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Abstract

When new events overlap with past events, there is a natural tradeoff between encoding the new 

event and retrieving the past event. Given the ubiquity of overlap among memories, this tradeoff 

between memory encoding and retrieval is of central importance to computational models of 

episodic memory (O’Reilly & McClelland, 1994; Hasselmo, 2005). However, prior studies have 

not directly linked neural markers of encoding/retrieval tradeoffs to behavioral measures of how 

overlapping events are remembered. Here, by decoding patterns of scalp electroencephalography 

(EEG) from male and female human subjects, we show that tradeoffs between encoding and 

retrieval states are reflected in distributed patterns of neural activity and, critically, these neural 

tradeoffs predict how overlapping events will later be remembered. Namely, new events that 

overlapped with past events were more likely to be subsequently remembered if neural patterns 

were biased toward a memory encoding state–or, conversely, away from a retrieval state. 

Additionally, we show that neural markers of encoding vs. retrieval states are surprisingly 

independent from previously-described EEG predictors of subsequent memory. Instead, we 

demonstrate that previously-described EEG predictors of subsequent memory are better explained 

by task engagement than by memory encoding, per se. Collectively, our findings provide important 

insight into how the memory system balances memory encoding and retrieval states and, more 

generally, into the neural mechanisms that support successful memory formation.
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Introduction

Most of our experiences have some overlap with past events and this overlap can function as 

a cue that triggers memory retrieval (Kuhl, Shah, DuBrow, & Wagner, 2010; Zeithamova, 

Dominick, & Preston, 2012). However, retrieval of the past potentially comes at the expense 

of encoding new memories (Huijbers, Pennartz, Cabeza, & Daselaar, 2009; Duncan, 
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Sadanand, & Davachi, 2012; Patil & Duncan, 2018). For example, upon encountering an 

acquaintance, you may find yourself remembering a previous conversation with this 

acquaintance only to realize that you have not encoded the current conversation. This 

tradeoff between encoding and retrieval that arises whenever memories overlap is of central 

importance to computational models of episodic memory (O’Reilly & McClelland, 1994) 

and may reflect a fundamental opposition between the neural states that support encoding 

vs. retrieval (Hasselmo, 2005). Yet, there is surprisingly little evidence showing that neural 

measures of encoding/retrieval states predict how overlapping events will later be 

remembered.

Evidence from rodent and human studies collectively motivates the idea that encoding/

retrieval tradeoffs are reflected in electrophysiological measures (Hasselmo, Bodelon, & 

Wyble, 2002; Rizzuto, Madsen, Bromfield, Schulze-Bonhage, & Kahana, 2006; Griffin, 

Eichenbaum, & Hasselmo, 2007; Manns, Zilli, Ong, Hasselmo, & Eichenbaum, 2007; 

Colgin et al., 2009; Hasselmo & Stern, 2014). Much of this work has focused on relatively 

rapid alternations between encoding and retrieval states (theta phase), with each state lasting 

100 ms or less (Hasselmo, 2005). However, there is also evidence from human and rodent 

studies of more sustained oscillatory signals (including theta amplitude) that reflect the state 

of the memory system (Kirov, Weiss, Siebner, Born, & Marshall, 2009; Molter, O’Neill, 

Yamaguchi, Hirase, & Leinekugel, 2012). These sustained oscillatory signals potentially 

reflect neuromodulatory effects (in particular, acetylcholine levels), which exert an influence 

on a relatively slow timescale (on the order of seconds, Meeter, Murre, & Talamini, 2004; 

Hasselmo & McGaughy, 2004). Indeed, evidence from human behavioral studies indicates 

that biases toward encoding vs. retrieval states can last at least several seconds (Duncan et 

al., 2012; Patil & Duncan, 2018), consistent with the timescale at which acetylcholine is 

thought to influence the memory system (Meeter et al., 2004). Moreover, these behavioral 

studies also indicate that biases toward encoding vs. retrieval states influence how new 
events are remembered (Duncan et al., 2012). Collectively, these findings motivate the idea 

that relatively long-timescale biases toward encoding vs. retrieval states are reflected in 

electrophysiological measures and that these biases may critically determine how 

overlapping events are subsequently remembered.

To the extent that biases toward encoding vs. retrieval are reflected in sustained 

electrophysiological activity patterns, an important secondary question is whether these 

electrophysiological patterns mirror classic subsequent memory effects (SMEs). Numerous 

scalp and intracranial EEG studies have identified neural predictors of subsequent memory 

(Paller, Kutas, & Mayes, 1987; Fernandez et al., 1999; Friedman & Johnson, 2000; Otten & 

Rugg, 2001; Sederberg, Kahana, Howard, Donner, & Madsen, 2003; Gruber, Tsivilis, 

Montaldi, & Müller, 2004). In particular, subsequent memory is consistently predicted by 

increases in high frequency activity and decreases in low frequency activity (Osipova et al., 

2006; Sederberg et al., 2006; Burke et al., 2014; Long, Burke, & Kahana, 2014; Greenberg, 

Burke, Haque, Kahana, & Zaghloul, 2015). On the one hand, this pattern of high frequency 

increases and low frequency decreases may reflect a neural state that is biased toward 

memory encoding–and away from memory retrieval. On the other hand, however, it is 

possible that this neural pattern reflects other dimensions of cognitive processing (vigilance, 

elaborative processing, arousal, etc.) that tend to be correlated with subsequent remembering 
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but that do not directly map to whether the memory system is in an encoding vs. retrieval 

state. Thus, comparing neural markers of encoding vs. retrieval states to canonical SMEs is 

important for understanding, in mechanistic terms, the dimensions that contribute to 

successful memory formation.

Here, we report a human scalp EEG study in which subjects first studied an initial set of 

object images and then studied highly similar (overlapping) images (Bakker, Kirwan, Miller, 

& Stark, 2008). Critically, however, during study of the overlapping images, we explicitly 

biased subjects toward encoding vs. retrieval states. Afterward, subjects completed a final 

recognition test that probed memory for all of the previously-presented object images. We 

address three primary questions. First, can biases toward encoding vs. retrieval states be 

decoded from distributed electrophysiological activity patterns? Second, do these 

electrophysiological biases predict how overlapping events will later be remembered? 

Finally, how do neural markers of encoding vs. retrieval states relate to canonical SMEs?

Materials and Methods

Subjects

Forty (30 female; mean age = 21 years) right-handed, native English speakers from the 

University of Oregon community participated. All subjects had normal or corrected-to-

normal vision. Informed consent was obtained in accordance with the University of Oregon 

Institutional Review Board. Four subjects were excluded from the final dataset: one who felt 

ill during set up and subsequently exited the experiment, two who failed to respond to over 

50% of recognition phase trials, and one who likely inverted the recognition phase response 

mappings (accuracy of 10%). Thus, data are reported for the remaining 36 subjects. The raw, 

de-identified data as well as associated experimental and analysis codes used in this study 

can be accessed via the Kuhl Lab website (http://kuhllab.com/publications/).

Materials

Stimuli consisted of 576 object pictures, drawn from an image database with multiple 

exemplars per object category (Konkle, Brady, Alvarez, & Oliva, 2010). From this database, 

we chose 144 unique object categories and 4 exemplars from each category. For each 

subject, one exemplar in a set of four served as a List 1 item, one as a List 2 item, and the 

two remaining exemplars served as lures for the recognition phase. Object condition 

assignment was randomly generated for each subject.

Experimental Design and Statistical Analysis

Procedure

General Overview.: In each of eight runs, subjects viewed two lists containing object 

images. For the first list, each object was new (List 1 objects). For the second list (List 2 

objects), each object was again new, but was categorically related to an object from the first 

list. For example, if List 1 contained an image of a bench, List 2 would contain an image of 

a different bench. During List 1, subjects were instructed to encode each new object. During 

List 2, however, each trial contained an instruction to either encode the current object (e.g., 

the new bench) or to retrieve the corresponding item from List 1 (the old bench). Following 
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eight runs, subjects completed a two-alternative forced-choice recognition test that 

separately assessed memory for List 1 and List 2 objects.

List 1.: On each trial, subjects saw a single object presented for 3000 ms followed by a 1000 

ms inter-stimulus interval (ISI; Figure 1A). Subjects were instructed to study the presented 

object in anticipation for a later memory test.

List 2.: On each trial, subjects saw a cue word, either “OLD” or “NEW” for 2000 ms. The 

cue was followed by presentation of an object for 2000 ms, which was followed by a 2000 

ms ISI (Figure 1A). All objects in List 2 were non-identical exemplars drawn from the same 

category as the objects presented in the immediately preceding List 1. That is, if a subject 

saw a bench and a fan during List 1, a different bench and a different fan would be presented 

during List 2. On trials with a “NEW” instruction (encode trials), subjects were to encode 

the presented object. On trials with an “OLD” instruction (retrieve trials), subjects tried to 

retrieve the categorically related item from the preceding List 1. Importantly, this design 

prevented subjects from completely ignoring List 2 items following “OLD” instructions in 

that they could only identify the to-be-retrieved object category by processing the List 2 

item.

Subjects completed eight runs with two lists in each run (List 1, List 2). Subjects viewed 18 

objects per list, yielding a total of 288 object stimuli from 144 unique object categories. 

Subjects did not make a behavioral response during either List 1 or 2.

Recognition phase.: Following the eight runs, subjects completed the recognition phase. On 

each trial, subjects saw two exemplars from the same object category (e.g. two benches; 

Figure 1A). One object had previously been encountered either during List 1 or 2. The other 

object was a lure and had not been presented during the experiment. Subjects selected (via 

mouse click) the previously presented object. Subjects had 4000 ms to respond. If the 

subject failed to respond in time, the trial was counted as incorrect. Trials were separated by 

a 1000 ms ISI. There were a total of 288 recognition trials (corresponding to the 288 total 

List 1 and 2 items presented in the experiment). Note: List 1 and List 2 items never appeared 

in the same trial together, thus subjects never had to choose between two previously 

presented items. List 1 and List 2 items were presented randomly throughout the recognition 

phase.

EEG Data Acquisition and Preprocessing

EEG recordings were collected using a BrainAmp system (Brain Products, Inc.) and an 

ActiCap equipped with 32 Ag-AgCl active electrodes positioned according to the extended 

10-20 system, with electrodes placed on both the left and right mastoids. We additionally 

included six passive electrodes for recording eye movements and blinks: two each above and 

below the left and right eyes, plus two in the eye cannulas. The two mastoid electrodes and 

six passive electrodes were used for recording and artifact detection purposes only and are 

not included in any analyses. All electrodes were digitized at a sampling rate of 1000 Hz and 

were referenced to a right-mastoid electrode. Offline, electrodes were later converted to an 

average reference. Impedances of all electrodes were kept below 50 kΩ. Electrodes that 
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demonstrated high impedance or poor contact with the scalp were excluded from the average 

reference. Bad electrodes were determined by voltage thresholding (see below). A 

combination of EEGLAB (Delorme & Makeig, 2004) and custom Matlab codes were used 

to process the EEG data. We used an automatic artifact correction algorithm based on 

(Nolan, Whelan, & Reilly, 2010) using Independent Components Analysis (ICA; Bell & 

Sejnowski, 1995; Onton & Makeig, 2006) to detect and correct for eye blinks and saccades.

Using raw EEG signals, we performed three preprocessing steps to identify and correct 

electrodes with severe artifacts separately for each subject. First, we calculated the mean 

correlation between each electrode and all other electrodes as electrodes should be 

moderately correlated with other electrodes due to volume conduction. We z-scored these 

means across electrodes and rejected electrodes with z-scores less than −3. Second, we 

calculated the variance for each electrode as electrodes with very high or low variance across 

a session are likely dominated by noise or have poor contact with the scalp. We then z-

scored variance across electrodes and rejected electrodes with a ∣z∣ >= 3. Finally, we expect 

many electrical signals to be autocorrelated, but signals generated by the brain versus noise 

are likely have different forms of autocorrelation. Therefore, we calculated the Hurst 

exponent, a measure of long-range autocorrelation, for each electrode and rejected 

electrodes with a ∣z∣ > = 3. Electrodes that were marked as bad by this procedure were 

interpolated using EEGLAB’s (Delorme & Makeig, 2004) spherical spline interpolation 

algorithm. On average one electrode was interpolated per subject (M = 1.25, SD = 0.5542, 

range = 0-3).

We next ran ICA on this artifact-corrected data. The maximum number of independent 

components (ICs) that can be reliably estimated depends on the number of samples recorded 

for each electrode. Following (Nolan et al., 2010) we extracted c = floor( L ∕ k) ICs where L 

is the number of samples in the session and k is a constant set to 25 (Onton & Makeig, 2006) 

or the number of non-interpolated electrodes, whichever was smaller. We then ran 

EEGLAB’s implementation of infomax ICA (Delorme & Makeig, 2004; Bell & Sejnowski, 

1995) on the first c principal components of the EEG matrix to decompose it into ICs.

ICs that capture blinks or saccades should be highly correlated with the raw signal from the 

passive electrodes located around the eyes. Therefore, for each IC we computed the absolute 

value of its correlation with each of the 4 EOG electrodes positioned above and below the 

eyes. We retained the maximum of those values and z-scored the maximum correlations 

across ICs. We rejected ICs with ∣z∣ >= 3. ICs that capture artifacts isolated to single 

electrodes (e.g., an electrode shifting) should have high weights for the implicated electrodes 

but low weights for other electrodes. To identify such ICs, we calculated the kurtosis of the 

weights across electrodes and excluded any IC with ∣z∣ >= 3. Finally, ICs capturing white 

noise should have a nearly flat power spectrum (vs. the 1/f spectrum expected for neural 

signals). Therefore, we calculated the absolute value of the slope of the power spectrum for 

the frequencies included in the analyses (2–100 Hz) and rejected ICs with z >= −3 (i.e., the 

ones closest to zero slope). Rejected ICs were removed from the matrix and the remaining 

IC activation time courses were projected back into electrode space. Finally, a fourth order 2 

Hz stopband butterworth notch filter was applied at 60 Hz to eliminate electrical line noise. 

All subsequent analyses were carried out on this corrected EEG data.
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EEG data analysis

We applied the Morlet wavelet transform (wave number 6) to all electrode EEG signals from 

2500 ms preceding to 4000 ms following object presentation, across 46 logarithmically 

spaced frequencies (2–100 Hz; Long & Kahana, 2015). We included a 1000 ms buffer on 

both sides of the data to minimize edge effects. After log-transforming the power, we 

downsampled the data by taking a moving average across 100 ms time intervals and sliding 

the window every 25 ms, resulting in 257 time intervals (65 non-overlapping). Power values 

were then z-transformed by subtracting the mean and dividing by the standard deviation 

power. Mean and standard deviation power were calculated across all List 1 and List 2 items 

and across time points for each frequency.

Univariate analyses

To test effects specific to high frequency activity (HFA) and low frequency activity (LFA), 

we divided the z-transformed power into two distinct frequency bands (HFA, 28 - 100 Hz; 

LFA, 2 - 26 Hz) by taking the mean of the z-power in each frequency band. The cutoff of 28 

Hz was derived from an independently collected dataset (Burke et al., 2014). We 

additionally averaged z-power across the stimulus interval (0-3000 ms for List 1; 0-2000 ms 

for List 2) and then averaged z-power across our conditions of interest. For the subsequent 

memory effect (SME) analyses, in order to reduce the influence of small bin sizes subjects 

were required to have a minimum of five events per condition of interest in order to be 

included in analyses (Long & Kahana, 2015). For the List 1 SME, subjects had on average 

120 remembered and 24 forgotten items (SD = 14); one subject was excluded. For the List 2 

SMEs, subjects had on average 58 remembered encode items and 14 forgotten encode items 

(SD = 8), and 54 remembered retrieve items and 18 forgotten retrieve items (SD = 9); three 

subjects were excluded. For the List 1 SME based on List 2 retrieve trials, subjects had on 

average 58 remembered items and 14 forgotten items (SD = 14); 12 subjects were excluded.

Pattern classification analyses

Pattern classification analyses were performed using penalized (L2) logistic regression 

(penalty parameter = 1), implemented via the Liblinear toolbox (Fan, Chang, Hsieh, Wang, 

& Lin, 2008) and custom MATLAB code. Classifier performance was assessed in two ways. 

“Classification accuracy” represented a binary coding of whether the classifier successfully 

guessed the instruction condition. We used classification accuracy for general assessment of 

classifier performance (i.e., whether instructions could be decoded). “Classifier evidence” 

was a continuous value reflecting the logit-transformed probability that the classifier 

assigned the correct instruction for each trial. Classifier evidence was used as a trial-specific, 

continuous measure of state information, which was used to assess the degree to which 

evidence for a given state predicted subsequent memory performance.

We used leave-one-run-out cross validation classification to test whether encode/retrieve 

instructions could be decoded. For each subject, a classifier was trained to discriminate 

encode from retrieve instructions during List 2 using the average z-power across the 0-2000 

ms stimulus interval, 46 logarithmically spaced frequencies from 2 to 100 Hz, and all 30 

electrodes.
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Statistical analyses

We used repeated measures ANOVAs and paired-sample t-tests to assess the effect of 

encode/retrieve instruction on behavioral memory performance. We used repeated measures 

ANOVAs to assess all SMEs.

We used paired-sample t-tests to compare classification accuracy across subjects to chance 

decoding accuracy, as determined by permutation procedures. Namely, for each subject we 

shuffled the condition labels of interest (e.g., “encode” and “retrieve” for the List 2 

instruction classifier) and then calculated classification accuracy. We repeated this procedure 

1000 times for each subject and then averaged the 1000 shuffled accuracy values for each 

subject. These mean values were used as subject-specific empirically derived measures of 

chance accuracy. Paired samples t-tests compared the observed (unshuffled) accuracy values 

to the shuffled accuracy values.

We used logistic regression to assess whether classifier-based encoding evidence predicted 

subsequent memory. For each logistic regression analysis, regressors included: encoding 

evidence, instruction (encode, retrieve), run number, and serial position. We used one-

sample t-tests to compare the logistic regression beta values to zero.

Results

Behavior

We first tested whether instructions influenced performance on the recognition test. While 

encode/retrieve instructions only appeared during List 2, we also considered whether 

memory for List 1 items was influenced by List 2 instructions (e.g., whether memory for the 

old bench was influenced by whether the new bench was associated with an encode vs. 

retrieve instruction). An ANOVA with factors of list (1,2) and instruction (encode, retrieve; 

Figure 1B) revealed a list by instruction interaction (F1,35 = 8.1981, p = 0.0070). For List 1 

items, memory was comparable for encode (M = 83.68%, SD = 10.12%) and retrieve items 

(M = 84.41%, SD = 10.00%; difference between encode vs. retrieve: t35= −0.7343, p = 

0.4677). For List 2 items, however, memory was better for encode (M = 80.86%, SD = 

11.51%) than retrieve items (M = 75.96%, SD = 12.77%; difference between encode vs. 

retrieve: t35= 3.0398, p = 0.0045). While subtle, these results confirm that subjects were able 

to shift between encoding and retrieval states in a goal-directed manner.

EEG markers of encoding vs. retrieval states

We next assessed potential neural differences between encoding vs. retrieval states (Tulving 

et al., 1994; Lepage, Habib, & Tulving, 1998). Of particular interest was whether biases 

toward encoding vs. retrieval states could be decoded on a trial-by-trial basis. To this end, 

we conducted a multivariate pattern classification analysis (Richter, Chanales, & Kuhl, 

2016). Specifically, we trained a classifier to discriminate encoding vs. retrieval trials based 

on a feature space comprised of all 30 electrodes × 46 logarithmically spaced frequencies 

ranging from 2 to 100 Hz. For this analysis, spectral power was averaged over the stimulus 

interval. Using within-subject, leave-one-run-out classifiers, mean classification accuracy 

was 55.71% (SD = 9.11%), which was reliably greater than chance, as determined by 
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permutation tests (t35= 3.7476, p = 0.0006; Figure 2A). Excluding the two subjects who had 

the highest classification accuracies (accuracies > 80%, z scores > 3; see Figure 2A), 

classification accuracy remained reliably greater than chance (mean accuracy = 54.04%, SD 

= 6.04%, t33= 3.8939, p = 0.0004). At the level of individual subjects, classification accuracy 

was reliably above chance (observed accuracy >95% of accuracies from the permuted 

distribution) in 12 out of the 36 subjects. To visualize state effects over time, we measured 

encoding evidence across 100 ms intervals during the List 2 trials, separately for encode and 

retrieve trials (Figure 2B). In a 2 (encode, retrieve) × 20 (time interval) repeated measures 

ANOVA, we found a reliable interaction between instruction and time interval (F19,665 = 

2.092, p = 0.0043). As we did not have a priori predictions about specific time intervals, all 

subsequent analyses are based on data averaged across the entire time window. Figure 2C 

displays the mean difference in spectral power between encode vs. retrieve trials for each of 

the 30 electrode × 46 frequency bins.

Critically, we next tested whether trial-level evidence of memory states (derived from the 

classifiers) predicted subsequent memory for List 2 items (Figure 2D). We predicted that 

greater evidence for an encoding state (or, conversely, less evidence for a retrieval state) 

would be associated with better subsequent memory. Logistic regression analyses (which 

included factors of trial instruction and encoding evidence) revealed a significant, positive 

relationship between encoding evidence and subsequent memory (mean β = 0.0561, SD = 

0.1343, one-sample t-test vs. 0, t34= 2.4709, p = 0.0186). As a control analysis, we tested 

whether List 2 encoding evidence also predicted memory for List 1 items, but this 

relationship was not significant (mean β = −0.0122, SD = 0.1250, one-sample t-test vs. 0, 

t34= −0.5767, p = 0.5680; Figure 2D). This null result argues against a non-selective 

relationship between encoding evidence and particular stimulus categories–for example, that 

some categories of images (e.g., benches) tend to elicit stronger encoding evidence and tend 

to be better remembered.

While the observed relationship between List 2 encoding evidence and subsequent List 2 

memory controlled for the actual instruction on each trial, we next considered a stronger 

test: whether evidence for an encoding state predicted subsequent memory when specifically 

considering only List 2 trials where the instruction was to retrieve. Strikingly, when only 

considering retrieve trials, classifier evidence for an encoding state reliably predicted 

subsequent memory (β = 0.0951, SD = 0.1776, t34= 3.1670, p = 0.0032). This result 

indicates that the classifier generated a meaningful index of how mnemonic processing was 

oriented, as opposed to simply indexing whether subjects complied with the task 

instructions. We also tested whether evidence for an encoding state predicted subsequent 

memory for List 2 trials where the instruction was to encode. For these trials, the 

relationship between classifier evidence for an encoding state and subsequent memory was 

numerically positive, but did not approach significance (β = 0.0240, SD = 0.2604, t32= 

0.5284, p = 0.6009). However, this null result should be interpreted with some caution since 

memory for encode items was high overall, resulting in relatively few encode items in the 

‘forgotten’ bin. As a complementary–and higher powered analysis–we applied the classifiers 

trained on List 2 data to all of the List 1 trials. The List 1 trials can effectively be thought of 

as trials with an ‘encode’ instruction, and there were twice as many List 1 trials as List 2 

encode trials. Notably, the classifier was more likely to label List 1 trials as ‘encode’ than it 
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was to label the List 2 trials (combining across instruction conditions) as encode (List 1: M 

= 54.46%, SD = 7.20%; List 2: M = 47.57%, SD = 6.04%; difference between List 1 and 

List 2: t35 = 3.7112, p = 0.0007). More importantly, stronger encoding evidence during List 

1 predicted better subsequent memory for List 1 items (mean β = 0.0745, SD = 0.2111; t34= 

2.0875, p = 0.0444). This result, which replicates the List 2 results (Figure 2D), provides 

additional validation that the classifier indexed meaningful variability in memory states even 

when controlling for the instructions that subjects received.

One potential concern about the observed relationship between encoding evidence and 

subsequent memory is that the number of subsequently remembered trials was not balanced 

across the encode and retrieve conditions–namely, there were more subsequently 

remembered items in the encode condition than the retrieve condition. Although this 

imbalance was very small (see Figure 1B), it is possible that instead of, or in addition to, 

learning to discriminate memory states, the classifier learned to predict subsequent memory. 

To address this, we re-ran the main classification analyses such that for each iteration of 

classifier training (i.e., for each fold for each subject) the encode and retrieve trials in the 

training set contained an equal number of subsequently remembered List 2 items (as well as 

an equal number of subsequently forgotten List 2 items). This was accomplished by 

randomly dropping trials from conditions with the higher counts. This process was repeated 

10 times per classification fold and classifier performance was averaged across the 10 

iterations. With this balancing, the classifiers could not learn to discriminate between the 

encode and retrieve conditions based on subsequent memory status. Using evidence from 

these balanced classifiers, we replicated the key result relating List 2 encoding evidence to 

List 2 subsequent memory (mean β = 0.0646, SD = 0.1385, one-sample t-test vs. 0, t34= 

2.7601, p = 0.0092). The relationship also remained significant when just considering 

retrieve trials (mean β = 0.1046, SD = 0.1824, one-sample t-test vs. 0, t34= 3.3945, p = 

0.0018) and numerically positive, but not significant, for encode trials (mean β = 0.0340, SD 

= 0.2773, one-sample t-test vs. 0, t34= 0.7046, p = 0.4862). We also applied these balanced 

classifiers, trained on List 2 data, to all of the List 1 trials. As we observed with the 

‘unbalanced’ classifiers, List 1 trials were more likely to be labeled as ‘encode’ than List 2 

trials (List 1: M = 53.40%, SD = 6.61%; List 2: M = 47.39%, SD = 5.85%; difference 

between List 1 and List 2: t35 = 4.0566, p = 0.0003) and stronger encoding evidence during 

List 1 predicted better subsequent memory for List 1 items (mean β = 0.0763, SD = 0.2191, 

t34= 2.0598, p = 0.0471).

Finally, although our inclusion of frequencies above 40 Hz was motivated by prior evidence 

that subsequent memory effects in these high frequency ranges are generally similar across 

scalp and intracranial EEG (Long et al., 2014), one potential concern is that high frequency 

effects may have been influenced by eye movements and that these ‘contaminated’ EEG 

effects contributed to classification accuracy. To address this concern, we re-ran the main 

classification analyses excluding frequencies above 40 Hz (resulting in 35 frequency 

features available for classification). With this approach, we again observed above-chance 

classification performance (M = 55.88%, SD = 9.53%, t35 = 3.7060, p = 0.0007). Further, 

encoding evidence during List 2 trials reliably predicted List 2 memory (mean β = 0.0649, 

SD = 0.1386, t34 = 2.7704, p = 0.0090) and did not predict List 1 memory (mean β = 

−0.0103, SD = 0.1260, t34= −0.4848, p = 0.6309). When List 2 trials were separated into 
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retrieve and encode trials, encoding evidence on retrieve trials reliably predicted List 2 

memory (mean β = 0.1028, SD = 0.1615, t34 = 3.7673, p = 0.0006) whereas encoding 

evidence on encode trials did not (mean β = 0.0375, SD = 0.2583, t32 = 0.8332, p = 0.4109). 

Finally, when the classifier was trained on List 2 trials and tested on List 1 trials, there was a 

trend toward significant prediction of List 1 memory (mean β = = 0.0657, SD = 0.2118, t34 = 

1.8355, p = 0.0752). Thus, the observed results were virtually identical with the exclusion of 

high frequency activity.

Relation to univariate subsequent memory effects

An important aspect of the preceding analyses is that we predicted subsequent memory from 

decoded memory state evidence, as opposed to directly predicting subsequent memory from 

EEG activity patterns. However, many prior studies have directly compared EEG activity for 

subsequently remembered vs. forgotten events (Paller et al., 1987; Sederberg et al., 2006; 

Osipova et al., 2006; Burke et al., 2014; Long et al., 2014). These studies have consistently 

observed that subsequently remembered events are associated with an increase in high 

frequency activity (HFAi, > 28 Hz) and a decrease in low frequency activity (LFAd, < 28 

Hz). This raises the important question of whether the memory state classifier described here 

exploited the same information that has previously been associated with successful encoding 

(i.e., the HFAi/LFAd pattern) or whether the classifier tracked a distinct dimension of 

memory formation. To formally address this question, we conducted several additional 

analyses.

First, we sought to replicate the canonical HFAi/LFAd pattern that has previously been 

associated with subsequent remembering both in intracranial and scalp EEG (Sederberg et 

al., 2006; Osipova et al., 2006; Burke et al., 2014; Long et al., 2014). We did this using List 

1 items, which served as an independent data set. First, we calculated the difference in 

spectral power for items that were subsequently remembered vs. forgotten–i.e., a subsequent 

memory effect (SME). Qualitatively–and consistent with prior studies–subsequent memory 

was associated with increases in HFA and decreases in LFA (Figure 3). To simplify 

subsequent analyses, we first reduced the 46 frequencies into an HFA band (> 28 Hz) and an 

LFA band (< 28 Hz); the cutoff of 28 Hz was derived from an independent, prior study 

(Burke et al., 2014). We then created a functional region of interest (ROI) that was 

comprised of electrodes that exhibited the predicted pattern: significantly more positive 

SMEs in HFA than LFA. Using a threshold of p < 0.01, uncorrected, this resulted in five 

electrodes being included in the ROI (CP2, TP10, Pz, P4, Oz; Figure 3, bold electrode 

labels). This ROI, which was defined based only on List 1 SMEs, was specifically used to 

assess the (independent) HFA/LFA effects from the List 2 data.

To assess whether the HFAi/LFAd pattern was related to encoding vs. retrieval states, we ran 

an ANOVA with factors of electrode (the five electrodes in the functional ROI) and 

frequency band (HFA vs. LFA), with the dependent variable being the contrast of List 2 

encode vs. retrieve trials (Figure 4A). This ANOVA did not reveal a significant main effect 

of frequency band (F1,35 = 0.108, p = 0.7438) or an interaction between electrode and 

frequency band (F4,140 = 1.335, p = 0.2600). This was also true if all 30 electrodes were 

included (p’s > 0.80). Thus, the pattern of HFA increases and LFA decreases that has 

Long and Kuhl Page 10

Neuroimage. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



repeatedly been associated with subsequent remembering–here and elsewhere–did not 

reflect whether subjects were in an encoding vs. retrieval state. As a more direct test of the 

relationship between the HFAi/LFAd pattern and memory state evidence, we correlated trial-

level classifier evidence for an encoding state with the trial-level difference in HFA vs. LFA 

(averaged across the five electrodes in the functional ROI). This analysis was separately 

performed for List 2 encode and retrieve trials, with each r value Fisher z-transformed and 

averaged, resulting in a single measure (mean z score) per subject. The mean z score was 

−0.0026 (SD = 0.1378), which was not different from 0 (t35 = −0.114, p = 0.9099), 

confirming that the electrophysiological pattern that signaled an encoding state was not the 

same as the HFAi/LFAd pattern that has typically been associated with subsequent 

remembering. As a further test of whether the difference between encoding vs. retrieval 

states was related to the difference between subsequently remembered vs. forgotten trials, 

we correlated the frequency × electrode spectrogram from the List 2 encode vs. retrieve 

contrast with the spectrogram from the List 1 remembered vs. forgotten contrast (Figure 

4B). A separate correlation was computed for each subject and resulting correlation values 

were compared to zero. Again, there was no evidence for a relationship between these 

measures (mean zRho = −0.0266, SD = 0.2047; t-test vs. 0: t35 = −0.7792, p = 0.4411). 

Finally, we trained a pattern classifier on the List 1 data to predict subsequent memory 

(remembered, forgotten) for List 1 items. We found modest, but reliably above chance 

classification accuracy (M = 52.09%, SD = 5.30%, t34 = 2.3481, p = 0.0248). We then 

applied this classifier to List 2 trials in order to test whether encode trials tended to be 

labeled as ‘remembered’ and retrieve trials as ‘forgotten’. Using this definition of accuracy, 

the classifier was not significantly above chance (M = 49.56%, SD = 3.56%, t34 = −0.7297, 

p = 0.4706), again consistent with the idea that the pattern of spectral activity associated 

with subsequent memory was distinct from the pattern of spectral activity that distinguished 

encode vs. retrieve trials.

While the HFAi/LFAd pattern did not reflect the tradeoff between encoding vs. retrieval 

states, a separate question is whether this pattern predicted subsequent memory independent 

of task instructions. As described above, classifier evidence for an encoding state predicted 

subsequent memory for List 2 items even when subjects were instructed to retrieve the List 1 

item. If the HFAi/LFAd pattern reflects successful memory formation, per se, then the 

pattern should generalize across trials, regardless of instruction. To test this, we derived 

separate SMEs for List 2 encode and retrieve trials (Figure 5B-C). In considering SMEs for 

retrieve trials, it is important to emphasize that our task was deliberately designed such that 

subjects could not strategically ignore List 2 items altogether–rather, subjects needed to first 

encode each List 2 item before retrieving the corresponding List 1 item. Indeed, behavioral 

results confirmed that memory for List 2 retrieve items was well above chance (t35 = 12.20, 

p < 0.0001) and only subtly worse than memory for List 2 encode items.

Averaging the SMEs across the functional ROI, we found a significant interaction between 

instruction (encode, retrieve) and frequency band (HFA vs. LFA; F1,32 = 5.160, p = 0.0300). 

For encode trials, the SME was numerically more positive for HFA than LFA (t32 = 1.7392, 

p = 0.0916), and was qualitatively similar to the List 1 SME (Figure 3) and to the typical 

HFAi,/LFAd pattern. For retrieve trials, however, the SME was numerically more positive for 
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LFA than HFA (t32 = −1.5351, p = 0.1346), qualitatively opposite to the typical HFAi,/LFAd 

pattern.

Why might the relationship between the HFi/LFAd pattern and subsequent memory 

qualitatively flip when the instruction was to retrieve? One possibility is that instead of 

reflecting memory formation, per se, or a tradeoff between encoding vs. retrieval states, the 

HFAi,/LFAd pattern reflects the degree to which subjects are ‘on task.’ In the vast majority 

of subsequent memory studies, memory encoding (or processing that supports memory 

encoding) is task relevant, whereas memory retrieval would be task irrelevant or ‘off task.’ 

Thus, due to the nature of most subsequent memory paradigms, it is hard to know whether 

the HFAi/LFAd pattern reflects memory formation or task engagement (which, in turn, leads 

to better subsequent memory). Notably, the HFAi/LFAd pattern has also been observed 

across other cognitive tasks and domains (Crone, Miglioretti, Gordon, Sieracki, et al., 1998; 

Crone, Miglioretti, Gordon, & Lesser, 1998; Crone, Boatman, Gordon, & Hao, 2001; Miller 

et al., 2007; Jensen, Kaiser, & Lachaux, 2007), suggesting that this pattern is not memory 

specific.

Importantly, a task engagement account of the HFAi/LFAd pattern makes a testable 

prediction: on List 2 retrieve trials, the HFAi/LFAd pattern should reflect successful retrieval 
of corresponding List 1 items and, therefore, should predict better subsequent memory for 

List 1 items. Indeed, HFA increases and LFA decreases have previously been associated 

with successful retrieval when retrieval is task relevant (Hanslmayr, Staudigl, & Fellner, 

2012). To test this prediction, we again measured spectral activity during List 2 retrieve trials 

(using the functional ROI), but now separated these List 2 EEG responses according to 

subsequent memory for corresponding List 1 items (Figure 5D). Strikingly, better 

subsequent memory for to-be-retrieved List 1 items was associated with a clear HFAi/LFAd 

pattern (t26= 2.3741, p = 0.0253)–precisely the pattern that is typically associated with 

successful encoding. Thus, when subjects were instructed to retrieve a similar item from the 

past, the HFAi/LFAd pattern predicted relatively worse memory for the new item (List 2 

item) but better memory for the old item (List 1 item). Collectively, these results strongly 

argue against the idea that the HFAi/LFAd pattern reflects memory formation, per se–or even 

an optimal state for memory encoding–and instead argue that this pattern reflects some 

aspect of task engagement, which has generally been confounded with processing that leads 

to memory formation.

Discussion

Here we show that biases toward memory encoding vs. retrieval states can be decoded from 

spectral EEG patterns and, critically, these decoded biases predict how overlapping events 

will later be remembered. These findings are consistent with computational models 

emphasizing encoding/retrieval tradeoffs during mnemonic processing (O’Reilly & 

McClelland, 1994; Hasselmo, 2005) and build on behavioral evidence of encoding/retrieval 

tradeoffs when new events overlap with past events (Duncan et al., 2012). Surprisingly, 

however, the spectral EEG patterns that reflected these tradeoffs between encoding and 

retrieval states were unrelated to canonical spectral EEG patterns that have previously been 

associated with successful memory encoding. Collectively, these findings provide important 
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insight into the neural mechanisms that determine how overlapping events are subsequently 

remembered.

Before considering our EEG findings, it is important to emphasize several features of our 

behavioral task and results. By design, our critical manipulation between encode and retrieve 

trials was subtle, reflecting an effort to minimize perceptual, motor, or decision-related 

differences between these trials that might inflate classifier performance. Of particular 

importance, subjects were required to attend to each List 2 object image because this image 

either functioned as the to-be-encoded item (encode trials) or as the retrieval cue for the to-

be-retrieved item (retrieve trials). Critically, subsequent memory was significantly better for 

List 2 items in the encode condition than the retrieve condition–confirming that subjects 

successfully modulated their cognitive processing according to instructions. However, this 

difference was modest in magnitude and List 2 items from both conditions were generally 

well remembered indicating that subjects did not simply ignore List 2 items in the retrieve 

condition.

In contrast to memory for List 2 items, memory for List 1 items was not significantly 

influenced by List 2 instructions. In particular, List 2 retrieve instructions did not benefit 

memory for corresponding List 1 items. This null result raises a potential concern that 

retrieve instructions did not, in fact, successfully drive subjects toward a retrieval state. 

However, we were not altogether surprised by this null result given the nature of the 

recognition test. We used a forced-choice recognition test that required subjects to 

discriminate between highly similar exemplars. We used this challenging recognition test in 

order to avoid ceiling effects in recognition accuracy, with the tradeoff being that this 

particular test was likely not optimal for revealing retrieval-based strengthening. Namely, 

retrieval-based strengthening may preferentially occur at the level of generic category-level 

information, as opposed to strengthening of the idiosyncratic details that would benefit 

performance on the forced-choice recognition test. Indeed, this is precisely what we 

observed in another recent study (Lee, Samide, Richter, & Kuhl, 2018). Moreover, it is 

worth emphasizing that, for retrieve trials, the success rate of retrieval was likely to be 

variable. Indeed, when considering the List 2 retrieve trials alone, we found that HFA 

increases and LFA decreases predicted whether corresponding List 1 items would later be 

remembered or not (Figure 5D). This result suggests that subjects did actively engage in 

retrieval on retrieve trials, but that retrieval success was variable. This result highlights an 

important distinction between a retrieval state and successful retrieval: successful adoption 

of a retrieval state is not the same thing as successful retrieval (Lepage, Ghaffar, Nyberg, & 

Tulving, 2000; Richter et al., 2016). Related to this point, it is worth noting that a retrieval 

state can subsume multiple different kinds of processing that depend on specific task 

demands–so called ‘retrieval orientations’ (Rugg & Wilding, 2000). Here, while we cannot 

tease apart the components of the retrieval state that are specific to the particular retrieval 

task we used, we believe–for the reasons described above–that the retrieve trials successfully 

induced a retrieval state.

In order to classify encoding vs. retrieval states, we used subject-specific pattern classifiers 

that could exploit idiosyncratic (subject unique) information contained within distributed 

patterns of spectral power across electrodes. As such, it was not our goal to draw 
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conclusions about how specific frequencies and/or electrodes relate to encoding vs. retrieval 

states. That said, our use of spectral information as a feature dimension was motivated by 

prior studies relating encoding and retrieval to distinct spectral signals (Rizzuto et al., 2006; 

Hasselmo & Stern, 2014). In particular, there has been interest in the relationship between 

memory states and theta. While much of this interest has focused on theta phase established 

by the hippocampus (Hasselmo et al., 2002; Siegle & Wilson, 2014; Kerrén, Linde-

Domingo, Hanslmayr, & Wimber, 2018), there is also considerable evidence, both from 

human and non-human animals, that sustained increases in theta power are related to 

successful learning or memory encoding (Berry & Seager, 2001; Seager, Johnson, Chabot, 

Asaka, & Berry, 2002; Guderian, Schott, Richardson-Klavehn, & Duzel, 2009; Kirov et al., 

2009; Molter et al., 2012). Qualitatively, our results are consistent with these prior studies in 

that we observed relative increases in theta power—centered at approximately 8 Hz—when 

comparing encode vs. retrieve trials. However, these differences were very modest in 

magnitude and, on their own, do not support conclusions about the relative contributions of 

different frequencies. Moreover, it should be emphasized that, here, we recorded scalp EEG 

whereas much of the existing literature relating theta to memory states has focused on 

hippocampal theta. While beyond the scope of the present study, how or whether scalp EEG 

(including decoded information about memory states) relates to hippocampal theta is an 

interesting question for future research.

Regardless of the specific spectral components that were associated with encoding vs. 

retrieval states, our findings suggest that biases between these states can operate over 

relatively long timescales (seconds). This result is consistent with prior evidence that 

encoding vs. retrieval states can be decoded from temporally-coarse fMRI activity patterns 

(Richter et al., 2016) and also with behavioral evidence that biases between encoding vs. 

retrieval states can linger across trials (Duncan et al., 2012; Patil & Duncan, 2018) and with 

the timescale at which neuromodulatory influences on the hippocampus are thought to occur 

(Meeter et al., 2004; Hasselmo & McGaughy, 2004). Thus, considering the current findings 

in relation to prior evidence for encoding/retrieval tradeoffs, it seems likely that these 

tradeoffs can occur at multiple timescales and that different timescales for these biases may 

reflect distinct neural mechanisms (Honey, Newman, & Schapiro, 2017).

Highly consistent with prior scalp and intracranial EEG studies (Osipova et al., 2006; 

Sederberg et al., 2006; Long et al., 2014; Greenberg et al., 2015), we found that subsequent 

memory was predicted by a pattern of HFA increases and LFA decreases, but with the 

important caveat that this pattern was only evident when encoding was goal relevant. 

Namely, when subjects were trying to encode a new stimulus, this pattern predicted 

subsequent memory for the new stimulus; but, when subjects were trying to retrieve a past 

stimulus, this same pattern predicted subsequent memory for the old (retrieved) stimulus. 

This novel dissociation clearly indicates that the HFAi/LFAd pattern is better explained by 

some dimension of task engagement–which may involve encoding a new stimulus or 

retrieving an old stimulus–than by memory formation, per se. Additionally, the HFAi/LFAd 

pattern was not evident when comparing encode vs. retrieve trials, indicating that this pattern 

does not reflect an encoding/retrieval dimension. Thus, our results replicate prior reports 

linking the HFAi/LFAd pattern to subsequent remembering, but provide critical insight into 

what this pattern actually reflects. Importantly, the significance of our findings are not 
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limited to scalp EEG studies, as the HFAi/LFAd pattern is thought to be closely related to 

both intracranial EEG and fMRI BOLD responses that predict subsequent remembering 

(Kim, 2011; Burke et al., 2014; Long et al., 2014).

Ultimately, we show that both the HFAi/LFAd pattern and decoded evidence for an encoding 

state have utility for predicting subsequent memory. But which approach to predicting 

subsequent memory is more generalizable? We found that decoded evidence for an encoding 

state predicted subsequent memory not only in a ‘standard’ encoding task (List 1 trials) but 

also when subjects were specifically instructed to retrieve past events (List 2 retrieve trials). 

This generalization across task demands provides critical evidence that the relationship 

between encoding evidence and subsequent memory was not dependent on an explicit 

encoding task. This finding is important when considering that, in the real world, new 

memories are typically formed in the absence of explicit encoding demands. Moreover, real 

world memories are often formed as attention alternates between external stimuli and 

internal thoughts or memories. In fact, the specific situation we consider here–where a new 

event is similar to a past event–is more likely the norm than the exception in the real world. 

As such, successful memory formation in real world contexts is potentially well explained 

by fluctuations between encoding vs. retrieval states. In contrast, despite the ubiquity of the 

HFAi/LFAd pattern in lab-based subsequent memory studies, it may be of limited relevance 

to explaining memory encoding in the real world to the extent that its expression is strongly 

task dependent.

In summary, our findings reveal that encoding/retrieval tradeoffs described by computational 

models (O’Reilly & McClelland, 1994) are reflected in–and can be decoded from–

distributed patterns of neural activity. Critically, these tradeoffs determine whether 

overlapping events will later be remembered. These findings are highly relevant to the broad 

literature related to neural factors that promote successful memory formation and can 

potentially inform efforts to use neurofeedback or neurostimulation to ‘boost’ memory 

encoding (Ezzyat et al., 2017) or to bias how overlapping events are remembered. More 

generally, our findings are relevant to understanding interactions and relationships between 

attention and memory (Cabeza, Ciaramelli, Olson, & Moscovitch, 2008) in that tradeoffs 

between encoding vs. retrieval states potentially reflect a broader tradeoff between 

externally-oriented attention (allowing for memory encoding) vs. internally-oriented 

attention (directed toward thoughts or memories; Chun & Johnson, 2011; Honey et al., 

2017).
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Figure 1. Task Design and Behavioral Results.
(A) During List 1, subjects studied individual objects (e.g. bench, fan). During List 2, 

subjects saw novel objects that were from the same categories as the items shown in List 1 

(e.g., a new bench, a new fan). Preceding each List 2 object was an “OLD” instruction cue or 

“NEW” instruction cue. The “OLD” cue signaled that subjects were to retrieve the 

corresponding item from List 1 (e.g., the old fan). The “NEW” cue signaled that subjects 

were to encode the current item (e.g., the new bench). Colored boxes are shown here for 

illustrative purposes and were not present during the actual experiment. Each run of the 

experiment contained a List 1 and List 2; object categories (e.g., bench) were not repeated 

across runs. After eight runs, subjects completed a two alternative force choice recognition 

test that tested memory for each List 1 and List 2 object. On each trial, a previously 

presented object, either from List 1 or List 2, was shown alongside a novel lure from the 

same category. The subject’s task was to choose the previously presented object. List 1 and 

List 2 objects were never presented together. (B) Behavioral results. Recognition accuracy is 

shown separated by list (1,2) and instruction condition (encode, orange; retrieve, teal). There 

was a significant interaction between list and instruction, primarily driven by greater 

accuracy for List 2 items presented with an encode instruction relative to a retrieve 

instruction. Error bars denote SEM; ** p < 0.01.
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Figure 2. Decoding memory states.
(A) We trained subject-specific L2-logistic regression classifiers to discriminate encode vs. 

retrieve trials during List 2. The classifiers were trained and tested on average spectral power 

across the 0-2000 ms stimulus interval with all electrodes and frequencies used as features. 

Mean classification accuracy across all subjects (solid vertical line) is shown along with a 

histogram of mean classification accuracies for individual subjects (black bars) and mean 

classification accuracy for permuted data across all subjects (dashed vertical line). Mean 

classification accuracy for permuted data ranged from 49.79% to to 50.31% across 

individual subjects (1000 permutations per subject). (B) Time-course of encoding evidence 

across the 2000 ms stimulus interval (i.e., the time window when the object image was on 

screen). Here, the classifier was trained on the full 2000 ms interval, as described in (A), but 

tested on 100 ms time windows. (C) Mean spectrogram of differences in spectral power for 

encode vs. retrieve trials as a function of electrode (y-axis) and frequency (x-axis). Orange 

indicates greater power for encode trials, teal indicates greater power for retrieve trials. 

Spectrograms were generated for each subject and then averaged across subjects. Bar graph 

below the spectrogram illustrates the mean spectral difference, averaging across electrodes 

and then across subjects, between encode vs. retrieve trials at each frequency. Error bars 

denote SEM. (D) Subject-specific logistic regression analyses tested whether trial-level 

encoding evidence derived from the classifiers during List 2 predicted accuracy on the 

subsequent recognition memory test. Separate regressions were performed to predict 

memory for List 1 items and List 2 items. Box and whisker plots show a positive 

relationship between encoding evidence during List 2 trials and subsequent memory for List 

2 items but no relationship between encoding evidence during List 2 trials and subsequent 

memory for List 1 items. * p < 0.05, ** p < 0.01
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Figure 3. List 1 Univariate Subsequent Memory Effects.
(A) Mean spectrogram shows differences in spectral power for remembered vs. forgotten 

List 1 objects as a function of electrode (y-axis) and frequency (x-axis). Red indicates 

greater power for subsequently remembered items, blue indicates greater power for 

subsequently forgotten items. Spectrograms were generated for each subject and then 

averaged across subjects. Electrode names in bold text are the five electrodes that exhibited a 

reliable effect of frequency band (HFA vs. LFA; p < 0.01). These electrodes served as a 

functional region of interest (ROI) for subsequent analyses. (B) Subsequent remembering 

was associated with decreases in low frequency activity (LFA, < 28 Hz) and increases in 

high frequency activity (HFA, > 28 Hz), consistent with previous findings. Error bars denote 

SEM.
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Figure 4. List 2 encode/retrieve and List 1 SME comparison.
(A) The difference in spectral power between List 2 Encode and List 2 Retrieve trials in the 

functional ROI, separately for HFA and LFA bands. Error bars denote SEM. (B) Correlation 

between List 1 SME and List 2 encode/retrieve contrast. For each subject, we correlated the 

instruction contrast (encode - retrieve) and the subsequent memory contrast (remember - 

forget) at each electrode and frequency. The left and middle spectrograms illustrate this 

procedure. The right panel shows a histogram of zRho values across subjects. The average 

zRho value did not reliably differ from zero (t35 = −0.7792, p = 0.4411).
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Figure 5. List 2 Univariate Subsequent Memory Effects.
Subsequent memory effects for the functional ROI from Figure 3. Each title describes the 

condition from which the EEG data were drawn (List 2 encode trials or List 2 retrieve trials) 

and the items from the recognition test that are included in the subsequent memory analysis 

(List 1 or List 2 items; note: the schematic shown in (A) also illustrates these relationships). 

For each plot in (B-D), each line reflects data from one of the five electrodes from the 

functional ROI. Subsequent memory effects for List 2 items significantly differed for encode 

vs. retrieve trials (panel C compared to panel D; p = 0.0300). Namely, when the goal was to 

encode (C), subsequent memory was predicted by relative HFA increases and LFA 

decreases, qualitatively identical to the pattern for List 1 items shown in (A). However, when 

the goal was to retrieve (D), a qualitatively opposite pattern was observed, with relative 

decreases in HFA and increases in LFA. Strikingly, for List 2 retrieve trials, HFA increases 

and LFA decreases predicted subsequent memory for to-be-retrieved List 1 items (E), similar 

to the canonical subsequent memory pattern as shown in (A). Thus, on retrieve trials, HFA 

increases and LFA decreases predicted relatively worse memory for the new List 2 item, but 

relatively better memory for the old List 1 item. Error bars denote SEM.
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