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Abstract

Objectives: To determine the functional network organization of the brain in infants born very 

preterm at term equivalent age and to relate network alterations to known clinical risk factors for 

poor neurologic outcomes in prematurity.

Study design: Resting state functional MRI data from 66 VPT infants (gestational age < 32wks 

and birth weight <1500g) and 66 healthy full term neonates, acquired as part of a prospective, 

cross-sectional study, were compared at term age using graph theory. Features of resting state 

networks, including integration, segregation and modularity, were derived from correlated 

hemodynamic activity arising from 93 cortical and subcortical regions of interest and compared 

between groups.

Results: Despite preserved small world topology and modular organization, resting state 

networks of VPT infants at TEA were less segregated and less integrated than those of full term 

infants. Chronic respiratory illness (ie, bronchopulmonary dysplasia and the length of oxygen 

support) was associated with decreased global efficiency and increased path lengths (p-value < 

0.05). In both cohorts, four functional modules with similar composition were observed (parietal/

temporal, frontal, subcortical/limbic and occipital). The density of connections in three out of the 

four modules was decreased in the VPT network (P value < .01), however in the occipital/visual 

cortex module, connectivity was increased in VPT relative to controls (p-value < 0.0001).
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Conclusions: Early exposure to the ex utero environment is associated with altered resting state 

network functional organization in VPT infants at TEA likely reflecting disrupted brain 

maturational processes.

Resting state functional MRI (rs-fMRI) is an imaging technique that reveals, without any 

explicit external stimulation, consistent and reproducible patterns of interacting brain regions 

called resting state networks that correspond to known functionally relevant brain systems 

(i.e., visual, sensorimotor, and auditory, among others) [1,2]. In preterm infants, rs-fMRI has 

allowed researchers to begin to characterize the effects of early exposure to the extrauterine 

environment on the neurodevelopment of preterm infants [3–6]. Resting state fMRI 

estimates neuronal activity by measuring spontaneous, low-frequency fluctuations in blood 

oxygen level dependent signals (BOLD). Because rs-fMRI is non-invasive, rapidly acquired, 

requires no input from the participant, and investigates multiple brain systems 

simultaneously [2], it has emerged as a promising tool for evaluating pediatric brain 

function. In preterm infants, rs-fMRI has shown intact resting state network patterns but with 

reduced complexity and altered connectivity strengths in some neural networks [4,6–8]. 

Connectivity changes in preterm brains have also been shown to correlate with long-term 

neurologic outcomes [9,10].

Studies of preterm resting state networks using a mathematical approach known as graph 

theory [11–13] showed that the organization of preterm brains for specialized and distributed 

processing of information differed from healthy, full term controls. Building on these 

network studies, we compared the functional organization of resting state neural networks in 

a sample of unsedated preterm infants without or with mild brain injury and healthy full 

term newborns. We investigated the effects of clinical risk factors on network connectivity 

and hypothesized that the effect of prematurity would be associated with measurable 

alterations in strength and organization of the resting state networks.

Methods

VPT infants and healthy full term controls were enrolled in two prospective observational 

studies [14]. For the VPT cohort, inclusion criteria were: gestational age (GA) at birth <32 

weeks and birth weight < 1500 grams. Exclusion criteria included: chromosomal anomalies, 

dysmorphic features, congenital brain malformations, central nervous system infection, and 

metabolic disorders. Only VPT infants without brain injury or with mild brain injury (e.g., 

low grade intraventricular hemorrhage, or mild white matter injury; Figure 1 [available at 

www.jpeds.com]) based on Kidokoro’s brain MRI scoring system were included [15]. All 

healthy full-term control infants were born without delivery complications and had normal 

brain MRI scans. Exclusion criteria for the control group were: maternal drug use and 

disease (e.g., gestational diabetes, psychiatric disorders), congenital infections, 

chromosomal abnormalities, and dysmorphic features.

Demographic and clinical information was collected from medical record reviews. In the 

preterm cohort, several risk factors were chosen a priori based on previous literature for their 

potential adverse effect on brain development, these included: the presence of mild brain 

injury (yes/no), moderate to severe bronchopulmonary dysplasia (BPD), the length of 
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supplemental oxygen requirement, postnatal steroid treatment, necrotizing enterocolitis 

diagnosis, need for cardiac vasopressor support, and need for patent ductus arteriosus 

surgical ligation [16–25].

Image acquisition and processing

All infants were scanned without sedation using the same 3T GE scanner. Acquisition 

parameters are detailed in Appendix 1 (available at www.jpeds.com). Resting state data were 

preprocessed using a previously validated pipeline that employed a series of temporal and 

spatial denoising strategies to minimize the influence of noise from head motion, scanner 

drift, and subject physiology (i.e., respiration), among others, on the measured BOLD signal 

[26]. BOLD signals were measured from 93 regions of interest (ROIs): 90 cortical and 

subcortical ROIs defined using an automated anatomical labelling atlas [27] mapped to a 

neonatal brain [28] and 3 infratentorial ROIs derived from DrawEM segmentation [29]. 

Correlation (Pearson r) between BOLD signals from all possible ROI pairs were then 

computed and used for network analyses. Appendix 1 includes additional information.

Network analyses

We compared network functional organization between the 2 groups using the following 

graph metrics: 1) clustering coefficient (Cc), 2) local efficiency (lE), 3) characteristic path 

length (L), 4) global efficiency (GE), 5) small world architecture, and 6) modular 

organization [30]. Clustering coefficient and local efficiency are segregation parameters. 

Segregation reflects the extent to which densely connected regions of the brain (modules or 

clusters) perform specialized functions [31]. Segregated networks have high Cc and high lE. 

Network integration refers to the ability of resting state networks to share information 

globally and is captured by the metrics characteristic path length and global efficiency. 

Integrated networks have short L and high GE. Small-world topology, quantified with the 

small world index (σ) that relates Cc and L, refers to the balance between network 

specialization and integration observed in complex networks like the brain [11,32–36]; if σ > 

1, meaning Cc is high and L is low, then the network is considered small-world. Modularity 

is related to segregation and reflects the tendency of networks to subdivide into functionally 

meaningful clusters. A module refers to a group of nodes that are highly connected to each 

other but are sparsely connected to others outside of their group [37]. This relationship is 

reflected by the modularity index (Q; [38]). For a mathematical description of these 

measures, please refer to the work of Rubinov and Sporns [30].

In the preterm cohort, we studied the relationship between clinical risk factors and global 

properties of the resting state networks. We computed the averaged global network metrics 

(Cc, L, gE, lE) over the range of correlation thresholds and assessed the relationship 

between risk factors associated with prematurity and global resting state networks properties 

using ANCOVA.

Statistical Analyses

Statistical analyses were performed using Matlab 2017a and SAS 9.3. Between the preterm 

cohort and healthy full-term group, we compared segregation and integration metrics from 

individual network using permutation testing (100,000 iterations) on the residuals adjusted 

Bouyssi-Kobar et al. Page 3

J Pediatr. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.jpeds.com/


for postmenstrual age at MRI, sex, and motion. Modularity was evaluated on group-averaged 

connectomes at a density of 15% (sparsest density with the least probability of spurious 

connections). We then identified modular communities using 10,000 iterations of the 

Louvain algorithm [40]. Between the preterm cohort and healthy full-term group, we 

compared the modularity index and the intra-modular functional connectivity using two-

sided two samples t-test, and the intra-modular density using Chi-square test. Finally, the 

relationship between risk factors associated with prematurity and global resting state 

networks properties was assessed using ANCOVA analysis controlling for sex, GA at birth, 

day of life at MRI, and motion.

Results

We studied 132 infants: 66 VPT infants at TEA and 66 healthy full-term control infants. Of 

the 66 VPT infants, 21 had mild brain injury: seven with low grade intraventricular 

hemorrhage (grade I-II), 13 with mild white matter injury, and one with small cerebellar 

punctate hemorrhage. Postmenstrual age at MRI was higher in the full-term group; this was 

used as a covariate in the rest of the analysis. Table 1 summarizes the demographic and 

clinical characteristics of the cohorts.

Network segregation, integration, and small-world architecture

Resting state networks of VPT and full-term infants exhibited small-world topology (σ > 1). 

This balance between network integration and segregation suggested that even in the VPT 

infants, efficient global processing of information was preserved. However, segregation and 

integration measures per se were reduced in VPT infants compared with healthy newborns 

(Figure 2). Segregation parameters clustering coefficient (Cc) and local efficiency (lE) and 

integration metrics path length (L) and global efficiency (gE) were all significantly 

decreased in VPT infants.

Modular organization

Preterm and full-term infant resting state networks showed modular organization (Figure 3). 

The modularity index, however, was significantly lower in the VPT infants compared with 

the full-term infants suggesting reduced density of connections within modules in VPT. 

Although modules in VPT resting state networks tend to be less connected, their 

composition was highly similar to full-term newborns (Figure 3). In both cohorts, resting 

state networks were divided into four modules (Table 2 and Figure 3), namely: (1) Module 1 

- primary somatosensory, motor, and auditory cortices and association areas within the 

parietal/temporal cortices; (2) Module 2 - regions in the frontal cortex; (3) Module 3 - 

subcortical, limbic, and paralimbic brain regions; and (4) Module 4 - primary and 

association visual cortices/occipital cortex.

When we compared the number of connections within each module at a density threshold of 

15 % (i.e., same total number of connections in VPT and full-term group-averaged 

functional connectome), density and connectivity strength within each module were 

perturbed in VPT infants (Table 2). VPT infants had significant lower density in all modules 

except Module 4 (i.e., occipital areas) where connection density was higher. Connectivity 
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strength was significantly reduced in VPT infants in the parieto-temporal and subcortical/

limbic modules (Table 2).

Clinical risk factors

In the preterm cohort, we showed that both moderate to severe BPD and prolonged need for 

supplemental oxygen were associated with increased path length (β>0) and decreased global 

efficiency (β<0) (Table 3), suggesting reduced integrative abilities in VPT infants. In 

addition, longer period of oxygen support was also associated with decreased local 

efficiency (β<0) suggesting decreased specialization in VPT resting state networks (Table 3).

Discussion

Our study revealed aberrant functional network organization in a large sample of very 

preterm infants scanned at term equivalent age. Compared with healthy term newborn 

infants, VPT infants with no or mild brain injury had reduced resting state network 

segregation and integration measures and altered modular connectivity. Among the risk 

factors analyzed, only the clinical indicators of severity of respiratory illness (i.e., moderate 

to severe BPD and prolonged supplemental oxygen support) were associated with network 

alterations in VPT infants. These findings underscore the potential detrimental link between 

respiratory illness severity and functional brain development in VPT infants.

We showed small world organization in VPT and full-term infants consistent with previous 

studies using rs-fMRI [3,11–13,39]. This organization, reflective of efficient, specialized and 

integrated neuronal communication [41], likely emerges before the 31st week of gestation 

and continues to mature as gestation progresses [13]. Although small world architecture was 

preserved, resting state networks of VPT infants were less segregated (i.e., lower clustering 

coefficients and reduced local efficiency) and integrated (i.e., longer path lengths and 

reduced global efficiency). Reduced clustering was previously reported by Scheinost et al in 

a smaller cohort (n = 12 preterm infants) [12]; they, however, did not observe differences in 

path lengths between premature and term infants, possibly due to the smaller sample size. 

Our results suggest that preterm birth somehow reconfigures connections among brain 

regions. In preterm infants, longitudinal studies have reported age-dependent increases in 

functional connectivity strength [4,6,7], network complexity and magnitude [7], integration 

[11,13], and modularity [11,13] during the third trimester suggesting a vulnerability window. 

Thus, it is not surprising that in some networks at TEA, preterm infants exhibit reductions in 

connectivity strength [7], decreased interhemispheric connectivity [5,6], altered 

lateralization of language areas [42], altered thalamocortical connectivity [8,43], and 

impaired basal ganglia – frontal cortex connectivity [44]; and it provides additional support 

to the likely effects of preterm birth on the organization of emerging functional networks. 

Our understanding of how functional connectivity in VPT infants evolves over time remains 

incomplete, but available follow-up studies already suggest that functional connectivity 

remains compromised in adults born very preterm [45–49].

Interestingly, only the clinical risk factors linked to respiratory disturbances showed a 

negative association with resting state network organization: moderate to severe BPD and 

length of oxygen support were linked to reduced global and/or local efficiency of the resting 
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state networks. Respiratory issues such as BPD and prolonged need for oxygen support have 

been associated with impaired brain development and adverse cognitive functioning 

[19,20,50,51]. Hypoxic episodes resulting from respiratory disturbances are thought to 

underlie the pathophysiological mechanisms responsible for these cerebral alterations [52–

56]. Hypoxic-ischemic events are a major cause of prematurity related brain injury [57–59], 

and disturbances in cerebral oxygenation have also been associated with subtler delays in 

structural brain maturation in high-risk neonatal population [60,61]. Taken together, these 

findings emphasize the crucial role of adequate oxygen supply in the early establishment of 

the neural circuitry.

Mild brain injury was not related to alterations in global properties of the resting state 

networks in our study. Because white matter injury has been associated with altered 

functional connectivity in preterm infants [5,43,62], we hypothesize that the degree of brain 

injury severity plays a crucial role thus the potential functional connectivity disturbances 

following mild brain injury still remains to be elucidated.

Small-world topology of networks relate closely to its modular organization [32,63]. 

Modular systems with functionally specialized subsets of brain regions that are sparsely 

connected to other modules, such as what we observed in resting state networks of VPTs at 

TEA and full-term newborns, tend to be small world (i.e., high segregation balanced with 

high integration; [64]). Modular organization of the developing brain has been described in 

third trimester fetuses [65], preterm infants [11,13], and healthy neonates [11,39]. We also 

reported modular organization of resting state networks in VPT infants at TEA, but with 

reduced modularity compared with full-term infants. Four functional modules with similar 

composition to full-term infants were identified. Consistent with previous work, modules in 

infants were mostly anatomically constrained [3,39,66]; adjacent areas/regions belonging to 

the same lobe tend to belong to the same module. In contrast, adult modules are composed 

of neighboring (i.e. subcortical module), as well as spatially distant, but functionally 

associated regions such as the default-mode and attention modules (fronto-parietal) 

[37,64,67,68]. Cognitive networks are immature at birth [69] and the default-mode network 

only starts to exhibit adult-like properties during the first years of life [69–71], thus it is not 

surprising that the modular organization at term age does not include cognitive module yet. 

Due to the postnatal development of cognitive processes and establishment of long-range 

connections during early childhood, regional organization of the resting state networks 

evolve from a local organization during childhood to a distributed organization in adulthood 

[63,72,73].

Preterm networks, while still modular, were less segregated (i.e. lower modularity index) 

compared with full term resting state networks. Previous work has shown that networks 

become more segregated with increasing age in the first two years of life [74]. This reduced 

specialization in VPT infants may suggest less mature brain networks compared with their 

full term counterparts. Examining the density of connections within each module, however, 

suggests a more nuanced picture where, depending on the neural network, both delayed and 

accelerated maturation seem to occur. In preterm infants, connection density was reduced in 

three out of the four modules – parieto-temporal, frontal, and subcortical/limbic. 

Interestingly, VPT infants had an increased number of connections in the occipital/visual 
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module. This finding converges with the results of Padilla et al that demonstrated increased 

volumes of areas involved in visual processing in extremely preterm infants at TEA 

compared with healthy controls.[75] This increased connection density in the visual cortex is 

likely due to experience-dependent processes. Early extrauterine exposure is likely 

associated with increased visual stimulation during a critical period of development for the 

visual system [76–78]. Synaptic density of the visual cortex dramatically increases from 

mid-gestation to the first months of postnatal life [76,77,79,80]. Increased visual inputs 

during this critical period might have lasting consequences on visual processing [78,81,82]. 

Additional studies are needed to elucidate the relationship between early visual experiences, 

functional organization of the visual cortex, and impairments in cortical visual processing. It 

would be intriguing to explore if other sensory areas of the brain (i.e., auditory cortex) that 

are prematurely exposed to ex utero stimulation would also present with increased 

connection density. The modular analysis performed was not suited to elucidate the possible 

link between prematurity and the functional development of other sensory areas sensitive to 

exogenous stimulation during the third trimester.

Our study limitations deserve mention. First, our understanding of the biological 

mechanisms underlying BOLD responses remains incomplete [83], even more so in 

newborn infants than in adults [84]. As such, interpreting and comparing findings must be 

done carefully. Having said that, there is a high degree of consistency between our findings 

and other published reports in newborn infants. In addition, observed emergence of resting 

state networks coincide with the timing of established developmental processes (i.e. 

development of somatosensory and motor before higher cognitive/association networks). 

Second, recent work has shown that the disruption of resting state networks in preterm 

infants may begin in utero [85] with an additive negative effect of fetal growth restriction 

[86]. Thus, prenatal, in addition to postnatal risk factors associated with preterm birth may 

also impact the early development of the resting state networks. Next, similar to other 

studies [34], only positive correlations were included in our network analyses because most 

existing graph methods were optimized for networks with positive correlations [87–89]. To 

evaluate negatively correlated brain activity, newer approaches accounting for anti-correlated 

activity need to be used [30,89,90]. Last, newborn imaging poses numerous technical 

challenges one of which is motion correction. To minimize the influence of motion, we 

removed (‘scrubbed’) high motion volumes, and used motion parameters and their 

derivatives as regressors in our statistical analyses. Correcting geometric distortion in EPI 

images is another technical issue. We did not perform distortion correction in our study, 

however, rigorous visual evaluation of our EPI images show minimal shape distortion. We 

have now included field map acquisition in our newborn MRI sequences so we can 

systematically evaluate distortion effects on connectivity measures.

To summarize, we report reduced segregation and integration in resting state networks of 

VPT infants at TEA and their association with prematurity related respiratory illness 

severity. Notably, these network alterations were present despite intact small-world topology 

and modularity. Longitudinal studies covering the prenatal (i.e., healthy fetal controls) and 

early school age periods would be necessary to provide additional insights into the role of 

premature birth on the development of functional brain networks, including possibly 
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identifying the onset of these alterations, and to understand its long-term impact on 

neurobehavior.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1 Online. Preterm inclusion and exclusion criteria.
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Figure 2. Clustering coefficient, path length, global and local efficiency in VPT (blue) and full 
term infants (black).
Metrics were significantly different between groups at all tested thresholds using 

permutation testing (p-value < 0.05); tests controlled for sex, postmenstrual age at MRI, and 

motion.
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Figure 3. Modular brain organization in preterm and full-term infants.
Spheres are nodes, lines are edges; color represent module membership. Note reduced 

number of connection between nodes in modules 1-3 (1 – red, 2 – green, and 3 – yellow) and 

increased density in module 4 (blue) in VPT compared with full-term infants.

Bouyssi-Kobar et al. Page 15

J Pediatr. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bouyssi-Kobar et al. Page 16

Table 1.

Clinical characteristics of preterm infants and full-term control infants.

Preterm Infants, n=66 Healthy Full-term Infants, n=66 P-value

Perinatal Characteristics

Birth gestational age, wk, mean ± SD [range] 27.36 ± 2.68 [22.4 - 32] 39.48 ± 0.99 [37.3-41.3] <0.0001

Birthweight, g, mean ± SD [range] 931 ± 305 [480-1500] 3373 ± 356 [2590-4011] <0.0001

Small for gestational age
1

, n (%)
9 (14) 6 (9) 0.41

Male, n (%) 29 (44) 36 (55) 0.76

Native American; Hispanic; White Asian; Black; Multiethnic, n 
(%)

0; 15 (23); 9 (14)
0; 39 (59); 3 (4)

2 (3); 6 (9); 16 (24)
5 (8); 24 (51); 3 (5)

0.021

Vaginal delivery, n (%) 27 (40) 45 (68) 0.0017

Apgar score at 5 min, median [range] 8 [1-9] 9 [8-10] <0.001

Maternal age, y, mean ± SD 27.91 ± 5.9 29.2 ± 7.18 0.26

MRI Characteristics

Postmenstrual age at MRI, wk, mean ± SD [range] 40.21 ± 1.56 [37.4-44.4] 41.1 ± 1.1 [38.4-44.3] 0.0002

Day of life at MRI, d, mean ± SD [range] 89.97 ± 21.4 [41-137] 11.21 ± 4.88 [4-20] <0.0001

Head circumference at MRI, cm, mean ± SD [range] 33.26 ± 2 [27-37] 35.71 ± 1.09 [32-39] <0.0001

Weight at MRI, g, mean ± SD [range] 2818 ± 681 [1870-5400] 3596 ± 422 [2475-4470] <0.0001

1
SGA if BW less than the 10% percentile for sex and GA, based on the Fenton growth chart
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Table 2.

Modular brain organization differences between preterm and full-term infants

Preterm Infants, n=66 Full-term Control Infants, n=66 P-value

Modularity (Q) 0.49 ± 0.005 0.51 ± 0.002 <.001

Module 1 -Parietal/Temporal

Node 26 24

Density 42.2% 52.5% 0.01

Connectivity strength 0.49 ± 0.2 0.54 ± 0.22 0.0086

Module 2 -Frontal

Node 22 22

Density 36.4% 49.4% 0.0048

Connectivity strength 0.55 ± 0.25 0.55 ± 0.25 0.68

Module 3 -Subcortical/Limbic

Node 22 21

Density 69.7% 80.5% 0.0092

Connectivity strength 0.51 ± 0.21 0.56 ± 0.2 0.0023

Module 4 - Occipital

Node 23 26

Density 41.5% 23.7% <0.0001

Connectivity strength 0.51 ± 0.25 0.535 ± 0.22 0.239

Between Module Connections
Density 4.8% 4.2 % 0.44

Connectivity strength 0.39 ± 0.11 0.42 ± 0.13 0.0256
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Table 3.

Relationship between clinical risk factors and global network properties in the preterm cohort.

Risk Factors Studied
Preterm infants 
(n=66)

Global 
network 
metric

Model p-
value Association with global 

network metrics

Mild brain injury 21 (32%)

cc 0.002 β=0.001; p=0.94

L 0.002 β=0.01; p=0.85

gE 0.011 β=−0.001; p=0.86

lE 0.0008 β=0.002; p=0.85

Moderate to severe bronchopulmonary 
dysplasia* 24 (37%)

cc 0.0005 β=−0.02 ;p=0.15

L <0.0001 β=+0.17; p=0.01*

gE <0.0001 β=−0.03; p= 0.02*

lE 0.0001 β=−0.02; p=0.05

Length of oxygen support (days) 67 ± 41 [0-172]

cc 0.0006 β=−0.0004 ; p=0.36

L 0.0001 L: β=+0.0027; p=0.03*

gE 0.0001 gE: β=−0.004; p=0.01*

lE <0.0001 lE: β =−0.0004; p=0.026*

Postnatal steroid treatment 21 (32%)

cc 0.0013 β=−0.001; p=0.92

L 0.0012 β=−0.038; p=0.58

gE 0.0006 β=2.2×10”6; p=0.99

lE 0.0006 β=0.005; p=0.69

Necrotizing enterocolitis 19 (29%)

cc 0.0019 β=−0.004; p=0.78

L 0.0017 β=−0.05; p=0.42

gE 0.0011 β=0.002; p=0.84

lE 0.0007 β=0.006; p=0.63

Cardiac vasopressor treatment 19 (30%)

cc 0.0006 β=0.021; p=0.18

L 0.0014 β=−0.02; p=0.76

gE 0.0006 β=−9.9 ×10−6; p=0.99

lE 0.0003 β=0.016; p=0.18

Surgical ligation of patent ductus 
arteriosus 12 (18%)

cc 0.002 β=0.0018; p=0.92

L 0.0023 β=3.6χ10−4 ; p=0.99

gE 0.0011 β=−0.002 ; p=0.86

lE 0.0008 β=7χ10−4 ; p=0.96

*
Severity of BPD in VPT infants: treatment with oxygen for at least 28 days and need for more than 21% oxygen support (moderate: less than 30% 

oxygen; severe: more than 30% oxygen) at discharge or at 36 weeks postmenstrual age (PMA) whichever comes first [30]
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