provide noisier but cheaper labels are often used. However, these weak 

supervision sources have diverse and unknown accuracies, may output correlated labels, and 

may label different tasks or apply at different levels of granularity. We propose a framework for 

integrating and modeling such weak supervision sources by viewing them as labeling different 

related sub-tasks of a problem, which we refer to as the multi-task weak supervision setting. 

We show that by solving a matrix completion-style problem, we can recover the accuracies 

of these multi-task sources given their dependency structure, but without any labeled data, 

leading to higher-quality supervision for training an end model. Theoretically, we show that the 

generalization error of models trained with this approach improves with the number of unlabeled 
data points, and characterize the scaling with respect to the task and dependency structures. On 

three fine-grained classification problems, we show that our approach leads to average gains of 

20.2 points in accuracy over a traditional supervised approach, 6.8 points over a majority vote 

baseline, and 4.1 points over a previously proposed weak supervision method that models tasks 

separately.

1 Introduction

One of the greatest roadblocks to using modern machine learning models is collecting hand-

labeled training data at the massive scale they require. In real-world settings where domain 

expertise is needed and modeling goals change frequently, hand-labeling training sets is 

prohibitively slow, expensive, and static. For these reasons, practitioners are increasingly 

turning to weak supervision techniques wherein noisier, often programmatically-generated 

labels are used instead. Common weak supervision sources include external knowledge 

bases [24; 37; 8; 31], heuristic patterns [14; 27], feature annotations [23; 36], and noisy 

crowd labels [17; 11]. The use of these sources has led to state-of-the-art results in a range 

of domains [37; 35]. A theme of weak supervision is that using the full diversity of available 

sources is critical to training high-quality models [27; 37].

The key technical difficulty of weak supervision is determining how to combine the labels of 

multiple sources that have different, unknown accuracies, may be correlated, and may label 
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at different levels of granularity. In our experience with users in academia and industry, the 

complexity of real world weak supervision sources makes this integration phase the key time 

sink and stumbling block. For example, if we are training a model to classify entities in text, 

we may have one available source of high-quality but coarse-grained labels (e.g. “Person” 

vs. “Organization”) and one source that provides lower-quality but finer-grained labels 

(e.g. “Doctor” vs. “Lawyer”); moreover, these sources might be correlated due to some 

shared component or data source [2; 33]. Handling such diversity requires addressing a core 

technical challenge: estimating the unknown accuracies of multi-granular and potentially 

correlated supervision sources without any labeled data.

To overcome this challenge, we propose MeTaL, a framework for modeling and integrating 

weak supervision sources with different unknown accuracies, correlations, and granularities. 

In MeTaL, we view each source as labeling one of several related sub-tasks of a problem—

we refer to this as the multi-task weak supervision setting. We then show that given the 

dependency structure of the sources, we can use their observed agreement and disagreement 

rates to recover their unknown accuracies. Moreover, we exploit the relationship structure 

between tasks to observe additional cross-task agreements and disagreements, effectively 

providing extra signal from which to learn. In contrast to previous approaches based on 

sampling from the posterior of a graphical model directly [28; 2], we develop a simple and 

scalable matrix completion-style algorithm, which we are able to analyze by applying strong 

matrix concentration bounds [32]. We use this algorithm to learn and model the accuracies 

of diverse weak supervision sources, and then combine their labels to produce training data 

that can be used to supervise arbitrary models, including increasingly popular multi-task 

learning models [5; 29].

Compared to previous methods which only handled the single-task setting [28; 27], 

and generally considered conditionally-independent sources [1; 11], we demonstrate that 

our multi-task aware approach leads to average gains of 4.1 points in accuracy in our 

experiments, and has at least three additional benefits. First, many dependency structures 

between weak supervision sources may lead to non-identifiable models of their accuracies, 

where a unique solution cannot be recovered. We provide a compiler-like check to 

establish identifiability—i.e. the existence of a unique set of source accuracies—for arbitrary 

dependency structures, without resorting to the standard assumption of non-adversarial 

sources [11], alerting users to this potential stumbling block that we have observed in 

practice. Next, we provide sample complexity bounds that characterize the benefit of 

adding additional unlabeled data and the scaling with respect to the user-specified task 

and dependency structure. While previous approaches required thousands of sources to give 

non-vacuous bounds, we capture regimes with small numbers of sources, better reflecting 

the real-world uses of weak supervision we have observed. Finally, we are able to solve 

our proposed problem directly with SGD, leading to over 100× faster runtimes compared to 

prior Gibbs-sampling based approaches [28; 26], and enabling simple implementation using 

libraries like PyTorch.

We validate our framework on three fine-grained classification tasks in named entity 

recognition, relation extraction, and medical document classification, for which we have 

diverse weak supervision sources at multiple levels of granularity. We show that by 
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modeling them as labeling hierarchically-related sub-tasks and utilizing unlabeled data, we 

can get an average improvement of 20.2 points in accuracy over a traditional supervised 

approach, 6.8 points over a basic majority voting weak supervision baseline, and 4.1 points 

over data programming [28], an existing weak supervision approach in the literature that is 

not multi-task-aware. We also extend our framework to handle unipolar sources that only 

label one class, a critical aspect of weak supervision in practice that leads to an average 2.8 

point contribution to our gains over majority vote. From a practical standpoint, we argue that 

our framework represents an efficient way for practitioners to supervise modern machine 

learning models, including new multi-task variants, for complex tasks by opportunistically 

using the diverse weak supervision sources available to them. To further validate this, we 

have released an open-source implementation of our framework.1

2 Related Work

Our work builds on and extends various settings studied in machine learning.

Weak Supervision:

We draw motivation from recent work which models and integrates weak supervision using 

generative models [28; 27; 2] and other methods [13; 18]. These approaches, however, 

do not handle multi-granularity or multi-task weak supervision, require expensive sampling-

based techniques that may lead to non-identifiable solutions, and leave room for sharper 

theoretical characterization of weak supervision scaling properties. More generally, our 

work is motivated by a wide range of specific weak supervision techniques, which include 

traditional distant supervision approaches [24; 8; 37; 15; 31], co-training methods [4], 

pattern-based supervision [14; 37], and feature-annotation techniques [23; 36; 21].

Crowdsourcing:

Our approach also has connections to the crowdsourcing literature [17; 11], and in particular 

to spectral and method of moments-based approaches [38; 9; 12; 1]. In contrast, the goal 

of our work is to support and explore settings not covered by crowdsourcing work, such 

as sources with correlated outputs, the proposed multi-task supervision setting, and regimes 

wherein a small number of labelers (weak supervision sources) each label a large number of 

items (data points). Moreover, we theoretically characterize the generalization performance 

of an end model trained with the weakly labeled data.

Multi-Task Learning:

Our proposed approach is motivated by recent progress on multi-task learning models [5; 29; 

30], in particular their need for multiple large hand-labeled training datasets. We note that 

the focus of our paper is on generating supervision for these models, not on the particular 

multi-task learning model being trained, which we seek to control for by fixing a simple 

architecture in our experiments.

1 github.com/HazyResearch/metal 
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Our work is also related to recent techniques for estimating classifier accuracies without 

labeled data in the presence of structural constraints [26]. We use matrix structure estimation 

[22] and concentration bounds [32] for our core results.

3 Programming Machine Learning with Weak Supervision

As modern machine learning models become both more complex and more performant on 

a range of tasks, developers increasingly interact with them by programmatically generating 

noisier or weak supervision. These approaches of effectively programming machine learning 

models have recently been formalized by the following pipeline [28; 27]: First, users provide 

one or more weak supervision sources, which are applied to unlabeled data to generate a set 

of noisy labels. These labels may overlap and conflict; we model and combine them via a 

label model in order to produce a final set of training labels. These labels are then used to 

train some discriminative model, which we refer to as the end model. This programmatic 

weak supervision approach can utilize sources ranging from heuristic rules to other models, 

and in this way can also be viewed as a pragmatic and flexible form of multi-source transfer 
learning.

In our experiences with users from science and industry, we have found it critical to utilize 

all available sources of weak supervision for complex modeling problems, including ones 

which label at multiple levels of granularity. However, this diverse, multi-granular weak 

supervision does not easily fit into existing paradigms. We propose a formulation where 

each weak supervision source labels some sub-task of a problem, which we refer to as the 

multi-task weak supervision setting. We consider an example:

Example 1

A developer wants to train a fine-grained Named Entity Recognition (NER) model to 
classify mentions of entities in the news (Figure 2). She has a multitude of available weak 
supervision sources which she believes have relevant signal for her problem—for example, 
pattern matchers, dictionaries, and pre-trained generic NER taggers. However, it is unclear 
how to properly use and combine them: some of them label phrases coarsely as PERSON 
versus ORGANIZATION, while others classify specific fine-grained types of people or 
organizations, with a range of unknown accuracies. In our framework, she can represent 
them as labeling tasks of different granularities—e.g. Y1 = {Person, Org}, Y2 = {Doctor, 
Lawyer, N/A}, Y3 = {Hospital, Office, N/A}, where the label N/A applies, for example, 
when the type-of-person task is applied to an organization.

In our proposed multi-task supervision setting, the user specifies a set of structurally-related 

tasks, and then provides a set of weak supervision sources which are user-defined functions 

that either label each data point or abstain for each task, and may have some user-specified 

dependency structure. These sources can be arbitrary black-box functions, and can thus 

subsume a range of weak supervision approaches relevant to both text and other data 

modalities, including use of pattern-based heuristics, distant supervision [24], crowd labels, 

other weak or biased classifiers, declarative rules over unsupervised feature extractors [33], 

and more. Our goal is to estimate the unknown accuracies of these sources, combine their 

outputs, and use the resulting labels to train an end model.

Ratner et al. Page 4

Proc AAAI Conf Artif Intell. Author manuscript; available in PMC 2019 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4 Modeling Multi-Task Weak Supervision

The core technical challenge of the multi-task weak supervision setting is recovering the 

unknown accuracies of weak supervision sources given their dependency structure and a 

schema of the tasks they label, but without any ground-truth labeled data. We define a 

new algorithm for recovering the accuracies in this setting using a matrix completion-style 

optimization objective. We establish conditions under which the resulting estimator returns a 

unique solution. We then analyze the sample complexity of our estimator, characterizing 

its scaling with respect to the amount of unlabeled data, as well as the task schema 

and dependency structure, and show how the estimation error affects the generalization 

performance of the end model we aim to train. Finally, we highlight how our approach 

handles abstentions and unipolar sources, two critical scenarios in the weak supervision 

setting.

4.1 A Multi-Task Weak Supervision Estimator

Problem Setup—Let X ∈ X be a data point and Y = [Y1, Y2,...,Yt]T be a vector of 

categorical task labels, Yi ∈ {1,...,ki}, corresponding to t tasks, where (X, Y) is drawn i.i.d. 

from a distribution D (for a glossary of all variables used, see Appendix A.1).

The user provides a specification of how these tasks relate to each other; we denote 

this schema as the task structure Gtask. The task structure expresses logical relationships 

between tasks, defining a feasible set of label vectors Y, such that Y ∈ Y. For example, 

Figure 2 illustrates a hierarchical task structure over three tasks of different granularities 

pertaining to a fine-grained entity classification problem. Here, the tasks are related by 

logical subsumption relationships: for example, if Y2 = DOCTOR, this implies that Y1 = 

PERSON, and that Y3 = N/A, since the task label Y3 concerns types of organizations, which 

is inapplicable to persons. Thus, in this task structure, Y = [PERSON, DOCTOR, N/A]T is 

in Y while Y = [PERSON, N/A, HOSPITAL]T is not. While task structures are often simple 

to define, as in the previous example, or are explicitly defined by existing resources—such 

as ontologies or graphs—we note that if no task structure is provided, our approach becomes 

equivalent to modeling the t tasks separately, a baseline we consider in the experiments.

In our setting, rather than observing the true label Y, we have access to m multi-task weak 
supervision sources si ∈ S which emit label vectors λi that contain labels for some subset of 

the t tasks. Let 0 denote a null or abstaining label, and let the coverage set τi ⊆ {1,...,t} be 

the fixed set of tasks for which the ith source emits non-zero labels, such that λi ∈ Yτi. For 

convenience, we let τ0 = {1,...,t} so that Yτ0 = Y. For example, a source from our previous 

example might have a coverage set τi = {1, 3}, emitting coarse-grained labels such as λi

= [PERSON, 0, N/A]T. Note that sources often label multiple tasks implicitly due to the 

constraints of the task structure; for example, a source that labels types of people (Y2) also 

implicitly labels people vs. organizations (Y1 = PERSON), and types of organizations (as Y3 

= N/A). Thus sources tailored to different tasks still have agreements and disagreements; we 

use this additional cross-task signal in our approach.
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The user also provides the conditional dependency structure of the sources as a graph Gsource 

= (V, E), where V = {Y, λ1, λ2,...,λm} (Figure 3). Specifically, if (λi, λj) is not an edge in 

Gsource, this means that λi is independent of λj conditioned on Y and the other source labels. 

Note that if Gsource is unknown, it can be estimated using statistical techniques such as [2]. 

Importantly, we do not know anything about the strengths of the correlations in Gsource, or 

the sources’ accuracies.

Our overall goal is to apply the set of weak supervision sources S = {s1,...,sm} to an 

unlabeled dataset XU consisting of n data points, then use the resulting weakly-labeled 

training set to supervise an end model fw:X Y (Figure 1). This weakly-labeled training 

set will contain overlapping and conflicting labels, from sources with unknown accuracies 

and correlations. To handle this, we will learn a label model Pμ(Y|λ), parameterized by a 

vector of source correlations and accuracies μ, which for each data point X takes as input 

the noisy labels λ = {λ1,...,λm} and outputs a single probabilistic label vector Y . Succinctly, 

given a user-provided tuple (XU, S, Gsource, Gtask), our key technical challenge is recovering 

the parameters μ without access to ground truth labels Y.

Modeling Multi-Task Sources—To learn a label model over multi-task sources, we 

introduce sufficient statistics over the random variables in Gsource-Let C be the set of cliques 

in Gsource, and define an indicator random variable for the event of a clique C ∈ C taking on 

a set of values yC:

ψ C, yC = 1 ∩i ∈ C V i = yC i ,

where (yC)i ∈ Yτi. We define ψ(C) ∈ 0, 1 Πi ∈ C Yτi − 1  as the vector of indicator random 

variables for all combinations of all but one of the labels emitted by each variable in clique 

C—thereby defining a minimal set of statistics—and define ψ(C) accordingly for any set of 

cliques C ⊆ C. Then μ = E[ψ(C)] is the vector of sufficient statistics for the label model we 

want to learn.

We work with two simplifying conditions in this section. First, we consider the setting where 

Gsource is triangulated and has a junction tree representation with singleton separator sets. 

If this is not the case, edges can always be added to Gsource to make this setting hold; 

otherwise, we describe how our approach can directly handle non-singleton separator sets in 

Appendix A.3.3.

Second, we use a simplified class-conditional model of the noisy labeling process, where 

we learn one accuracy parameter for each label value λi that each source si emits. This is 

equivalent to assuming that a source may have a different accuracy on each different class, 

but that if it emits a certain label incorrectly, it does so uniformly over the different true 

labels Y. This is a more expressive model than the commonly considered one, where each 

source is modeled by a single accuracy parameter, e.g. in [11; 28], and in particular allows 

us to capture the unipolar setting considered later on. For further details, see Appendix 

A.3.4.
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Our Approach—The chief technical difficulty in our problem is that we do not observe Y. 

We overcome this by analyzing the covariance matrix of an observable subset of the cliques 

in Gsource, leading to a matrix completion-style approach for recovering μ. We leverage two 

pieces of information: (i) the observability of part of Cov [ψ(C)], and (ii) a result from 

[22] which states that the inverse covariance matrix Cov [ψ(C)]−1 is structured according to 

Gsource, i.e., if there is no edge between λi and λj in Gsource, then the corresponding entries 

are 0.

We start by considering two disjoint subsets of C: the set of observable cliques, O ⊆ C—i.e., 

those cliques not containing Y—and the separator set cliques of the junction tree, S ⊆ C. 

In the setting we consider in this section, S = {Y} (see Figure 3). We can then write the 

covariance matrix of the indicator variables for O ∪ S, Cov [ψ(O ∪ S)], in block form, 

similar to [6], as:

Cov [ψ(O ∪ S)] ≡ Σ =
ΣO ΣOS

ΣOS
T ΣS

(1)

and similarly define its inverse:

K = Σ−1 =
KO KOS

KOS
T KS

(2)

Here, ΣO = Cov [ψ(O)] ∈ ℝdO × dO is the observable block of Σ, where 

dO = ∑C ∈ O ∏i ∈ C Yτi − 1 . Next, ΣOS = Cov [ψ(O), ψ(S)] is the unobserved block which 

is a function of μ, the label model parameters that we wish to recover. Finally, 

ΣS = Cov[ψ(S)] = Cov[ψ(Y)] is a function of the class balance P(Y).

We make two observations about ΣS. First, while the full form of ΣS is the covariance of 

the |Y| − 1 indicator variables for each individual value of Y but one, given our simplified 

class-conditional label model, we in fact only need a single indicator variable for Y (see 

Appendix A.3.4); thus, Σs is a scalar. Second, ΣS is a function of the class balance P(Y), 

which we assume is either known, or has been estimated according to the unsupervised 

approach we detail in Appendix A.3.5. Thus, given ΣO and ΣS, our goal is to recover the 

vector ΣOS from which we can recover μ.

Algorithm 1

Source Accuracy Estimation for Multi-Task Weak Supervision

Input: Observed labeling rates 

E[ψ(O)]
and covariance 

ΣO;
class balance 

E[ψ(Y)]
and variance Σ
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S
; correlation sparsity structure Ω

z argminz ΣO
−1 + zzT

Ω

c ΣS
−1 1 + zTΣOz , ΣOS ΣOz / c

μ′ ΣOS + E[ψ(Y)]E[ψ(O)]
return ExpandTied 
μ′

Applying the block matrix inversion lemma, we have:

KO = ΣO
−1 + cΣO

−1ΣOSΣOS
T ΣO

−1, (3)

where c = ΣS − ΣOS
T ΣO

−1ΣOS
−1 ∈ ℝ+ . Let z = cΣO

−1ΣOS; we can then express (3) as:

KO = ΣO
−1 + zzT (4)

The right hand side of (4) consists of an empirically observable term, ΣO
−1, and a rank-one 

term, zzT, which we can solve for to directly recover μ. For the left hand side, we apply 

an extension of Corollary 1 from [22] (see Appendix A.3.2) to conclude that KO has graph-

structured sparsity, i.e., it has zeros determined by the structure of dependencies between 

the sources in Gsource. This suggests an algorithmic approach of estimating z as a matrix 

completion problem in order to recover an estimate of μ (Algorithm 1). In more detail: let 

Ω be the set of indices (i, j) where (KO)i,j = 0, determined by Gsource, yielding a system of 

equations,

0 = ΣO
−1

i, j + zzT
i, j for (i, j) ∈ Ω, (5)

which is now a matrix completion problem. Define ||A||Ω as the Frobenius norm of A with 

entries not in Ω set to zero; then we can rewrite (5) as ΣO
−1 + zzT

Ω = 0. We solve this 

equation to estimate z, and thereby recover ΣOS, from which we can directly recover the 

label model parameters μ algebraically.

Checking for Identifiability—A first question is: which dependency structures Gsource 

lead to unique solutions for μ? This question presents a stumbling block for users, who 

might attempt to use non-identifiable sets of correlated weak supervision sources.

We provide a simple, testable condition for identifiability. Let Ginv be the inverse graph 

of Gsource; note that Ω is the edge set of Ginv expanded to include all indicator random 

variables ψ(C). Then, let MΩ be a matrix with dimensions |Ω| × dO such that each row in MΩ 
corresponds to a pair (i, j) ∈ Ω with 1’s in positions i and j and 0’s elsewhere.

Taking the log of the squared entries of (5), we get a system of linear equations MΩl = 

qΩ, where li = log zi
2  and q(i, j) = log ΣO

−1
i, j

2 . Assuming we can solve this system (which 

we can always ensure by adding sources; see Appendix), we can uniquely recover the zi
2,

meaning our model is identifiable up to sign.
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Given estimates of the zi
2, we can see from (5) that the sign of a single zi determines the sign 

of all other zj reachable from zi in Ginv. Thus to ensure a unique solution, we only need to 

pick a sign for each connected component in Ginv. In the case where the sources are assumed 

to be independent, e.g., [10; 38; 11], it suffices to make the assumption that the sources 

are on average non-adversarial; i.e., select the sign of the zi that leads to higher average 

accuracies of the sources. Even a single source that is conditionally independent from all 

the other sources will cause Ginv to be fully connected, meaning we can use this symmetry 

breaking assumption in the majority of cases even with correlated sources. Otherwise, a 

sufficient condition is the standard one of assuming non-adversarial sources, i.e. that all 

sources have greater than random accuracy. For further details, see Appendix B.1.

Source Accuracy Estimation Algorithm—Now that we know when a set of sources 

with correlation structure Gsource is identifiable, yielding a unique z, we can estimate the 

accuracies μ using Algorithm 1. We also use the function ExpandTied, which is a simple 

algebraic expansion of tied parameters according to the simplified class-conditional model 

used in this section; see Appendix A.3.4 for details. In Figure 4, we plot the performance 

of our algorithm on synthetic data, showing its scaling with the number of unlabeled data 

points n, the density of pairwise dependencies in Gsource, and the runtime performance as 

compared to a prior Gibbs sampling-based approach. Next, we theoretically analyze the 

scaling of the error μ − μ* .

4.2 Theoretical Analysis: Scaling with Diverse Multi-Task Supervision

Our ultimate goal is to train an end model using the source labels, denoised and combined 

by the label model μ we have estimated. We connect the generalization error of this end 

model to the estimation error of Algorithm 1, ultimately showing that the generalization 

error scales as n− 1
2 , where n is the number of unlabeled data points. This key result 

establishes the same asymptotic scaling as traditionally supervised learning methods, but 

with respect to unlabeled data points.

Let Pμ(Y |λ) be the probabilistic label (i.e. distribution) predicted by our label model, given 

the source labels λ as input, which we compute using the estimated μ . We then train 

an end multi-task discriminative model fw:X Y parameterized by w, by minimizing 

the expected loss with respect to the label model over n unlabeled data points. Let 

l(w, X, Y) = 1
t ∑s = 1

t lt w, X, Ys  be a bounded multi-task loss function such that without loss 

of generality l(w, X, Y) ≤ 1; then we minimize the empirical noise aware loss:

w = argminw
1
n ∑

i = 1

n
EY Pμ( ⋅ λ) l w, Xi, Y , (6)

and let w be the w that minimizes the true noise-aware loss. This minimization can be 

performed by standard methods and is not the focus of our paper; let the solution w

satisfy E w − w 2 ≤ γ . We make several assumptions, following [28]: (1) that for some 

label model parameters μ*, sampling (λ, Y) Pμ*( ⋅ ) is the same as sampling from the true 
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distribution, (λ, Y) ~ D; and (2) that the task labels Ys are independent of the features of 

the end model given λ sampled from Pμ*( ⋅ ), that is, the output of the optimal label model 

provides sufficient information to discern the true label. Then we have the following result:

Theorem 1—Let w minimize the expected noise aware loss, using weak supervision source 
parameters μ estimated with Algorithm 1. Let w minimize the empirical noise aware loss 

with E w − w 2 ≤ γ, w* = minwl(w, X, Y ), and let the assumptions above hold. Then the 

generalization error is bounded by:

E l(w, X, Y ) − l w*, X, Y ≤ γ + 4 Y μ − μ* .

Thus, to control the generalization error, we must control μ − μ* , which we do in Theorem 

2:

Theorem 2—Let μ be an estimate of μ* produced by Algorithm 1 run over n unlabeled 

data points. Let a := dO
ΣS

+ dO
ΣS

2
λmax KO

1
2 and b: = ΣO

−1 2

ΣO
−1

min
. Then, we have:

E μ − μ* ≤ 16(r − 1)dO
2 32π

n abσmax MΩ
+ 3 dOaλmin

−1 ΣO + 1 κ ΣO + λmin
−1 ΣO .

Interpreting the Bound—We briefly explain the key terms controlling the bound in 

Theorem 2; more detail is found in Appendix B. Our primary result is that the estimation 

error scales as n− 1
2 . Next, σmax MΩ

+ , the largest singular value of the pseudoinverse MΩ
+,

has a deep connection to the density of the graph Ginv. The smaller this quantity, the 

more information we have about Ginv, and the easier it is to estimate the accuracies. 

Next, λmin(ΣO), the smallest eigenvalue of the observed covariance matrix, reflects the 

conditioning of ΣO; better conditioning yields easier estimation, and is roughly determined 

by how far away from random guessing the worst weak supervision source is, as well as 

how conditionally independent the sources are. λmax(KO), the largest eigenvalue of the 

upper-left block of the inverse covariance matrix, similarly reflects the overall conditioning 

of Σ. Finally, ΣO
−1

min, the smallest entry of the inverse observed matrix, reflects the smallest 

non-zero correlation between source accuracies; distinguishing between small correlations 

and independent sources requires more samples.

4.3 Extensions: Abstentions & Unipolar Sources

We briefly highlight two extensions handled by our approach which we have found 

empirically critical: handling abstentions, and modeling unipolar sources.

Handling Abstentions.—One fundamental aspect of the weak supervision setting is that 

sources may abstain from labeling a data point entirely—that is, they may have incomplete 

and differing coverage [27; 10]. We can easily deal with this case by extending the coverage 
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ranges Yτi of the sources to include the vector of all zeros, 0 , and we do so in the 

experiments.

Handling Unipolar Sources.—Finally, we highlight the fact that our approach models 

class conditional source accuracies, in particular motivated by the case we have frequently 

observed in practice of unipolar weak supervision sources, i.e., sources that each only label 

a single class or abstain. In practice, we find that users most commonly use such unipolar 

sources; for example, a common template for a heuristic-based weak supervision source over 

text is one that looks for a specific pattern, and if the pattern is present emits a specific 

label, else abstains. As compared to prior approaches that did not model class-conditional 

accuracies, e.g. [28], we show in our experiments that we can use our class-conditional 

modeling approach to yield an improvement of 2.8 points in accuracy.

5 Experiments

We validate our approach on three fine-grained classification problems—entity 

classification, relation classification, and document classification—where weak supervision 

sources are available at both coarser and finer-grained levels (e.g. as in Figure 2). We 

evaluate the predictive accuracy of end models supervised with training data produced 

by several approaches, finding that our approach outperforms traditional hand-labeled 

supervision by 20.2 points, a baseline majority vote weak supervision approach by 6.8 

points, and a prior weak supervision denoising approach [28] that is not multi-task-aware by 

4.1 points.

Datasets

Each dataset consists of a large (3k-63k) amount of unlabeled training data and a small 

(200–350) amount of labeled data which we refer to as the development set, which we use 

for (a) a traditional supervision baseline, and (b) for hyperparameter tuning of the end model 

(see Appendix C). The average number of weak supervision sources per task was 13, with 

sources expressed as Python functions, averaging 4 lines of code and comprising a mix of 

pattern matching heuristics, external knowledge base or dictionary lookups, and pre-trained 

models. In all three cases, we choose the decomposition into sub-tasks so as to align with 

weak supervision sources that are either available or natural to express.

Named Entity Recognition (NER): We represent a fine-grained named entity 

recognition problem—tagging entity mentions in text documents—as a hierarchy of 

three sub-tasks over the OntoNotes dataset [34]: Y1 ∈ {Person, Organization}, Y2 ∈ 
{Businessperson, Other Person, N/A}, Y3 ∈ {Company, Other Org, N/A}, where again 

we use N/A to represent “not applicable”.

Relation Extraction (RE): We represent a relation extraction problem—classifying 

entity-entity relation mentions in text documents—as a hierarchy of six sub-tasks which 

either concern labeling the subject, object, or subject-object pair of a possible or candidate 
relation in the TACRED dataset [39]. For example, we might label a relation as having a 

Person subject, Location object, and Place-of-Residence relation type.
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Medical Document Classification (Doc): We represent a radiology report triaging 

(i.e. document classification) problem from the OpenI dataset [25] as a hierarchy of three 

sub-tasks: Y1 ∈ {Acute, Non-Acute}, Y2 ∈ {Urgent, Emergent, N/A}, Y3 ∈ {Normal, 

Non-Urgent, N/A}.

End Model Protocol

Our goal was to test the performance of a basic multi-task end model using training labels 

produced by various different approaches. We use an architecture consisting of a shared 

bidirectional LSTM input layer with pre-trained embeddings, shared linear intermediate 

layers, and a separate final linear layer (“task head”) for each task. Hyperparameters were 

selected with an initial search for each application (see Appendix), then fixed.

Core Validation

We compare the accuracy of the end multi-task model trained with labels from our approach 

versus those from three baseline approaches (Table 1):

• Traditional Supervision [Gold (Dev)]: We train the end model using the small 

hand-labeled development set.

• Hierarchical Majority Vote [MV]: We use a hierarchical majority vote of the 

weak supervision source labels: i.e. for each data point, for each task we take 

the majority vote and proceed down the task tree accordingly. This procedure can 

be thought of as a hard decision tree, or a cascade of if-then statements as in a 

rule-based approach.

• Data Programming [DP]: We model each task separately using the data 

programming approach for denoising weak supervision [27].

In all settings, we used the same end model architecture as described above. Note that while 

we choose to model these problems as consisting of multiple sub-tasks, we evaluate with 

respect to the broad primary task of fine-grained classification (for subtask-specific scores, 

see Appendix). We observe in Table 1 that our approach of leveraging multi-granularity 

weak supervision leads to large gains—20.2 points over traditional supervision with the 

development set, 6.8 points over hierarchical majority vote, and 4.1 points over data 

programming.

Ablations

We examine individual factors:

Unipolar Correction: Modeling unipolar sources (Sec 4.3), which we find to be 

especially common when fine-grained tasks are involved, leads to an average gain of 2.8 

points of accuracy in MeTaL performance.

Joint Task Modeling: Next, we use our algorithm to estimate the accuracies of sources 

for each task separately, to observe the empirical impact of modeling the multi-task setting 

jointly as proposed. We see average gains of 1.3 points in accuracy (see Appendix).
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End Model Generalization: Though not possible in many settings, in our experiments 

we can directly apply the label model to make predictions. In Table 6, we show that the 

end model improves performance by an average 3.4 points in accuracy, validating that 

the models trained do indeed learn to generalize beyond the provided weak supervision. 

Moreover, the largest generalization gain of 7 points in accuracy came from the dataset 

with the most available unlabeled data (n=63k), demonstrating scaling consistent with the 

predictions of our theory (Fig. 5). This ability to leverage additional unlabeled data and more 

sophisticated end models are key advantages of the weak supervision approach in practice.

6 Conclusion

We presented MeTaL, a framework for training models with weak supervision from diverse, 

multi-task sources having different granularities, accuracies, and correlations. We tackle 

the core challenge of recovering the unknown source accuracies via a scalable matrix 

completion-style algorithm, introduce theoretical bounds characterizing the key scaling with 

respect to unlabeled data, and demonstrate empirical gains on real-world datasets. In future 

work, we hope to learn the task relationship structure and cover a broader range of settings 

where labeled training data is a bottleneck.
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A: Problem Setup & Modeling Approach

In Section A, we review our problem setup and modeling approach in more detail, and for 

more general settings than in the body. In Section B, we provide an overview, additional 

interpretation, and the proofs of our main theoretical results. Finally, in Section C, we go 

over additional details of our experimental setup.

We begin in Section A.1 with a glossary of the symbols and notation used throughout 

this paper. Then, in Section A.2 we present the setup of our multi-task weak supervision 

problem, and in Section A.3 we present our approach for modeling multi-task weak 

supervision, and the matrix completion-style algorithm used to estimate the model 

parameters. Finally, in Section A.4, we present in more detail the subcase of hierarchical 

tasks considered in the main body of the paper.
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A.1 Glossary of Symbols

Table 2:

Glossary of variables and symbols used in this paper.

Symbol Used for

X Data point, X ∈ 
X

n Number of data points

Ys Label for one of the t classification tasks, Ys ∈ {1,...,ks}

t Number of tasks

Y Vector of task labels Y = [Y1, Y2,...,Yt]T 

r Cardinality of the output space, r = |
Y
|

Gtask Task structure graph

Y Output space of allowable task labels defined by Gtask, Y ∈ 
Y

D Distribution from which we assume (X, Y) data points are sampled i.i.d.

si Weak supervision source, a function mapping X to a label vector

λi Label vector 
λi
∈ 
Y
output by the ith source for X

m Number of sources

λ m × t matrix of labels output by the m sources for X

Y
0

Source output space, which is 
Y
augmented to include elements set to zero

τi Coverage set of 
λi
- the tasks si gives non-zero labels to; for convenience, τ0 = {1,…,t}

Y
τi 

The output space for 
λi
given coverage set τi

Yτi
min The output space 

Yτi
with all but the first value, for defining a minimal set of statistics

Gsource Source dependency graph, Gsource = (V, E), V = {Y, 
λ1
,...,
λm
}

C Cliqueset (maximal and non-maximal) of Gsource

C, S The maximal cliques (nodes) and separator sets of the junction tree over Gsource

Ψ(C, yC) The indicator variable for the variables in clique C ∈ 
C
taking on values yC, (yC)i ∈ 
Y
τi

μ The parameters of our label model we aim to estimate; 
μ = E[ψ]
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Symbol Used for

O The set of observable cliques, i.e. those corresponding to cliques without Y

Σ Generalized covariance matrix of O ⊆ 
S
, Σ ≡ Cov [Ψ(O ⊆ 
S
)]

K The inverse generalized covariance matrix K = Σ−1

dO, d
S

The dimensions of O and 
S
respectively

Gaug The augmented source dependencies graph Gaug = (Ψ, Eaug)

Ω The edge set of the inverse graph of Gaug

P Diagonal matrix of class prior probabilities, P(Y)

Pμ (Y, λ) The label model parameterized by μ

Y The probabilistic training label, i.e. Pμ(Y|λ)

fw (X) The end model trained using (X, 
Y
)

A.2 Problem Setup

Let X ∈ X be a data point and Y = [Y1, Y2,...,Yt]T be a vector of task labels corresponding 

to t tasks. We consider categorical task labels, Yi ∈ {1,..., ki} for i ∈ {1,...,t}. We assume (X, 

Y) pairs are sampled i.i.d. from distribution D; to keep the notation manageable, we do not 

place subscripts on the sample tuples.

Task Structure

The tasks are related by a task graph Gtask. Here, we consider schemas expressing logical 

relationships between tasks, which thus define feasible sets of label vectors Y, such that Y 

∈ Y. We let r = |Y| be the number of feasible task vectors. In section A.4, we consider the 

particular subcase of a hierarchical task structure as used in the experiments section of the 

paper.

Multi-Task Sources

We now consider multi-task weak supervision sources si ∈ S, which represent noisy and 

potentially incomplete sources of labels, which have unknown accuracies and correlations. 

Each source si outputs label vectors λi, which contain non-zero labels for some of the tasks, 

such that λi is in the feasible set Y but potentially with some elements set to zero, denoting 

a null vote or abstention for that task. Let Y0 denote this extended set which includes certain 

task labels set to zero.

We also assume that each source has a fixed task coverage set τi, such that (λi)s ≠ 0 for s 

∈ τi, and (λi)s = 0 for s ∉ τi; let Yτi ⊆ Y0 be the range of λi given coverage set τi. For 

convenience, we let τ0 = {1,...,t} so that Yτ0 = Y. The intuitive idea of the task coverage set 

is that some labelers may choose not to label certain tasks; Example 2 illustrates this notion. 
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Note that sources can also abstain for a data point, meaning they emit no label (which we 

denote with a symbol 0 ,); we include this in Yτi. Thus we have si : X ↦ Yτi, where, again, 

λi denotes the output of the function si.

Problem Statement

Our overall goal is to use the noisy or weak, multi-task supervision from the set of m 
sources, S = {s1,...,sm}, applied to an unlabeled dataset XU consisting of n data points, to 

supervise an end model fw:X Y. Since the sources have unknown accuracies, and will 

generally output noisy and incomplete labels that will overlap and conflict, our intermediate 

goal is to learn a label model Pμ:λ [0, 1]|Y| which takes as input the source labels and 

outputs a set of probabilistic label vectors, Y, for each X, which can then be used to train 

the end model. Succinctly, given a user-provided tuple (XU, S, Gsource, Gtask), our goal is to 

recover the parameters μ.

The key technical challenge in this approach then consists of learning the parameters of this 

label model—corresponding to the conditional accuracies of the sources (and, for technical 

reasons we shall shortly explain, cliques of correlated sources)—given that we do not have 
access to the ground truth labels Y. We discuss our approach to overcoming this core 

technical challenge in the subsequent section.

A.3 Our Approach: Modeling Multi-Task Sources

Our goal is to estimate the parameters μ of a label model that produces probabilistic training 

labels given the observed source outputs, Y = Pμ(Y |λ), without access to the ground truth 

labels Y. We do this in three steps:

1. We start by defining a graphical model over the weak supervision source outputs 

and the true (latent) variable Y, (λ1,...,λm, Y), using the conditional independence 

structure Gsource between the sources.

2. Next, we analyze the generalized covariance matrix Σ (following Loh & 

Wainwright [22]), which is defined over binary indicator variables for each 

value of each clique (or specific subsets of cliques) in Gsource. We consider 

two specific subsets of the cliques in Gsource, the observable cliques O and the 

separator sets S, such that:

Σ =
ΣO ΣOS

ΣOS
T ΣS

Σ−1 = K =
KO KOS

KOS
T KS

,

where ΣO is the block of Σ that we can observe, and ΣOS is a function of μ, the 

parameters (corresponding to source and clique accuracies) we wish to recover. 

We then apply a result by Loh and Wainwright [22] to establish the sparsity 

pattern of K = Σ−1. This allows us to apply the block-matrix inversion lemma to 

reformulate our problem as solving a matrix completion-style objective.
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3. Finally, we describe how to recover the class balance P(Y); with this and the 

estimate of μ, we then describe how to compute the probabilistic training labels 

Y = Pμ(Y |λ) .

We start by focusing on the setting where Gsource has a junction tree with singleton separator 

sets; we note that a version of Gsource where this holds can always be formed by adding 

edges to the graph. We then discuss how to handle graphs with non-singleton separator 

sets, and finally describe different settings where our problem reduces to rank-one matrix 

completion. In Section B, we introduce theoretical results for the resulting model and 

provide our model estimation strategy.

Figure 7: 
A simple example of a weak supervision source dependency graph Gsource (left) and its 

junction tree representation (right). Here Y is as a vector-valued variable with a feasible set 

of values, Y ∈ |Y|, and the output of sources 1 and 2 are modeled as dependent conditioned 

on Y. This results in a junction tree with singleton separator sets Y. Here, the observable 

cliques are O = {λ1, λ2, λ3, λ4, {λ1, λ2}} ⊂ C.

A.3.1 Defining a Multi-Task Source Model

We consider a model Gsource = (V, E), where V = {Y, λ1,...,λm}, and E consists of 

pairwise interactions (i.e. we consider an Ising model, or equivalently, a graph rather than 

a hypergraph of correlations). We assume that Gsource is provided by the user. However, if 

Gsource is unknown, there are various techniques for estimating it statistically [2] or even 

from static analysis if the sources are heuristic functions [33]. We provide an example 

Gsource with singleton separator sets in Figure 7.

Augmented Sufficient Statistics—Finally, we extend the random variables in V by 

defining a matrix of indicator statistics over all cliques in Gsource, in order to estimate all the 

parameters needed for our label model Pμ. We assume that the provided Gsource is chordal, 
meaning it has no chordless cycles of length greater than three; if not, the graph can easily 

be triangulated to satisfy this property, in which case we work with this augmented version.

Let C be the set of maximal and non-maximal cliques in the chordal graph Gsource. We start 

by defining a binary indicator random variable for the event of a clique C ∈ C in the graph 

Gsource = (V, E) taking on a set of values yC:

ψ C, yC = 1 ∩i ∈ C V i = yC i ,
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where yC i ∈ Yτi
min and Yτi

min contains all but one values of Yτi, thereby leading to a minimal 

set of statistics. Note that in our notation, V0 = Y, Yτ0 = Y, and Vi>0 = λi. Accordingly, 

we define ψ(C) ∈ 0, 1 ∏i ∈ C Yτi − 1  as the vector of indicator random variables for all 

combinations of all but one of the labels emitted by each variable in clique C, and define 

Ψ(C) accordingly for any set of cliques C ⊆ C, Then μ = E[ψ(C)] is the vector of sufficient 

statistics for the label model we want to learn. Our model estimation goal is now stated 

simply: we wish to estimate μ, without access to the ground truth labels Y.

A.3.2 Model Estimation without Ground Truth Using Inverse Covariance Structure

Our goal is to estimate μ = E[ψ(C)]; this, along with the class balance P(Y) (which we 

assume we know, or else estimate using the approach in Section A.3.5), is sufficient 

information to compute Pμ(Y|λ). If we had access to a large enough set of ground truth 

labels Y, we could simply take the empirical expectation E[ψ]; however in our setting we 

cannot directly observe this. Instead, we proceed by analyzing a sub-block of the covariance 

matrix of Ψ(C), which corresponds to the generalized covariance matrix of our graphical 

model as in [22], and leverage two key pieces of information:

• A sub-block of this generalized covariance matrix is observable, and

• By a simple extension of Corollary 1 in [22], we know the sparsity structure 

of the inverse generalized covariance matrix Σ−1, i.e. we know that it will have 

elements equal to zero according to the structure of Gsource.

Since Gsource is triangulated, it admits a junction tree representation [19], which has 

maximal cliques (nodes) C and separator sets S. Note that we follow the convention that 

S includes the full powerset of separator set cliques, i.e. all subset cliques of separator set 

cliques are also included in S. We proceed by considering two specific subsets of the cliques 

of our graphical model Gsource: those that are observable (i.e. not containing Y), O = {C | Y 
∉ C, C ∈ C}, and the set of separator set cliques (which will always contain Y, and thus be 

unobservable).

For simplicity of exposition, we start by considering graphs Gsource which have singleton 

separator sets; given our graph structure, this means that S = {{Y}}. Note that in general we 

will write single-element sets without braces when their type is obvious from context, so we 

have S = {Y}. Intuitively, this corresponds to models where weak supervision sources are 

correlated in fully-connected clusters, corresponding to real-world settings in which sources 

are correlated due to shared data sources, code, or heuristics. However, we can always either 

(i) add edges to Gsource such that this is the case, or (ii) extend our approach to many settings 

where Gsource does not have singleton separator sets (see Section A.3.3).

In this singleton separator set setting of S = {Y}, we now have:

O = C Y ∉ C, C ∈ C S = Y .

where Ψ(O) and Ψ(Y) are the corresponding vectors of minimal indicator variables. We 

define corresponding dimensions dO and dS:
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dO = ∑
C ∈ O

∏
i ∈ C

Yτi − 1 dS = r − 1.

We now decompose the generalized covariance matrix and its inverse as:

Cov[ψ(O ∪ S)] ≡ Σ =
ΣO ΣOS

ΣOS
T ΣS

Σ−1 = K =
KO KOS

KOS
T KS

, (7)

This is similar to the form used in [6], but with several important differences: we consider 

discrete (rather than Gaussian) random variables and have additional knowledge of the graph 

structure. Here, ΣO is the observable block of the generalized covariance matrix Σ, and ΣOS
is the unobserved block which is a function of μ, the parameters (corresponding to source 

and source clique accuracies) we wish to recover. Note that with the singleton separator sets 

we are considering, ΣS is a function of the class balance P(Y), which we assume is either 

known, or has been estimated according to the unsupervised approach we detail in Section 

A.3.5. Therefore, we assume that ΣS is also known. Concretely then, our goal is to recover 

ΣOS given ΣO, ΣS.

We start by applying the block matrix inversion lemma to get the equation:

KO = ΣO
−1 + ΣO

−1ΣOS ΣS − ΣOS
T ΣO

−1ΣOS
−1ΣOS

T ΣO
−1 . (8)

Next, let JJT = ΣS − ΣOS
T ΣO

−1ΣOS
−1 . We justify this decomposition by showing that this term 

is positive semidefinite. We start by applying the Woodbury matrix inversion lemma:

ΣS − ΣOS
T ΣO

−1ΣOS
−1 = ΣS

−1 + ΣS
−1ΣOS

T ΣO + ΣOSΣS
−1ΣOS

T −1ΣOSΣS
−1 . (9)

Now, note that ΣO and ΣS are both covariance matrices themselves and are therefore 

PSD. Furthermore, from [22] we know that Σ−1 must exist, which implies that ΣO 

and ΣS are invertible (and thus in fact positive definite). Therefore we also have that 

ΣOSΣS
−1ΣOS

T ≻ 0 ΣO + ΣOSΣS
−1ΣOS

T −1 ≻ 0, and therefore (9) is positive definite, and can 

therefore always be expressed as JJT for some J. Therefore, we can write (8) as:

KO = ΣO
−1 + ΣO

−1ΣOSJJTΣOS
T ΣO

−1 .

Finally, define Z = ΣO
−1ΣOSJ; we then have:

KO = ΣO
−1 + ZZT . (10)
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Note that Z ∈ ℝdO × dH, where dH = r − 1, and therefore ZZT is a rank-(r − 1) matrix. 

Therefore, we now have a form (10) that appears close to being a matrix completion-style 

problem. We complete the connection by leveraging the known sparsity structure of KO.

Define Gaug = (Ψ, Eaug) to be the augmented version of our graph Gsource. In other 

words, let i = (C1, yC1) and j = (C2, yC2) according to the indexing scheme of our 

augmented indicator variables; then, (i, j) ∈ Eaug if C1, C2 are subsets of the same maximal 

clique in Gsource. Then, let Ginv-aug = (Ψ, Ω) be the inverse graph of Gaug, such that 

(i, j) ∈ Eaug = > (i, j) ∉ Ω and vice-versa.

We start with a result that extends Corollary 1 in Loh & Wainwright [22] to our specific 

setting where we consider a set of the variables that contains all observable cliques, O, and 

all separator sets S (note that this result holds for all S, not just S = {Y}):

Corollary 1—Let U = O ∪ S. Let ΣU be the generalized covariance matrix for U. Then 
ΣU

−1
i, j = 0 whenever i, j correspond to cliques C1, C2 respectively such that C1, C2 are not 

subsets of the same maximal clique.

Proof: We partition the cliques C into two sets, U and W = C \ U. Let Σ be the full 

generalized covariance matrix (i.e. including all maximal and non-maximal cliques) and Γ = 

Σ−1. Thus we have:

Σ =
ΣU ΣUW

ΣUW
T ΣW

Σ−1 = Γ =
KU KUW

KUW
T KW

.

By the block matrix inversion lemma we have:

ΣU
−1 = KU − KUW KW

−1KUW
T .

We now follow the proof structure of Corollary 1 of [22]. We know KU is graph structured 

by Theorem 1 of [22]. Next, using the same argument as in the proof of Corollary 1 of 

[22], we know that Kw, and therefore KW
−1, is block-diagonal. Intuitively, because the set U 

contains all of the separator set cliques, and due to the running intersection property of a 

junction tree, each clique in W belongs to precisely one maximal clique-leading to block 

diagonal structure of KW. We thus need only to show that the following quantity is zero 

for two cliques Ci, Cj that are not subsets of the same maximal clique, with corresponding 

indices i, j:

KUW KW
−1KUW

T
i, j = ∑

B
KUW i, B KW

−1
B, B KUW

T
B, j,

where B are the indices corresponding to the blocks in KW
−1, which correspond to maximal 

cliques. Our argument follows again as in Corollary 1 of [22]: since U contains the separator 

sets, if the two cliques C1, C2 are not subsets of the same maximal clique, then for each B, 

either (KUW)i,B or KUW
T

B, j must be zero, completing the proof.
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Now, by Corollary 1, we know that Ki,j = 0 if (i, j) ∈ Ω. Let AΩ denote a matrix A with all 

entries (i, j) ∉ Ω masked to zero. Then, we have:

ΣO
−1

Ω + ZZT
Ω

= 0. (11)

Thus, given the dependency graph Gsource, we can solve for Z as a rank-(r − 1) matrix 

completion problem, with mask Ω. Defining the semi-norm A Ω = AΩ F, we can solve:

Z = argminZ ΣO
−1 + ZZT

Ω . (12)

Now, we have an estimate of Z. Note that at this point, we can only recover Z up to 

orthogonal transformations. We proceed by considering a reduced rank-one model, detailed 

in Section A.3.4, and in Section B.1 establish concrete conditions under which this model is 

uniquely identifiable.

We denote this rank-one setting by switching to writing Z as z ∈ ℝdO × 1, in which case we 

now have:

z = argminz ΣO
−1 + zzT

Ω . (13)

Once we have recovered z uniquely (see Section B.1), we next need to recover 

ΣOS = c− 1
2ΣOz . We use the fact that c = ΣS

−1 1 + zTΣOz , which we can confirm explicitly 

below, starting from the definition of c:

c = ΣS − ΣOS
T ΣO

−1ΣOS
−1

= ΣS − c− 1
2ΣOz

T
ΣO

−1 c− 1
2ΣOz

−1

= ΣS − c−1zTΣOz −1

c−1 = ΣS − c−1zTΣOz

c−1 1 + zTΣOz = ΣS

c = ΣS
−1 1 + zTΣOz

Thus, we can directly recover an estimate of ΣOS from the observed ΣO, known ΣS, and 

estimated z. Finally, we have:
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ΣOS + E[ψ(O)]E[ψ(S)]T = E ψ(O)ψ(S)T . (14)

Here, we can clearly observe E ψ(O) , and given that we know the class balance P(Y), we 

also have E ψ(S)  therefore we can compute E ψ(O)ψ(S)T . Our goal now is to recover the 

columns E ψ(O)ψ(Yi) , which together make up μ; we can do this based on the constraints 

of our rank-one model (Section A.3.4), thus recovering an estimate of μ, which given the 

uniqueness of z (Section B.1) is also unique. The overall procedure is described in the main 

body, in Algorithm 1.

A.3.3 Handling Non-Singleton Separator Sets

Now, we consider the setting where Gsource has arbitrary separator sets. Let 

dS = ∑S ∈ S ∏i ∈ S Yτi − 1 . We see that we could solve this using our standard approach—this 

time, involving a rank-dS matrix completion problem—except for the fact that we do not 

know ΣS, as it now involves terms besides the class balance.

Note first of all that we can always add edges between sources to Gsource such that it has 

singleton separator sets (intuitively, this consists of “completing the clusters”), and as long 

as our problem is still identifiable (see Section B.1), we can simply solve this instance as 

above.

Instead, we can also take a multi-step approach, wherein we first consider one or more 

subgraphs of Gsource that contain only singleton separator sets, and contain the cliques in S. 

We can then solve this problem as before, which then gives us the needed information to 

identify the elements of ΣS in our full problem, which we can then solve. In particular, we 

see that this multi-step approach is possible whenever the graph Gsource has at least three 

components that are disconnected except for through Y.

A.3.4 Rank-One Settings

We now consider settings where we can estimate the parameters of our label model, μ, 

involving only a rank-one matrix completion problem.

First, in the simplest setting of a single-task problem with binary class variable, Y ∈ {0,1} 

and Gsource with singleton separator sets, dH = r − 1 = 1 and our problem is directly a 

rank-one instance.

Next, we consider the setting of general Y, with |Y| = r and Gsource with singleton separator 

sets. By default, our problem now involves a rank-(r − 1) matrix completion problem. 

However, we can reduce this to involving only a rank-one matrix completion problem by 

adding one simplifying assuption to our model: namely, that sources emit different incorrect 

labels with uniform conditional probability. Concretely, we add the assumption that:

λC i = Y λC
′

i = Y ∀i ∈ C P λC Y = P λC
′ Y (15)
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Note that this is the same assumption as in the main body, but expressed more explicitly 

with respect to a clique C. For example, under this assumption, P λi = y′ |Y = y  is the same 

for all y′ such that y′ ≠ y. As another example, P λi = y, λj = y′ |Y = y  is the same for all 

y′ such that y′ ≠ y. Intuitively, under this commonly-used model, we are not modeling the 

different class-wise errors a source makes, but rather just whether it is correct or not given 

the correctness of other sources it is correlated with. The idea then is that with assumption 

(15) even though |H| = r − 1 (and thus ΣOS has r − 1 columns), we only actually need to 

solve for a single parameter per element of O.

We can operationalize this by forming a new graph with a binarized version of Y, YB ∈ 
{0,1}, such that the r classes are mapped to either 0 or 1. We see that this new variable 

still results in the same structure of dependencies Gsource, and still allows us to recover the 

parameters αy (and thus μ). We now have:

S = YB

We now solve in the same rank-one way as in the binary Y case. Now, for singleton cliques, 

{λi, Y}, given that we know P(Y), we can directly recover P(λi = y |Y = y′) for all y′, given 

our simplified model.

For non-singleton cliques {λC, Y}, note that we can directly recover P ∩i ∈ C λi = y|Y = y′
in the exact same way. From these, computed for all cliques, we can then recover any 

probability in our model. For example, for y′ ≠ y:

P λi = y, λj = y′ Y = y = P λi = y Y = y − ∑
y′′ ≠ y′

P λi = y, λj = y′′ Y = y

= P λi = y Y = y − P λi = y, λj = y Y = y −
× (r − 2)P λi = y, λj = y′ Y = y

= > P λi = y, λj = y′ Y = y = 1
r − 1 P λi = y Y = y − P λi = y, λj = y Y = y .

In this way, we can recover all of the parameters μ while only involving a rank-one matrix 

completion problem. Note that this also suggests a way to solve for the more general model, 

i.e. without (15), using a hierarchical classification approach.

A.3.5 Recovering the Class Balance P & Computing P (Y|λ)

We now turn to the task of recovering the class balance P(Y), for Y ∈ Y. In many practical 

settings, P(Y) can be estimated from a small labeled sample, or may be known in advance. 

However here, we consider using a subset of conditionally independent sources, s1,...,sk to 

estimate P(Y). We note first of all that simply taking the majority vote of these sources is a 

biased estimator.

Instead, we consider a simplified version of the matrix completion-based approach taken 

so far. Here, we consider a subset of the sources s1,...,sk such that they are conditionally 
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independent given Gsource, i.e. λi ⊥ λj |Y, and consider only the unary indicator statistics. 

Denote the vector of these unary indicator statistics over the conditionally independent 

subset of sources as ϕ, and let the observed overlaps matrix between sources i and j be 

Ai, j = E ϕiϕj
T . Note that due to the conditional independence of λi and λj, for any k, l we 

have:

Ai, j k, l = E ϕi k ϕj l
= P λi = yk, λj = yl
= ∑

y ∈ Y
P λi = yk, λj = yl Y = y P(Y = y)

= ∑
y ∈ Y

P λi = yk Y = y P λj = yl Y = y P(Y = y) .

Letting Bi be the Yτi × |Y| matrix of conditional probabilities, Bi j, k = P λi = yj |Y = yk , and 

P be the diagonal matrix such that P i, i = P Y = yi , we can re-express the above as:

Ai, j = BiPBj
T .

Since P is composed of strictly positive elements, and is diagonal (and thus PSD), we 

re-express this as:

Ai, j = BiBj
T, (16)

where Bi = Bi P . We could now try to recover P by decomposing the observed Ai,j to 

recover the Bi, and from there recover P via the relation:

P = diag Bi
T 1

2
, (17)

since summing the column of Bi corresponding to label Y is equal to 

P(Y)∑y ∈ Yi P λi = y|Y = P(Y) by the law of total probability. However, note that BiU for 

any orthogonal matrix U also satisfies (16), and could thus lead to a potentially infinite 

number of incorrect estimates of P.

Class Balance Identifiability with Three-Way View Constraint—A different 

approach involves considering the three-way overlaps observed as Ai,j,k. This is equivalent 

to performing a tensor decomposition. Note that above, the problem is that matrix 

decomposition is typically invariant to rotations and reflections; tensor decompositions have 

easier-to-meet uniqueness conditions (and are thus more rigid).

Specifically, we apply Kruskal’s classical identifiability condition for unique 3-tensor 

decomposition. Consider some tensor

T = ∑
r = 1

R
Xr ⊗ Y r ⊗ Zr,
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where Xr, Yr, Zr are column vectors that make up the matrices X, Y, Z. The Kruskal rank 

kX of X is the largest k such that any k columns of X are linearly independent. Then, the 

decomposition above is unique if kX + kY + kZ ≥ 2R + 2 [20; 3]. In our case, our triple views 

have R = |Y|, and we have

Ai, j, k = Bi ⊗ Bj ⊗ Bk . (18)

Thus, if kBi + kBj + kBk ≥ 2|Y| + 2, we have identifiability. Thus, it is sufficient to have the 

columns of each of the Bi’s be linearly independent. Note that each of the Bi’s have columns 

with the same sum, so these columns are only linearly dependent if they are equal, which 

would only be the case if the sources were random voters.

Thus, we can use (18) to recover the Bi in a stable fashion, and then use (17) to recover the 

P(Y).

Figure 8: 
Example task hierarchy Gtask for a three-task classification problem. Task Y1 classifies a 

data point X as a PERSON or BUILDING. If Y1 classifies X as a PERSON, Y2 is used 

to distinguish between DOCTOR and NON-DOCTOR. Similarly, if Y2 classifies X as a 

BUILDING, Y3 is used to distinguish between HOSPITAL and NON-HOSPITAL. Tasks 

Y2, Y3 are more specific, or finer-grained tasks, constrained by their parent task Y1.

A.3.6 Predicting Labels with the Label Model

Once we have an estimate of μ, we can make predictions with the label model—i.e. generate 

our probabilistic training labels Pμ(Y| λ)—using the junction tree we have already defined 
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over Gsource. Specifically, let C be the set of maximal cliques (nodes) in the junction tree, 

and let S be the set of separator sets. Then we have:

Pμ(Y, λ) = ∏C ∈ C P V C
∏S ∈ S P V S

= ∏C ∈ C μ C, Y, λC
∏S ∈ S μ S, Y, λS

,

where again, V C = V i i ∈ C, where V 0 = Y and V i > 0 = λi . Thus, we can directly compute the 

predicted labels Pμ(Y| λ) based on the estimated parameters μ.

A.4 Example: Hierarchical Multi-Task Supervision

We now consider the specific case of hierarchical multi-task supervision, which can be 

thought of as consisting of coarser- and finer-grained labels, or alternatively higher- and 

lower-level labels, and provides a way to supervise e.g. fine-grained classification tasks at 

multiple levels of granularity. Specifically, consider a task label vector Y= [Y1,...,Yt]T as 

before, this time with Ys ∈ {N/A, 1,...,ks}, where we will explain the meaning of the special 

value N/A shortly. We then assume that the tasks Ys are related by a task hierarchy which 

is a hierarchy Gtask = (V, E) with vertex set V = {Y1, Y2,..., Yt} and directed edge set E. 

The task structure reflects constraints imposed by higher level (more general) tasks on lower 

level (more specific) tasks. The following example illustrates a simple tree task structure:

Example 2

Let Y1 classify a data point X as either a PERSON (Y1 = 1) or BUILDING (Y1 = 2). If Y1 

= 1, indicating that X represents a PERSON, then Y2 can further label X as a DOCTOR or 
NON-DOCTOR. Y3 is used to distinguish between HOSPITAL and NON-HOSPITAL in the 
case that Y1 = 2. The corresponding graph Gtask is shown in Figure 8. If Y1 = 2, then task Y2 

is not applicable, since Y2 is only suitable for persons; in this case, Y2 takes the value N/A. 
In this way the task hierarchy defines a feasible set of task vector values: Y = [1, 1, N/A]T, 

[1, 2, N/A]T, [2, N/A, 1]T, [2, N/A, 2]T are valid, while e.g. Y = [1,1,2]T is not.

As in the example, for certain configurations of Y’s, the parent tasks logically constrain 

the one or more of the children tasks to be irrelevant, or rather, to have inapplicable label 

values. In this case, the task takes on the value N/A. In Example 2, we have that if Y1 = 1, 

representing a building, then Y2 is inactive (since X corresponds to a building). We define 

the symbol N/A (for incompatible) for this scenario. More concretely, let N(Yi) = {Yj : (Yj, 

Yj) ∈ E} be the in-neighborhood of Yi. Then, the values of the members of N(Yi) determine 

whether Yi = N/A, i.e., 1 {Yi = N/A} is deterministic conditioned on N(Yi).

Hierarchical Multi-Task Sources

Observe that in the mutually-exclusive task hierarchy just described, the value of a 

descendant task label Yd determines the values of all other task labels in the hierarchy 

besides its descendants. For example, in Example 2, a label Y2 = 1 ⇒ (Y1 = 1, Y3 = N/A); 

in other words, knowing that X is a DOCTOR also implies that X is a PERSON and not a 

BUILDING.
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For a source λi with coverage set ti, the label it gives to the lowest task in the task hierarchy 

which is non-zero and non-N/A determines the entire label vector output by λi. E.g. if the 

lowest task that λi labels in the hierarchy is Y1 = 1, then this implies that it outputs vector 

[1,0, N/A]T. Thus, in this sense, we can think of each sources λi as labeling one specific task 

in the hierarchy, and thus can talk about coarser- and finer-grained sources.

Reduced-Rank Form: Modeling Local Accuracies

In some cases, we can make slightly different modeling assumptions that reflect the nature 

of the task structure, and additionally can result in reduced-rank forms of our model. In 

particular, for the hierarchical setting introduced here, we can divide the statistics μ into 

local and global subsets, and for example focus on modeling only the local ones to once 

again reduce to rank-one form.

To motivate with our running example: a finer-grained source that labels DOCTOR versus 

NON-DOCTOR probably is not accurate on the building type subtask; we can model this 

source using one accuracy parameter for the former label set (the local accuracy) and a 

different (or no parameter) for the global accuracy on irrelevant tasks. More specifically, 

for cliques involving λi, we can model P(λi, Y) for all Y with only non-N/A values in the 

coverage set of λi using a single parameter, and call this the local accuracy; and we can 

either model μ for the other Y using one or more other parameters, or simply set it to a 

fixed value and not model it, to reduce to rank one form, as we do in the experiments. In 

particular, this allows us to capture our observation in practice that if a developer is writing 

a source to distinguish between labels at one sub-tree, they are probably not designing or 

testing it to be accurate on any of the other subtrees.

B: Theoretical Results

In this section, we focus on theoretical results for the basic rank-one model considered in 

the main body of the paper. In Section B.1, we start by going through the conditions for 

identifiability in more detail for the rank-one case. In Section B.2, we provide additional 

interpretation for the expression of our primary theoretical result bounding the estimation 

error of the label model. In Section B.3, we then provide the proof of Theorem 1, connecting 

this estimation error to the generalization error of the end model; and in Section B.4, we 

provide the full proof of the main bound.

B.1 Conditions for Identifiability

We consider the rank-one setting as in the main body, where we have

− ΣO
−1

Ω = zzT
Ω, (19)

where Ω is the inverse augmented edge set, i.e. a pair of indices (i, j), corresponding to 

elements of Ψ(C), and therefore to cliques A, B ∈ C, is in Ω if A, B are not part of the same 

maximal clique in Gsource (and therefore (KO)i,j = 0). This defines a set of |Ω| equations, 

which we can encode using a matrix MΩ, where if (i, j) is the (r − 1)th entry in Ω, then
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MΩ r, s = 1 s ∈ i, j ,
0 else. (20)

Let li = log zi
2 and q(i, j) = log ΣO

−1
i, j ; then by squaring and taking the log of both sides of 19, 

we get a system of linear equations:

MΩl = qΩ . (21)

Thus, we can identify z (and therefore μ) up to sign if the system of linear equations (21) has 

a solution.

Notes on Invertibility of MΩ

Note that if the inverse augmented edge graph consists of a connected triangle (or any 

odd-numbered cycle), e.g. Ω = {(i, j), (j, k), (i, k)}, then we can solve for the zi up to sign, 

and therefore MΩ must be invertible:

zi
2 =

ΣO
−1

i, j ΣO
−1

i, k

ΣO
−1

j, k
,

and so on for zj, zk. Note additionally that if other zi are connected to this triangle, then we 

can also solve for them up to sign as well. Therefore, if Ω contains at least one triangle (or 

odd-numbered cycle) per connected component, then MΩ is invertible.

Also note that this is all in reference to the inverse source dependency graph, which will 

generally be dense (assuming the correlation structure between sources is generally sparse). 

For example, note that if we have one source λi that is conditionally independent of all the 

other sources, then Ω is fully connected, and therefore if there is a triangle in Ω, then MΩ is 

invertible.

Identifying the Signs of the zi

Finally, note that if we know the sign of one zi, then this determines the signs of every 

other zj in the same connected component. Therefore, for z to be uniquely identifiable, we 

need only know the sign of one of the zi in each connected component. As noted already, 

if even one source λi is conditionally independent of all the other sources, then Ω is fully 

connected; in this case, we can simply assume that the average source is better than random, 

and therefore identify the signs of z without any additional information.

B.2 Interpreting the Main Bound

We re-state Theorem 2, which bounds the average error on the estimate of the label model 

parameters, providing more detail on and interpreting the terms of the bound.
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Theorem 2

Let μ be an estimate of μ* produced by Algorithm 1 run over n unlabeled data points. Let 

a: = dO
ΣS

+ dO
ΣS

2
λmax KO

1
2 and b: = ΣO

−1 2

ΣO
−1

min
. Then, we have:

E μ − μ* ≤ 16(r − 1)dO
2 32π

n abσmax MΩ
+ 3 dOaλmin

−1 ΣO + 1 κ ΣO + λmin
−1 ΣO .

Influence of σmax MΩ
+  the largest singular value of the pseudoinverse MΩ

+ . Note that 

MΩ
+ 2 = λmin MΩ

TMΩ
−1 . As we shall see below, λmin MΩ

TMΩ  measures a quantity related 

to the structure of the graph Ginv. The smaller this quantity, the more information we have 

about Ginv, and the easier it is to estimate the accuracies. The smallest value of MΩ
+ 2

(corresponding to the largest value of the eigenvalue) is ~ 1
m ; the square of this quantity in 

the bound reduces the m2 cost of estimating the covariance matrix to m.

It is not hard to see that

MΩ
TMΩ = diag deg Ginv + Adj Ginv .

Here, deg(Ginv) are the degrees of the nodes in Ginv and Adj(Ginv) is its adjacency matrix. 

This form closely resembles the graph Laplacian, which differs in the sign of the adjacency 

matrix term: ℒ(G) = diag(deg(G)) − Adj(G). We bound

σmax MΩ
+ ≤ dmin + λmin Adj Ginv ) −1,

where dmin is the lowest-degree node in Ginv (that is, the source s with fewest appearances in 

Ω). In general, computing λmin(Adj(Ginv))) can be challenging. A closely related task can be 

done via Cheeger inequalities, which state that

2ℎG ≥ λmin(ℒ(G)) ≥ 1
2ℎG

2 ,

where λmin(ℒ(G)) is the smallest non-zero eigenvalue of ℒ(G) and

ℎG = min
X

E(X, X)
min ∑x ∈ X dx, ∑y ∈ X dy

is the Cheeger constant of the graph [7]. The utility of the Cheeger constant is that it 

measures the presence of a bottleneck in the graph; the presence of such a bottleneck limits 

the graph density and is thus beneficial when estimating the structure in our case. Our 

Cheeger-constant like term σmax MΩ
+  acts the same way.
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Now, in the easiest and most common case is that of conditionally independent sources [9; 

38; 9; 17]., Adj(Ginv) has 1’s everywhere but the diagonal, and we can compute explicitly 

that

σmax MΩ
+ = 1

m − 2 .

In the general setting, we must compute the minimal eigenvalue of the adjacency matrix, 

which is tractable, for example, for tree structures.

Influence of λmin(ΣO) the smallest eigenvalue of the observed matrix. This quantity reflects 

the conditioning of the observed (correlation) matrix; the better conditioned the matrix, the 

easier it is to estimate ΣO.

Influence of (ΣO
−1)min the smallest entry of the inverse observed matrix. This quantity 

contributes to Σ−1, the geenralized precision matrix that we centrally use; it is a measure of 

the smallest non-zero correlation between source accuracies (that is, the smallest correlation 

between non-independent source accuracies). Note that the tail bound of Theorem 2 

scales as exp(−((ΣO
−1)min)2 This is natural, as distinguishing between small correlations and 

independencies requires more samples.

B.3 Proof of Theorem 1

Let D be the true data generating distribution, such that (X, Y) ~ D. Let Pμ(Y|λ) be the label 

model parameterized by μ and conditioned on the observed source labels λ. Furthermore, 

assume that:

1. For some optimal label model parameters μ*, Pμ*(λ, Y) = P(λ, Y);

2. The label Y is independent of the features of our end model given the source 

labels λ

That is, we assume that (i) the optimal label model, parameterized by μ*, correctly matches 

the true distribution of source labels λ drawn from the true distribution, (s(X), Y) ~ D; 

and (ii) that these labels λ provide sufficient information to discern the label Y. We note 

that these assumptions are the ones used in prior work [28], and are intended primarily to 

illustrate the connection between the estimation accuracy of μ, which we bound in Theorem 

2, and the end model performance.

Now, suppose that we have an end model parameterized by w, and that to learn these 

parameters we minimize a normalized bounded loss function l(w, X, Y), such that without 

loss of generality, l(w, X, Y) ≤ 1. Normally our goal would be to find parameters that 

minimize the expected loss, which we denote w*:

L(w) = E(X, Y) D[l(w, X, Y)] (22)
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However, since we do not have access to the true labels Y, we instead minimize the expected 

noise-aware loss, producing an estimate w:

Lμ(w) = E(X, Y) D[EY Pμ( ⋅ λ(X))[l(w, X, Y)]] . (23)

In practice, we actually minimize the empirical version of the noise aware loss over an 

unlabeled dataset U = {X(1),...,X(n)}, producing an estimate w:

Lμ(w) = 1
n ∑

i = 1

n
EY Pμ ⋅ λ X(i) l w, X(i), Y . (24)

Let w* be the expected loss L, let w be the minimizer of the noice-aware loss for estimated 

label model parameters μ, Lμ, and let w be the minimize of the empirical noice aware loss 

Lμ . Our goal is to bound the generalization risk- the difference between the expected loss of 

our empirically estimated parameters and of the optimal parameters,

L(w) − L w* . (25)

Additionally, since analyzing the empirical risk minimization error is standard and not 

specific to our setting, we simply assume that error Lμ(w) − Lμ(w) ≤ γ(n), where γ(n) is a 

decreasing function of the number of unlabeled data points n.

To start, using the law of total expectation first, followed by our assumption (2) about 

condtional independence, and finally using our assumption (1) about our optimal label 

model μ*, we have that:

L(w) = E X′, Y′ D[L(w)]
= E X′, Y′ D E(X, Y) D l w, X′, Y X = X′
= E X′, Y′ D E(X, Y) D l w, X′, Y s(X) = s X′
= E X′, Y′ D E(λ, Y) μ* l w, X′, Y λ = s X′
= Lμ*(w) .

Now, we have:

L(w) − L w* = Lμ*(w) + Lμ(w) − Lμ(w) + Lμ(w) − Lμ(w) − Lμ* w*
≤ Lμ*(w) + Lμ(w) − Lμ(w) + Lμ w* − Lμ(w) − Lμ* w*
≤ Lμ(w) − Lμ(w) + Lμ*(w) − Lμ(w) + Lμ w* − Lμ* w*
≤ γ(n) + 2max

w′
Lμ* w′ − Lμ w′ ,

where in the first step we use our result that L = Lμ* as well as add and subtract terms; 

and in the second step we use the fact that Lμ(w) ≤ Lμ w* . We now have our generalization 

risk controlled primarily by Lμ* w′ − Lμ w′ , which is the difference between the expected 

noise aware losses given the estimated label model parameters μ and the true label model 

parameters μ*. Next, we see that, for any w′:
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Lμ* w′ − Lμ w′ = E(X, Y) D EY Pμ*( ⋅ λ)[l(w, X, Y)] − EY Pμ( ⋅ λ)[l(w, X, Y)]

= E(X, Y) D ∑
Y′ ∈ Y

l w, X, Y′ Pμ* Y′ λ − Pμ Y′ λ

≤ ∑
Y′ ∈ Y

E(X, Y) D Pμ* Y′ λ − Pμ Y′ λ

≤ Y maxY′E(X, Y) D Pμ* Y′ λ − Pμ Y′ λ ,

where we have now bounded Lμ* w′ − Lμ w′  by the size of the structured output space |Y|, 

and a term having to do with the difference between the probability distributions of μ and μ*.

Now, we use the result from [16] (Lemma 19) which establishes that the log 

probabilities of discrete factor graphs with indicator features (such as our model 

Pμ(λ, Y)) are (l∞, 2)-Lipschitz with respect to their parameters, and the fact that for 

x, y s.t. |x | , | y | ≤ 1, |x − y | ≤ | log(x) − log(y) | , to get:

Pμ* Y′ λ − Pμ Y′ λ ≤ logPμ* Y′ λ − logPμ Y′ λ
≤ logPμ* λ, Y′ − logPμ λ, Y′ + logPμ*(λ) − logPμ(λ)
≤ 2 μ* − μ ∞ + 2 μ* − μ ∞
≤ 4 μ* − μ ,

where we use the fact that the statement of Lemma 19 also holds for every marginal 

distribution as well. Therefore, we finally have:

L(w) − L w* ≤ γ(n) + 4 Y μ* − μ .

B.4 Proof of Theorem 2

Proof: First we briefly provide a roadmap of the proof of Theorem 2. We consider estimating 

μ with our procedure in the rank-one setting, and we seek a tail bound on μ − μ . The 

challenge here is that the observed matrix ΣO we see is itself constructed from a series 

of observed i.i.d. samples ψ(O)(1), …, ψ(O)(n) . We bound (through a matrix concentration 

inequality) the error ΔO = ΣO − ΣO, and view ΔO as a perturbation of ΣO. Afterwards, we use a 

series of perturbation analyses to ultimately bound ΣOS − ΣOS , and then use this directly to 

bound μ − μ ; each of the perturbation results is in terms of ΔO.

We begin with some notation. We write the following perturbations (note that all the terms 

written with Δ are additive, while the S term is relative)

ΣOS = ΣOS + ΔOS,
ΣO = ΣO + ΔO,

l = l + Δl,
z = I + diag δz z .

Now we start our perturbation analysis:
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ΣOS = 1
c ΣOz = 1

c ΣO + ΔO I + diag δz z

= 1
c ΣOz + ΣOdiag δz z + ΔO I + diag δz z .

Subtracting ΣOS = 1
cΣOz, we get

ΔOS = 1
c − 1

c ΣOz + 1
c ΣOdiag δz z + ΔO I + diag δz z . (26)

The rest of the analysis requires us to bound the norms for each of these terms.

Left-most term.

We have that

1
c − 1

c ΣOz = c
c − 1 ‖ 1

cΣOz‖ = c
c − 1 ‖ΣOS‖ ≤ dO

c
c − 1 ≤ dO | c − c | .

Here, we bounded ΣOS by dO, since ΣOS ∈ [ − 1, 1]dO . Then, note that 

c = ΣS
−1 1 + zTΣOz ≥ 0, since ΣS < 1 and ΣO ≽ 0 zTΣOz ≥ 0, so therefore c, c ≥ 1. In the last 

inequality, we use this to imply that | c/ c − 1 | ≤ | c − c | ≤ |c − c | . Next we work on 

bounding |c − c | . We have

c − c = ΣS
−1 zTΣOz − zTΣOz

= ΣS
−1 zT I + diag δz

T ΣO + ΔO I + diag δz z − zTΣOz

= ΣS
−1 zTΣOdiag δz z + zTΔO I + diag δz z + zTdiag δz

T ΣO + ΔO I + diag δz z

≤ ΣS
−1 z 2 ΣO 2 δz + δz

2 + ΔO 2 δz + δz
2 + 1

≤ z 2 ΣO 2 δz + δz
2 + ΔO 2 δz + δz

2 + 1 .

Thus,

1
c − 1

c ΣOz ≤ dO z
2

ΣO 2 δz + δz
2 + ΔO 2 δz + δz

2 + 1 . (27)

Bounding c.

We will need a bound on c to bound z. We have that

c = ΣS − ΣOS
T ΣO

−1ΣOS
−1 .

Applying the Woodbury matrix inversion lemma, we have:
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c = ΣS
−1 + ΣS

−1ΣOS
T ΣO − ΣOSΣS

−1ΣOS
T −1ΣOSΣS

−1

Now, by the blockwise inversion lemma, we know that

KO = ΣO − ΣOSΣS
−1ΣOS

T −1

So we then have:

c = ΣS
−1 + ΣS

−1ΣOS
T KOΣOSΣS

−1 ≤ ΣS
−1 + ΣS

−1 2 ΣOS
2 KO

Bounding z.

We’ll use our bound on c, since z = cΣO
−1ΣOS .

z = cΣO
−1ΣOS

≤ ΣS
−1 + ΣS

−1 2 ΣOS
2 KO

1
2 ΣO

−1 ΣOS

≤ ΣS
−1 + ΣS

−1 2dO KO

1
2 ΣO

−1 dO

= dO
ΣS

ΣS
dO

+ λmax KO

1
2λmin

−1 ΣO

In the last inequality, we used the fact that ΣOS
2 ≤ dO . Now we want to control Δl .

Perturbation bound.

We have the perturbation bound

Δl ≤ MΩ
+ qS − qS . (28)

We need to work on the term qS − qS . To avoid overly heavy notation, we write 

P = ΣO
−1, P = ΣO

−1, and ΔP = P − P . Then we have:
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qS − qS
2 = ∑

(i, j) ∈ S
log P i, j

2 − log P i, j
2 2

= 4 ∑
(i, j) ∈ S

log P i, j − log P i, j
2

= 4 ∑
(i, j) ∈ S

log P i, j + ΔP i, j − log P i, j
2

≤ 4 ∑
(i, j) ∈ S

log 1 + ΔP i, j
P i, j

2

≤ 8 ∑
(i, j) ∈ S

ΔP i, j
P i, j

2

≤ 8
Pmin

2 ∑
(i, j) ∈ S

ΔP i, j
2

≤ 8 ΣO
−1 − ΣO

−1 2

ΣO
−1

min
2 .

Here, the second inequality uses (log(1 + x))2 ≤ x2, and the fourth inequality sums over 

squared values. Next, we use the perturbation bound ΣO
−1 − ΣO

−1 ≤ ΣO
−1 2 ΔO , so that we 

have

qS − qS ≤ 2 2 ΣO
−1 2 ΔO

ΣO
−1

min
.

Then, plugging this into (28), we get that

Δl ≤ σmax MΩ
+ 2 2 ΣO

−1 2 ΔO

ΣO
−1

min

. (29)

Bounding δz.

Note also that Δl
2 = ∑i = 1

m log zi
2 − log zi

2 . We have that

Δl
2 = ∑

i = 1

m
log zi

2

zi
2

= 2 ∑
i = 1

m
log zi

zi

= 2 ∑
i = 1

m
log 1 + δz i ,

≥ 2 ∑
i = 1

m
δz i

2

= 2 δz
2,

where in the fourth step, we used the bound log(1 + a) ≥ a2 for small a. Then, we have
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δz ≤ 2 ΣO
−1 2 ΔO

ΣO
−1

min

σmax MΩ
+ . (30)

Putting it together.

Using (26), we have that

ΔOS = 1
c − 1

c ΣOz + 1
c ΣOdiag δz z + ΔO I + diag δz z

≤ 1
c − 1

c ΣOz + ΣOdiag δz + ΔO I + diag δz z

≤ dO z
2

ΣO 2 δz + δz
2 + ΔO 2 δz + δz

2 + 1

+ ΣO δz z + ΔO z 1 + δz

≤ dO z
2

3 ΣO δz + 3 ΔO δz + ΔO

+ ΣO δz z + ΔO z 1 + δz

≤ z (3 dO z + 1) ΣO + ΔO δz + ΔO

Where in the first inequality, we use the triangle inequality and the fact that c > 1, and in 

the third inequality, we relied on the fact that we can control δz through ΔO  so that we 

can make it small enough and thus take δz
2 ≤ δz . Now we can plug in our bounds on 

z and δz  from before:

ΔOS ≤ dO
ΣS

ΣS
dO

+ λmax KO

1
2λmin

−1 ΣO 3 dO
dO
ΣS

ΣS
dO

+ λmax KO

1
2λmin

−1 ΣO + 1

× ΣO + ΔO
2 ΣO

−1 2 ΔO

ΣO
−1

min
σmax MΩ

+ + ΔO

For convenience, we set ΔO = t . Recall that

a = dO
ΣS

+ dO
ΣS

2
λmax KO

1
2

and

b = ΣO
−1 2

ΣO
−1

min
.

Then, we have

ΔOS ≤ 3 dOaλmin
−1 ΣO + 1 2abκ ΣO σmax MΩ

+ t + 2abσmax MΩ
+

λmin ΣO
t2 + aλmin

−1 ΣO t .
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Again we can take t small so that t2 ≤ t. Simplifying further, we have

ΔOS ≤ 3 dOaλmin
−1 ΣO + 1 2abσmax MΩ

+ κ ΣO + λmin
−1 ΣO + aλmin

−1 ΣO t .

Finally, since the aλmin
−1 ΣO  is smaller than the left-hand term inside the parentheses, we can 

write

ΔOS ≤ 3 dOaλmin
−1 ΣO + 1 2 2abσmax MΩ

+ κ ΣO + λmin
−1 ΣO t . (31)

Concentration bound.

We need to bound t = ||ΔO ||, the error when estimating ΣO from observations 

ψ(O)(1), …, ψ(O)(n) over n unlabeled data points.

To start, recall that O is the set of observable cliques, ψ(O) ∈ 0, 1 dO is the corresponding 

vector of minimal statistics, and ΣO = Cov[ψ(O)] . For notational convenience, let 

R = E ψ(O)ψ(O)T , r = E[ψ(O)], and rk = ψ(O)(k), and Δr = 1
n ∑i = 1

n rk − r . Then we have:

ΔO = ΣO − ΣO = R − rrT − 1
n ∑

i = 1

n
riri

T − r + Δr r + Δr
T

≤ R − 1
n ∑

i = 1

n
riri

T

ΔR

+ rrT − r + Δr r + Δr
T

Δr

.

We start by applying the matrix Hoeffding inequality [32] to bound the first term, 

ΔR . Let Sk = 1
n R − Rk , and thus clearly E Sk = 0. We seek a sequence of symmetric 

matrices Ak s.t. Sk
2 ≼ Ak

2 . First, note that, for some vectors x, v,

xT v 2I − vvT x = v
2

x
2

− x, v 2 ≥ 0

using Cauchy-Schwarz; therefore v 2I ≽ vvT , so that

dO
2 I ≽ rk

4I ≽ rk
2rkrk

T = rkrk
T 2 .

Next, note that rkrk
T + R 2 ≽ 0. Now, we use this to see that:

nSk
2 = rkrk

T − R 2 ≼ rkrk
T − R 2 + rkrk

T + R 2 = 2 rkrk
T 2 + R2 ≼ 2 dO

2 I + R2 .

Therefore, let Ak
2 = 2

n2 dO
2I + R2 , and note that R2 ≤ R 2 ≤ dO R max

2 = dO
2 . We then have
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σ2 = ∑
k = 1

n
Ak

2 ≤ 2
n dO

2 + R2 ≤ 4dO
2

n .

And thus,

P ΔR ≥ γ ≤ 2dOexp − nγ2

32dO
2 . (32)

Next, we bound Δr. We see that:

Δr = rrT − r + Δr r + Δr
T

= rΔr
T + ΔrrT + ΔrΔr

T

≤ rΔr
T + ΔrrT + ΔrΔr

T

≤ 2 r Δr + Δr
2

≤ 3 r Δr

≤ 3 r 1 Δr 1

≤ 3dO
2 Δr

′ ,

where Δr
′ is the perturbation for a single element of ψ(O). We can then apply the standard 

Hoeffding’s bound to get:

P Δr ≥ γ ≤ 2exp − 2nγ2
3dO

2 ,

Combining the bounds for ||ΔR|| and ||Δr||, we get:

P ΔO ≥ γ = P(t ≥ γ) ≤ 3dOexp − nγ2

32dO
2 . (33)

Final steps

Now, we use the bound on t in (31) and the concentration bound above to write

P ΔOS ≥ t′ ≤ P V t ≥ t′
= P t ≥ t′

V

≤ 2dOexp − nt′2

32V 2dO
2

,

where V = 3 dOaλmin
−1 ΣO + 1 2 2abσmax MΩ

+ κ ΣO + 1
λmin(Σo) .

Given ΣOS, we recover μ1 = ΣOS + E[ψ(H)]E[ψ(O)] . We assume E[ψ(H)] is known, and we can 

bound the error introduced by E[ψ(H)]E[ψ(O)] as above, which we see can be folded into the 

looser bound for the error in ΣOS .
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Finally, we expand the rank-one form μ1 into μ algebraically, according to our weight 

tying in the rank one model we use. Suppose in the rank one reduction (see Section 

A.3.4), we let YB = 1 Y = y1 . Then each element of μ1 that we track corresponds to either 

the probability of being correct, αC, y = P ∩i ∈ C λi = y , Y = y  or the probability of being 

incorrect, 1
r − 1 1 − αC, y , for each source clique C and label output combination yC, and 

this value is simply copied r − 1 times (for the other, weight-tied incorrect values), except 

for potentially one entry where it is multiplied by (r − 1) and then subtracted from 1 (to 

transform from incorrect to correct). Therefore, Δμ = μ − μ ≤ 2(r − 1) μ1 − μ1 . Thus, we 

have:

P Δμ ≥ t′ ≤ 4(r − 1)dOexp − nt′2

32V 2dO
2

,

where V is defined as above. We only have one more step:

E[ μ − μ ] = ∫
0

∞
P( μ − μ ≥ γ)dγ

≤ ∫
0

∞
4(r − 1)dOexp − n

32V 2dO
2

γ2 dγ

= 4(r − 1)dO π

2 n
32V 2dO

2

= 4(r − 1)dO
2 32π

n V .

Here, we used the fact that ∫0
∞exp −aγ2 dγ = π

2 a . □

C: Experimental Details

C.1 Data Balancing and Label Model Training Procedure

For each application, rebalancing was applied via direct subsampling to the training set in 

the manner that was found to most improve development set micro-averaged accuracy. 

Specifically, we rebalance with respect to the median class for OpenI (i.e., removing 

examples from majority class such that none had more than the original median class), 

the minimum class for TACRED, and perform no rebalancing for OntoNotes. For generative 

model training, we use stochastic gradient descent with a step size, step number, and l2

penalty listed in Table 3 below. These parameters were found via 10-trial coarse random 

search, with all values determined via maximum micro-averaged accuracy evaluated on the 

development set.

C.2 End Model Training Procedure

Before training over multiple iterations to attain averaged results for reporting, a 10-trial 

random search over learning rate and l2 regularization with the Adam optimizer was 
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performed for each application based on micro-averaged development set accuracy. Learning 

rate was decayed by an order of magnitude if no increases in training loss improvement or 

development set accuracy were observed for 10 epochs, and the learning rate was frozen 

during the first 5 epochs. Models are reported using early stopping, wherein the best 

performing model on the development set is eventually used for evaluation on the held-out 

test set, and maximum epoch number is set for each application at a point beyond which 

minimal additional decrease in training loss was observed.

C.3 Dataset Statistics

We give additional detail in here (see Table 4) on the different datasets used for the 

experimental portion of this work. All data in the development and test sets is labeled 

with ground truth, while data in the training set is treated as unlabeled. Each dataset has a 

particular advantage in our study. The OntoNotes set, for instance, contains a particularly 

large number of relevant data points (over 63k), which enables us to investigate empirical 

performance scaling with the number of unlabeled data points. Further, the richness of the 

TACRED dataset allowed for the creation of an 8-class, 7-sub-task hierarchical classification 

problem, which demonstrates the utility of being able to supervise at each of the three 

levels of task granularity. Finally, the OpenI dataset represents a real-world, non-benchmark 

problem drawn from the domain of medical triage, and domain expert input was directly 

leveraged to create the relevant supervision sources. The fact that these domain expert weak 

supervision sources naturally occurred at multiple levels of granularity, and that the could 

be easily integrated to train an effective end model, demonstrates the utility of the MeTaL 

framework in practical settings.

Table 3:

Model architecture and training parameter details.

OntoNotes TACRED OpenI

Label Model Training

Step Size 5e-3 1e-2 5e-4

l2
Regularization

1e-4 4e-4 1e-3

Step Number 50 25 50

End Model Architecture

Embedding Initialization PubMed FastText EN Random

Embedding Size 100 300 200

LSTM Hidden Size 150 250 150

LSTM Layers 1 2 1

Intermediate Layer Dimensions 200, 50 200, 50, 25 200, 50

End Model Training

Learning Rate 1e-2 1e-3 1e-3
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OntoNotes TACRED OpenI

l2
Regularization

1e-4 1e-4 1e-3

Epochs 20 30 50

Dropout 0.25 0.25 0.1

Table 4:

Dataset split sizes and sub-task structure for the three fine-grained classification tasks on 

which we evaluate MeTaL.

# Train #Dev # Test Tree Depth # Tasks # Sources/Task

OntoNotes (NER) 62,547 350 345 2 3 11

TACRED (RE) 9,090 350 2174 3 7 9

OpenI (Doc) 2,630 200 378 2 3 19

C.4 Task Accuracies

For clarity, we present in Table 5 the individual task accuracies of both the learned MeTaL 

model and MV for each experiment. These accuracies are computed from the output of 

evaluating each model on the test set with ties broken randomly.

C.5 Ablation Study: Unipolar Correction and Joint Modeling

We perform an additional ablation to demonstrate the relative gains of modeling unipolar 

supervision sources and jointly modeling accuracies across multiple tasks with respect to the 

data programming (DP) baseline [27]. Results of this investigation are presented in Table 6. 

We observe an average improvement of 2.8 points using the unipolar correction (DP-UI), 

and an additional 1.3 points from joint modeling within MeTaL, resulting in an aggregate 

gain of 4.1 accuracy points over the data programming baseline.

Table 5:

Label model task accuracies for each task for for both our approach and majority vote 

(MeTaL/MV)

OntoNotes TACRED OpenI

Task 1

MV 93.3 74.2 83.9

MeTaL 91.9 80.5 84.1

Task 2

MV 73.3 46.2 77.8

MeTaL 7S.6 6S.9 83.7

Task 3
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OntoNotes TACRED OpenI

MV 71.4 74.9 61.7

MeTaL 74.1 74.8 61.7

Task 4

MV - 34.4 -

MeTaL - 60.2 -

Task 5

MV - 36.2 -

MeTaL - 40.2 -

Task 6

MV - 56.3 -

MeTaL - 49.9 -

Task 6

MV - 36.8 -

MeTaL - 56.3 -

Table 6:
Effect of Unipolar Correction.

We compare the micro accuracy (avg. over 10 trials) with 95% confidence intervals of a 

model trained using data programming (DP), data program with a unipolar correction (DP-

UI), and our approach (MeTaL).

OntoNotes (NER) TACRED (RE) OpenI (Doc) Average

DP [28] 78.4 ± 1.2 49.0 ± 2.7 75.8 ± 0.9 67.7

DP-UI 81.0 ± 1.2 54.2 ± 2.6 76.4 ± 0.5 70.5

MeTaL 82.2 ± 0.8 56.7 ± 2.1 76.6 ± 0.4 71.8
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Figure 1: 
A schematic of the MeTaL pipeline. To generate training data for an end model, such 

as a multi-task model as in our experiments, the user inputs a task graph Gtask defining 

the relationships between task labels Y1,…Yt; a set of unlabeled data points X; a set of 

multi-task weak supervision sources si which each output a vector λi of task labels for X; and 

the dependency structure between these sources, Gsource. We train a label model to learn the 

accuracies of the sources, outputting a vector of probabilistic training labels Y for training 

the end model.
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Figure 2: 
An example fine-grained entity classification problem, where weak supervision sources label 

three sub-tasks of different granularities: (i) Person vs. Organization, (ii) Doctor vs. Lawyer 

(or N/A), (iii) Hospital vs. Office (or N/A). The example weak supervision sources use a 

pattern heuristic and dictionary lookup respectively.
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Figure 3: 
An example of a weak supervision source dependency graph Gsource (left) and its junction 

tree representation (right), where Y is a vector-valued random variable with a feasible set of 

values, Y ∈ Y. Here, the output of sources 1 and 2 are modeled as dependent conditioned 

on Y. This results in a junction tree with singleton separator sets, Y. Here, the observable 

cliques are O = {λ1, λ2, λ3, λ4, {λ1, λ2}} ⊂ C.
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Figure 4: 
(Left) Estimation error μ − μ*  decreases with increasing n. (Middle) Given Gsource, our 

model successfully recovers the source accuracies even with many pairwise dependencies 

among sources, where a naive conditionally-independent model fails. (Right) The runtime of 

MeTaL is independent of n after an initial matrix multiply, and can thus be multiple orders 

of magnitude faster than Gibbs sampling-based approaches [28].
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Figure 5: 
In the OntoNotes dataset, end model accuracy scales with the amount of available unlabeled 
data.
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Figure 6: 
Using the label model (LM) predictions directly versus using an end model trained on them 

(EM).
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Table 1:
Performance Comparison of Different Supervision Approaches.

We compare the micro accuracy (avg. over 10 trials) with 95% confidence intervals of an end multi-task model 

trained using the training labels from the hand-labeled development set (Gold Dev), hierarchical majority vote 

(MV), data programming (DP), and our approach (MeTaL).

NER RE Doc Average

Gold (Dev) 63.7 ± 2.1 28.4 ± 2.3 62.7 ± 4.5 51.6

MV 76.9 ± 2.6 43.9 ± 2.6 74.2 ± 1.2 65.0

DP [28] 78.4 ± 1.2 49.0 ± 2.7 75.8 ± 0.9 67.7

MeTaL 82.2 ± 0.8 56.7 ± 2.1 76.6 ± 0.4 71.8
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