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Abstract

Dynamic 3D chromatin conformation is a critical mechanism for gene regulation during 

development and disease. Despite this, profiling of 3D genome structure from complex tissues 

with cell-type specific resolution remains challenging. Recent efforts have demonstrated that cell-

type specific epigenomic features can be resolved in complex tissues using single-cell assays. 

However, it remains unclear whether single-cell Chromatin Conformation Capture (3C) or Hi-C 

profiles can effectively identify cell types and reconstruct cell-type specific chromatin 

conformation maps. To address these challenges, we have developed single-nucleus methyl-3C 

sequencing (sn-m3C-seq) to capture chromatin organization and DNA methylation information 

and robustly separate heterogeneous cell types. Applying this method to >4,200 single human 

brain prefrontal cortex cells, we reconstruct cell-type specific chromatin conformation maps from 

14 cortical cell types. These datasets reveal the genome-wide association between cell-type 

specific chromatin conformation and differential DNA methylation, suggesting pervasive 

interactions between epigenetic processes regulating gene expression.
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Introduction

Three-dimensional genome architecture is a critical feature of gene regulation in metazoan 

organisms 1-3. Chromatin conformation profiling has revealed the existence of features such 

as Topologically Associated Domains (TADs) and enhancer-promoter interactions 4-9. 

Despite the increasing utility of these datasets, most existing chromatin conformation maps 

are generated from cell lines or from bulk tissues 4,8-11. While these data has helped to 

elucidate general principles of chromatin organization, it cannot fully represent the diversity 

of cell types that arise in vivo. Single-cell 3C or Hi-C represent attractive strategies to 

resolve cell-type heterogeneity 12-14. However, current single-cell Hi-C profiles from 

cultured cells primarily capture cell-cycle patterns 12,15. It remains unclear whether single-

cell Hi-C profiles are suitable for partitioning constituent cell types.

In contrast to single-cell Hi-C data, single-cell DNA methylome datasets enable high-

resolution cell-type classification from cell types in primary human tissues 16,17. DNA 

methylation (mC) is unaltered in the basic protocol of 3C or HiC, therefore it may be 

feasible to detect both long-range ligation junctions and mC by combining 3C or HiC with 

bisulfite sequencing.

Here we describe a method, single-nucleus methyl-3C sequencing (sn-m3C-seq), to jointly 

profile chromatin conformation and mC from the same cell. Bulk and single-cell m3C-seq 

profiles accurately recapitulate chromatin architectures of mouse embryonic stem cells 

(mESCs). Furthermore, we show that sc-m3C-seq can distinguish cultured mouse cell types 

as well as highly heterogeneous human brain cell populations. Using 4,238 sn-m3C-seq 

profiles, we identify 14 cell types from human frontal cortex by clustering of mC profiles 

and from these clusters identify cell-type specific 3D chromatin structures. We observe a 

strong, cell-type specific relationship between mC and 3D genome structure , suggesting 

significant crosstalk between these epigenomic features.

Results

Joint profiling of chromatin conformation and DNA methylation from the same DNA 
molecule

In sn-m3C-seq, we first perform restriction enzyme digestion and ligation on fixed nuclei, as 

is typically performed in an in situ 3C experiments 8, 18, 19. The ligated 3C nuclei are 

dispensed into 384 well PCR plates using Fluorescence-activated nuclei sorting (FANS) and 

subject to proteinase digestion and bisulfite conversion , and libraries are constructed similar 

to our previous snmC-seq2 method (Fig. 1) 16,20 . When performed as a bulk assay (m3C-

seq) ligated nuclei are not sorted into well but treated in bulk.

To evaluate the quality of chromatin contact maps generated by m3C-seq, we compared bulk 

m3C-seq data to conventional bulk in situ 3C-seq and Hi-C profiles in mESCs. Both Hi-

C/3C and bisulfite conversion present challenges for read alignment due to the presence of 

chimeric reads and the conversion of unmethylated cytosines to uracils, respectively. We 

developed TAURUS-MH (Two-step Alignment with Unmapped Reads Using read Splitting 

for Methyl-HiC), a mapping pipeline for m3C-seq data using a hybrid of ungapped and read 
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splitting alignments (Supplementary Fig. 1a). Sequencing reads were first mapped to an in 
silico bisulfite converted genome using Bismark calling an ungapped aligner (bowtie1)21, 

and unmapped reads are split into 3 segments followed by ungapped alignment. We 

compared the performance of TAURUS-MH to BWA-METH22, which is designed for 

bisulfite sequencing data alignment using BWA-MEM. This comparison was performed 

using typical Hi-C data with in silico simulated bisulfite conversion. We use the alignment 

of conventional Hi-C data 23 as our gold standard. When compared with BWA-METH, our 

pipeline showed 19.43% higher in mappability (86.12% vs. 66.69%, Fig. 2a), 3.64% higher 

in accuracy (97.86% vs. 94.22%, Fig. 2b), and 13.41% higher long-range cis contacts 

(42.79% vs. 29.38% from total fragments and 49.68% vs. 44.06% from mapped fragments, 

Fig. 2c).

We then analyzed chromatin contact data quality comparing bulk m3C-seq with a matched 

3C-seq library. Bulk m3C-seq libraries showed a comparable fraction of long-range (>1kb) 

intra-chromosomal ligation events compared to the control 3C-seq library (26.6% in 3C-seq 

and 19.0% in m3C-seq) (Fig. 2d). Surprisingly, we observed more frequent inter-

chromosomal “contacts” in m3C-seq (30.0% in m3C-seq and 12.24% in 3C-seq) (Fig. 2d). 

Since snmC-seq2 involves random-primed DNA synthesis 20, we speculate that the inter-

chromosomal “contacts” are an artifact caused by spurious hybridization and polymerase 

extension during random-primed DNA synthesis. We further hypothesized that spurious 

inter-chromosomal ligation is dependent on DNA concentration and the frequency of 

intermolecular interaction. Consistent with this hypothesis, in sn-m3C-seq, where the 

random-primed DNA synthesis reaction contains a much lower DNA concentration, we 

found a similar background level (15.11% in sn-m3C-seq and 12.24% in 3C-seq) of inter-

chromosomal ligation.

To assess the methylome quality of bulk m3C-seq, we compared bulk m3C-seq with 

published WGBS profiles generated from mESC24. With comparable sequencing depth, the 

m3C-seq library showed more uniform genomic coverage compared to the WGBS library, 

covering more cytosines and more CpG sites and showed a narrower distribution of coverage 

at CpG sites (Supplementary Fig. 1b,c).

Finally, we compared contact maps and mC profiles generated by bulk m3C-seq with 

conventional Hi-C and MethylC-seq data generated from mESC (Fig. 2e,f)25. We observed 

strong agreement between bulk m3C-seq and Hi-C (Fig. 2e, stratum adjusted correlation 

coefficient, SCC = 0.91 26). Similarly, we observed strong concordance of methylation 

profiles from bulk m3C-seq with existing MethylC-seq datasets for mESC (Fig. 2g , Pearson 

correlation = 0.82). We further compared bulk m3C-seq to multiple published bulk Hi-C and 

MethylC-seq datasets of mESC and found strong correlations for both types of profiles 

(Supplementary Fig. 2).

Fluorescence-activated nuclei sorting excludes nuclei multiplets

To generate sn-m3C-seq profiles, in situ 3C treated nuclei were sorted using fluorescence-

activated nuclei sorting (FANS) into 384 well PCR plates followed by snmC-seq2 single-cell 

methylome library preparation. In control species mixture experiments (Supplementary 

Table 1), we found surprisingly frequent (23.2%) inter-species nuclei multiplets 
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(Supplementary Fig. 3a) due to formaldehyde cross-linking, whereas multiples were 

eliminated when crosslinking was performed separately for each species (Supplementary 

Fig. 3b). We found that performing crosslinking with a 10-fold diluted nuclei preparation or 

stringently selecting nuclei with a 2n genomic DNA content could largely eliminate inter-

species nuclei multiplets (7.4% for dilution, 1% for 2n gating) (Supplementary Fig. 3c-e).

sn-m3C-seq generates high-quality single-cell DNA methylation profiles

We systematically compared the technical characteristics of sn-m3C-seq with published 

single-cell methylome datasets generated using Zymo Pico Methyl-seq 27,28 and scNMT-seq 
29. sn-m3C-seq showed superior read mapping rate (72.4±3.6%) than Pico Methyl-seq 

(33±12.3%) or snNMT-seq (32.2±9.4%, Supplementary Fig. 4a). The library complexity of 

sn-m3C-seq (maximumly 27.5±9.9% of the mouse genome) is similar to that of scNMT-seq 

(22.8±11%), and is greater than Pico Methyl-seq (10±4.7%, Supplementary Fig. 4b). scBS-

seq and its derivative scNMT-seq show bias (2.48±0.82 fold enriched) towards CpG islands 
30, whereas sn-m3C-seq (1.21±0.15), snmC-seq2 (1.14±0.09) and Pico Methyl-seq 

(1.57±0.1) showed modest enrichment of CpG islands (Supplementary Fig. 4c). Lastly, sn-

m3C-seq and Pico Methyl-seq show comparable coverage uniformity (Supplementary Fig. 

4d). At a coverage of 1 million non-clonal reads, sn-m3C-seq covers 28.9% of 1kb genomic 

bins and 89% of 10kb bins, while Pico Methyl-seq covers 29.1% of 1kb bins and 90.5% of 

10kb bins. Both assays are less biased than scNMT-seq, which covers 23.5% of 1kb bins and 

78% of 10kb bins with 1 million non-clonal reads. We observed a high correlation of the mC 

profiles between pooled sn-m3C-seq and previously generated bulk WGBS experiments 

with mESC specific hypomethylation at the promoter regions of pluripotent genes such as 

Dppa4 and Dppa2 (Pearson r = 0.89, sn-m3C-seq vs. mESC Lee 2014) (Fig. 3d and 

Supplementary Fig. 2) 35-38.

sn-m3C-seq profiles recapitulate chromatin conformation contact maps

We have compared our data with previous single-cell Hi-C studies. We profiled comparable 

numbers of cells as the published single-cell Hi-C datasets with the largest numbers of 

profiled cells to date (Ramani et al., Nagano et al. 12,31; Ramani=10,696; Nagano=3,413 

This study=6,200 total cells between mouse ESC, NMuMg, and human brain data), yet we 

obtain 1.7 fold more contacts than Nagano et al. and 49.27 fold more contacts than Ramani 

et al. Other studies (Flyamer et al 2017; Tan et al. 2018)32,33 profiled fewer numbers of cells 

(Tan=35, Flyamer=246) but with higher numbers of contacts (Tan=1,165,296; 

Flyamer=2,416,802, Supplementary Fig. 5a,b, see supplemental methods for details of 

analysis). These data indicate that our method generates single-cell chromatin conformation 

data of comparable quality to existing unimodal methodologies.

Using hierarchical clustering on a matrix of SCC, we observed that contact maps from our 

mESC sn-m3C-seq clustered with Hi-C data from mESCs 34, while the cortical neurons 

(CN) and neural progenitor cells (NPC) datasets clustered separately (Fig. 3a-c) 9. In both 

Hi-C and pooled sn-m3C-seq data, we observed mESC specific contacts, such as enhancer-

promoter contacts at the Sox2 locus (Fig. 3c). We have observed additional cell-type specific 

hypomethylated regions in association with chromatin interaction differences in Tbx5 and 

Tfap2d (Supplementary Fig. 6-7).
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sn-m3C-seq profiles separate mouse cell types

To test the robustness of cell-type identification using sn-m3C-seq profiles, we performed t-

distributed stochastic neighbor (tSNE) embedding with CpG methylation levels in non-

overlapping 100kb bins from single cells, which shows a clear separation of mESC and 

NMuMG cells (Fig. 4a). Using pooled sc-m3C-seq data, we identified distinct A/B 

compartment signatures between the two cell types (Fig. 4b) as well as local differences in 

Hi-C contacts (arrows in Supplementary Fig. 8a,b).

We also compared the ability of mC or Hi-C contacts to partition sc-m3C-seq into the 

relevant cell types. DNA methylation profiles could easily distinguish between ES and 

NMuMG cells using the first principal component (PC) alone, which explains 33.7 % of 

total variance (Supplementary Fig. 8c,d). In contrast, PCA using whole genome Hi-C 

contacts at 100kb could not distinguish between ES and NMuMG cells using the first two 

PCs (Fig. 4c), but the third PC did clearly separate these two cell types (Fig. 4d). PCA using 

local contacts (< 2Mb) was able to distinguish the two cell types using the second PC (Fig. 

4e). We observed that the first PC was highly correlated with per cell sequencing depth (Fig. 

4f), suggesting the power for cell type identification using Hi-C contacts is highly dependent 

on sequencing coverage. In contrast, the ability to distinguish the two cell types using mC 

profiles is not sensitive to sequencing coverage (Supplementary Fig. 8e,f), indicating the 

robustness of cell type classification from mC profiles. These results underscore the 

importance of jointly profiling mC along with chromatin conformation to reliably 

distinguish cell types in single-cell experiments.

sn-m3C-seq identifies cell-type specific chromatin interaction in human prefrontal cortex

To test whether sn-m3C-seq can be applied to complex human primary tissues, we generated 

4,238 sn-m3C-seq profiles from the prefrontal cortex (PFC) region of two post-mortem adult 

human brains (Supplementary Table 2). We first identified non-neuronal cell types using CG 

methylation (mCG) signature followed by fine clustering of neuronal subtypes using non-

CG methylation (mCH), resulting in the identification of 14 major cell types in human PFC 

(Fig. 5a,b). We annotated the clusters based on the depletion of mCG and mCH at the gene 

body of known cell type markers (Supplementary Fig. 9). The methylation profile is highly 

correlated in each cell type between the two individuals (Supplementary Fig. 10). Brain 

neuron subtypes (excitatory neuron subtypes: L2/3, L4, L5 and L6; inhibitory neuron 

subtypes: Pvalb, Sst, Ndnf and Vip) can be identified with much greater resolution using 

mCH or CG methylation (mCG) signatures, compared to only using chromatin interactions 

(Fig. 5a-c). However, clustering analysis using chromatin interactions alone or jointly with 

mCH can robustly resolve non-neuronal brain cell types (Fig. 5c and Supplementary Fig. 

11).

Guided by the cell-type identification using mC signatures, we reconstructed brain cell-type 

chromatin interaction maps using sn-m3C-seq reads. We further identified 36,559 cell-type 

specific chromatin interactions using a negative-binomial test based method (edgeR39, 

FDR=0.1%, Supplementary Table 3), and 6,161 differential domain boundaries using the 

recently described HiCluster method (Supplementary Table 4)40. We found drastic 

chromatin interaction dynamics at cell-type signature genes (Fig. 5d-e, Supplementary Figs. 
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12,13). For example, SATB2 is a marker gene for excitatory neurons and shows reduced 

mCH and mCG in excitatory neuron clusters (Fig. 5f,g). A distinct chromatin loop between 

SATB2 promoter region and the adjacent LINC01923 locus located 1.15Mb away is only 

found in excitatory, but not inhibitory neuron types (Fig. 5d). A specific pattern of increased 

domain boundary probability at the SATB2 locus was also observed only in excitatory cells. 

Similarly, PROX1 is a marker gene for inhibitory neuron subtypes (Vip and Ndnf) derived 

from caudal ganglionic eminence41. PROX1 locus shows reduced mCH and mCG in Vip and 

Ndnf clusters (Fig 5h,i). Chromatin loops specific to Vip and Ndnf neurons were found 

between promoters of PROX1 and RPS6KC1. Higher domain boundary probabilities were 

also observed at the promoter of PROX1 in CGE-derived neurons.

Cell-type specific chromatin interactions are associated with differential DNA methylation 
signatures

The PFC sn-m3C-seq dataset allowed us to explore the relationship between chromatin 

architecture and mC across brain cell types. We found a significant overlap between cell-

type specific chromatin interactions and the 115,137 differentially methylated regions 

(DMRs) identified across brain cell types (p<0.0001, two-sided permutation test, Fig. 6a, 

Supplementary Table 5). Examining the mC profiles over the anchor regions (k-means 

clustered, k=15) revealed a striking hypo-methylation pattern at the sites of differential 

interacting regions in the cell types showing enriched interaction frequencies (Fig.6b,c). 

Therefore, on a global scale, cell-type specific chromatin interactions are associated with 

differential methylation patterns with matched cell type specificity.

Higher-order chromatin structure is regulated by an interplay of genomic architectural 

proteins 42, including the methylation sensitive DNA binding protein CTCF 43,44. We 

examined whether differential interacting sites also showed variable methylation of the 

CTCF motif within CTCF binding sites defined by neuronal ChIP-seq 45. Within each 

cluster of differential interacting regions, CTCF binding sites were generally 

hypomethylated in the corresponding cell types showing increased chromatin interaction 

frequency (Fig. 6d).

We also investigated whether differential methylation of the methyl sensitive base at position 

4 43,44 in the CTCF motif is associated with differential chromatin interactions. We 

identified CTCF motifs where position 4 showed variable cytosine methylation across the 14 

cell types (highest methylation >80%, lowest <20%). Only a small minority (1,141/57,740) 

of CTCF motifs showed variable methylation, indicating that a minority of CTCF binding 

sites may be subject to regulation by variable DNA methylation. One possible reason that 

such a small portion of CTCF motifs show variable methylation is that variably methylated 

CTCF motifs are more likely to contain a CpG dinucleotide at position 4-5 relative to the 

genome wide occurrence of CTCF motifs (Supplementary Fig. 14a), despite the fact that 

such CpG containing CTCF motifs represent the minority total CTCF motif occurrences in 

the genome (Supplementary Fig. 14b, 10.99%). We observed that motifs that have variable 

methylation of position 4 are more likely to be found in variable interacting regions of the 

genome (Supplementary Fig. 14c, p=1.7e-6, two-sided Fisher’s exact test). These results 

indicate that a portion of variable interacting regions may be regulated by differential 
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methylation of the CTCF motif, and underscore the importance of multi-omic profiling mC 

and chromatin conformation.

Finally, we examined the relationship between differential domain boundaries and mC. 73% 

of the differential domain boundaries colocalize with differential interaction anchors 

(p<1×10−300, two-sided hypergeometric test), and 46% of the differential domain boundaries 

overlap with DMRs (p<1×1e−50, two-sided hypergeometric test). Within a given cell type, 

we found the mC levels of CTCF motifs located at domain boundaries has significantly 

lower mC levels compared with non-boundary sites (Supplementary Fig. 15a-c). Genes 

whose transcription start sites (TSS) locate to within 2kb of the boundaries also showed 

depletion of methylation at their gene bodies compared to the genes at non-boundary sites 

(Supplementary Fig. 15d), indicating that the gene is more likely to be active when a TAD 

boundary is identified at their promoters. Taken these together, we have observed strong 

correlations between 3D genome interaction with mC.

Discussion

Cell-type specific chromatin conformation maps can potentially provide a valuable addition 

to other single-cell modalities for the creation of cell type atlases 46. This information 

complements single-cell transcriptomes and the annotation of regulatory elements using 

single-cell epigenomic profiles, to provide a more comprehensive description of gene 

regulatory activities. However, it is currently unclear how well single-cell Hi-C/3C methods 

alone can distinguish unique cell-types in a heterogeneous population. To enhance the cell-

type signature in single-cell chromatin conformation data, we devised a method to allow 

jointly profiling of chromatin interaction and mC from a single nucleus. Consistent with 

previous single-cell methylome studies, sn-m3C-seq allows unequivocal clustering of cell 

types, which can then guide the reconstruction of high-quality cell-type specific chromatin 

conformation maps.

Our results indicate that single cell contact profiles alone can distinguish between drastically 

different cell types such as mESC and NMuMG. However, the confidence in cell type 

separation is highly dependent on sample coverage and downstream processing. Indeed in 

the human prefrontal cortex sn-m3C-seq dataset, It is possible to use contact maps to 

distinguish between non-neuronal cells and neurons, but not neuronal subtypes beyond 

coarsely separating excitatory and inhibitory cells. Our strategy of using mC signatures to 

define 14 cell types from human prefrontal cortex followed by the identification of cell-type 

specific chromatin interactions clearly demonstrated the advantage of our multi-omic 

approach.

Supplemental Methods

Cell culture

Mouse ES cells (E14TG2a) were purchased from American Type Culture Collection (ATCC 

CRL-1821). ES cells were grown in DMEM media (Corning 10-013-CV) supplemented 

with 10% HyClone FBS (Fisher SH3007003E), 1X MEM Non-essential amino acids 

(ThermoFisher 11140050), 1X Glutamax supplement (ThermoFisher 35050061), 1X ß-
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mercaptoethanol (Millipore ES-007-E), 100U/mL Penicillin-Streptomycin (ThermoFisher 

15140122), and 1000U/mL Leukemia Inhibitory Factor (Millipore ESG1107). ES cells were 

cultured in feeder free conditions on 0.5% gelatin coated plates.

GM12878 cells were obtained from Coriell Institute for Medical Research. GM12878 cells 

were grown in RPMI-1640 medium (ThermoFisher 11875093) supplemented with 15% 

Fetal Bovine Serum (Corning 35-010-CV) and 100U/mL Penicillin-Streptomycin 

(ThermoFisher 15140122).

NMuMg cells (RBRC-RCB2868) were obtained from the RIKEN BioResource Center. 

NMuMg cells were grown in DMEM (Corning 10-013-CV) with 10% Fetal Bovine Serum 

(Corning 35-010-CV), 10µg/mL Insulin (ThermoFisher 12585014), and 100U/mL 

Penicillin-Streptomycin (ThermoFisher 15140122).

All cell lines were routinely tested for mycoplasma contamination and tested negative.

Human brain tissue

Postmortem human brain biospecimens were obtained from NIH NeuroBioBank at 

University of Maryland Brain and Tissue Bank. sn-m3C-seq was applied to BA10 cortical 

tissues of a 21-year-old Caucasian male (UMB5577) with a postmortem interval (PMI) = 19 

h, as well as a 29-year-old Caucasian male (UMB5580) with a PMI = 8 h.

Hi-C and 3C

in situ Hi-C was performed as previously described using the MboI restriction enzyme 8. in 
situ 3C experiments were performed based on the in situ Hi-C protocol with minor 

modifications. Briefly, prior to fixation, adherent cells were trypsinized, counted, and 

collected by centrifugation; suspension cells were counted and collected by centrifugation. 

Cells were resuspended in culture media at a concentration of 1×106 cells per mL of media 

and fixed in 1% formaldehyde for 10 minutes at room temperature with shaking. For 

standard species mixture experiments, equal numbers of mouse and human cells were 

combined into a single tube prior to fixation. For the 1:10 dilution species mixture 

experiment, cells were resuspended at a concentration of 1×105 cells per mL of media prior 

to fixation. For the species mixture experiments where samples were mixed after fixation, 

each cell type was fixed independently as described above and combined at later stages in 

the protocol. in situ Hi-C samples were digested with the MboI restriction enzyme and 

processed as described previously. For in situ 3C experiments, samples were digested with 

DpnII enzyme overnight at 37ºC with gentle mixing. The following day, the sample was 

incubated at 62ºC for 10 minutes to inactivate the restriction enzyme. The typical biotin fill 

in step in the Hi-C protocol was omitted. The sample was then ligated for 4 hours at room 

temperature with T4 DNA ligase in the same manner as in in situ Hi-C experiments. The 

sample was then stained with Hoechst (0.1μg/μL) for the final 30 minutes of the ligation 

step. The sample was then passed through a 40 μM nylon cell strainer (Corning 431750) into 

a FACS tube prior to sorting. As a quality control step, 10% of the sample was taken for 

conventional library preparation and sequenced using shallow sequencing on a MiSeq.
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Fluorescence-activated nuclei sorting (FANS)

FANS was performed at the Salk Institute Flow Cytometry Core Facility using a BD Influx 

cell sorter. A 100 micron nozzle tip was used, with 1 × PBS as sheath fluid (sheath pressure 

was set to 18.5 PSI) with sample and collection cooling set to 4 degrees. The gating strategy 

for selecting intact, single, Hoechst labelled nuclei from debris was as follows: nuclei were 

first gated based on Forward Scatter (FSC) and Side Scatter (SSC) pulse height, then 

multiplet exclusion gating was applied (forward scatter and side scatter pulse width). Finally, 

nuclei of specific DNA content were selected (e.g. 2N) by virtue of Hoechst fluorescence 

intensity. Individual nuclei were deposited into wells of 384-well plate using the Single Cell 

(1-drop single) mode. In preparation for 384-well plate deposition, 20-30 particles (e.g. 

calibration beads) were sorted onto a transparent plastic plate cover for alignment 

calibration. 20-30 particles are then directly sorted into the wells for final visual 

confirmation of alignment precision.

Bulk and single-cell methylome library preparation

Libraries for bulk and single-cell methylomes were generated using snmC-seq2. A detailed 

step-by-step bench protocol for snmC-seq2 is provided as Supplement Methods in Luo et al. 

(2018) 20. Bulk methylome libraries were prepared manually using individual tubes. Single-

cell methylome libraries were prepared using a Tecan Evo 100 robotic platform as described 

in Luo et al. (2018) 20. Libraries for mESC and NMuMG samples were sequenced using 

Illumina MiSeq and HiSeq 4000 instruments in PE150 mode. Libraries for human prefrontal 

cortex sample were sequenced using Illumina HiSeq 4000 and Novaseq 6000 instruments in 

PE150 mode.

Data Processing

mESC and NMuMG datasets were mapped to mm10 reference genome. GM12878 data was 

mapped to hg38 reference genome. Human prefrontal cortex data were mapped to hg19 

reference genome. C to T converted and G to A converted reference genomes were prepared 

for each reference genome using bismark_genome_preparation. The first (upstream) 25bp 

and last (downstream) 3bp were trimmed from both read1 and read2 to remove random 

primer sequence and the low complexity tail introduced by Adaptase. Read1 and read2 were 

mapped separately using Bismark with Bowtie1 with read1 as complementary (always G to 

A converted) and read2 (always C to T converted) as original strand 21,47. After the initial 

ungapped alignment, unmapped reads were split into 3 subreads by 40bp, 32bp, and 40bp 

after removing 5bp of both ends results in having 6 reads (The resulting subread IDs were 

converted to 1-1,1-2,1-3,2-1,2-2,2-3 for the later steps). Six subreads derived from 

unmapped reads were mapped separately using Bismark with Bowtie1. All aligned reads 

were merged into a BAM file using picard and were sorted by query name. The fragments 

with all the mapped reads aligned to the same positions were considered as duplicates and 

removed before allc files were generated. For each fragment, the outermost aligned reads 

were chosen for the chromatin conformation map generation.
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Contact matrix generation and visualization

From the contact files, Cooler was used for generating the contact matrix for different sized 

bins and Higlass was used for visualization 48,49.

1. Generate fixed-width genomic bins:

cooler makebins reference_chrNameLength_file BINSIZE > Genomic_bin_file

2. Sort and index a contact list:

cooler csort --nproc 2 -c1 2 -p1 3 -c2 4 -p2 5 -o output_file input_file 

reference_chrNameLength_file

3. Cool file generation:

cooler cload pairix Genomic_bin_file input_file output_file

Comparison of m3C CpG methylation data with published WGBS data

We downloaded 6 publicly available WGBS datasets of different cell types including mESC, 

mCN, mNPC, and fetal mouse brain tissues 35,36,38,50. The methylation level of CpG sites 

was computed after merging coverage from strands. Average methylation level between 2kb 

upstream and 2kb downstream of known gene transcription start sites were computed 

(n=63759). Complete linkage hierarchical clustering with Euclidean distance was performed 

based on Pearson correlation coefficients (Fig. 3d, Supplementary Fig. 2b).

Comparison of m3C chromatin conformation data with published Hi-C data

We downloaded 4 publicly available Hi-C datasets of different cell types including mNPC, 

mCN, mESC9,34. Genomic contact matrix at 1Mb resolution was generated for each dataset. 

Stratum adjusted correlation coefficients (SCC) were calculated using HiCRep for 

intrachromosomal interactions across the whole genome26 (Fig. 3c, Supplementary Fig. 2a).

Comparison of bulk m3C-seq and sn-m3C-seq data with published methylome datasets

The technical characteristics of bulk m3C-seq were compared to a mESC WGBS dataset 

(SRX202087)24. Fastq files downloaded from SRX202087 were mapped to mm10 reference 

genome using Bismark with Bowtie2 aligner. The resulted BAM file was downsampled to 

match the coverage of bulk m3C-seq data. Published single-cell methylome datasets were 

downloaded from SRP069120, SRP062328 and SRP13102427-29. The fastq files were 

mapped to mm10 reference genome using Bismark with Bowtie2 aligner. Preseq51 was used 

to estimate library complexity using forward reads with Preseq gc_extrap function with 

options −e 5e + 09 −s 1e + 0712. Library complexity values shown in this study were 

estimated for the sequencing depth of 50 million read pairs. To determine the enrichment of 

CpG islands (CGI) in single-cell methylome data, the fraction of CGI on mouse 

chromosome 1 covered by a single-cell methylome was compared to shuffled regions with 

matching sizes. The shuffling was carried out using bedtools shuffle and was repeated five 

times and the average fraction of regions covered by reads was used. Bulk MethylC-seq data 

downsampled to 1 million non-clonal reads for this analysis. For computing the number of 

genomic regions covered by reads at different sequencing coverage, 1kb and 10kb bins were 

generated using bedtools makewindows across the mouse genome. The bins were intersected 
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with bulk MethylC-seq and single cell methylomes downsampled to 100,000 to 1.5 million 

reads.

Comparison of sn-m3C-seq chromatin conformation data with published single-cell Hi-C 
data

We downloaded multiple previous single-cell Hi-C datasets 12,14,31-33,52 to compare with 

our snm3C-seq method. To allow for an unbiased comparison across methods, we processed 

each dataset uniformly using previously described alignment pipeline 53. For each dataset, 

we quantified multiple metrics of data quality, including the number of reads sequenced per 

cell, the number of mapped pairs per cell, the PCR duplication rate per cell, and the fraction 

of reads that align as short cis fragments (<1kb), long-range (>1kb) cis fragments, and inter-

chromosomal pairs. We use a threshold of 1kb as a cut-off for defining cis contacts to 

eliminate any possibility that two paired reads align to different restriction fragments as a 

result of either failed digestion or re-ligation. For the Ramani et al. dataset, we only used 

data deposited in GEO, specifically the ML3 dataset (GSM2254217). Also since the Ramani 

dataset is a species mixture experiment, we aligned reads to both the human and mouse 

genomes and only considered reads if they aligned to either the human or mouse genome, 

but not both. We also noted that Flyamer et al. perform multiple additional filtration steps 

after alignment due to the use of whole-genome amplification (WGA) to limit the possibility 

that a given ligation fragment is represented twice in a single cell due to WGA. We did not 

perform similar filtration steps, as we believed that using a single analytical pipeline as 

opposed to bespoke sample specific filtration was the least biased approach to compare 

across datasets and methods. Therefore our pipeline reports more contacts per cell 

(2,416,802 long range cis contacts) than is reported by Flyamer et al. (1,900,000) in their 

manuscript.

Cell type identification using DNA methylation signature

CG methylation levels (mCG) are computed for every non-overlapping 100kb bins across 

the genome in each single cell. The bins with more than 20 CG basecalls in more than 90% 

of cells were selected for further analysis. Bin-level mCG levels were normalized by global 

mCG of each cell. Similar to our prior analysis using snmC-seq, we imputed the mCG in 

each bin with less than 20 CG basecalls by using the mean mCG of that bin across all the 

cells having more than 20 CG basecalls in the bin 16.

Cell type identification using 3D genome structure

We generated a contact map using 100kb bin in each cell. The interaction frequency of each 

bin is normalized by dividing the average interaction frequency of the bins at the same 

distance interactions. The bins that are covered with more than 100 cells (n=19357) were 

used for the PCA analysis shown in Fig. 4c,d. The bins with an interaction distance of less 

than 2Mb (n=18004) were used for the PCA analysis shown in Fig. 4e,f.
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Quality control for human cortical sn-m3C-seq profiles.

We filtered the cells by total non-clonal reads > 500k, global mCCC < 3%, total autosomal 

cytosines covered < 100M and total long-range (>10k) cis contacts > 5000. We also required 

total long-range cis contacts of each chromosome > x, for a chromosome of length × Mb.

Visualization and clustering of human cortical cells based on methylation.

Both CG and non-CG methylation level (mCG and mCH) were computed for every non-

overlapping autosomal 100kb bins. Bin-level mCG levels were normalized by global mCG 

of each cell. For each individual and each sequencing batch, the bins with more than 20 CG 

basecalls in more than 90% of cells were selected for further analysis. We imputed the mCG 

in each bin with less than 20 CG basecalls by using the mean mCG of that bin across all the 

cells having more than 20 CG basecalls in the bin. The mCG matrices of different 

individuals and batches were integrated together using Scanorama54 using all the bins with 

default parameters. The first 50 dimensions of Scanorama embedding were used for t-SNE 

visualization and clustering. For clustering, we used the euclidean distance of the embedding 

to generate the binary k-nearest neighbor graph A of all the cells with k = 20, where Aij is 1 

if cell j is one of the 20 nearest neighbors of cell i. Then A was weighted by the jaccard 

similarity matrix of A55. Specifically, the weight of the edge between cell i and j in the final 

graph was the jaccard similarity between Ai and Aj. Louvain clustering was performed on 

the weighted graph with resolution 1.6. We used mCG to cluster all the 4238 cells, and then 

selected all the neurons (MEF2C+) to perform another round of clustering using mCH. The 

mCH matrices were processed in the same way except the basecall cutoff was set to be 100 

in 99% of cells. We merged some of the clusters in order to have enough cells in each 

cluster, but still separating the known cell types. The clusters were annotated as known cell 

types based on the gene body depletion of mCG and mCH.

Visualization of human cortical cells based on chromosome interactions.

The contact matrices were generated at 1Mb resolution. We used scHiCluster for embedding 

the single-cell intra-chromosomal contact matrices with default parameters56. The first 20 

dimensions of the embedding were used for t-SNE visualization.

Identification of differentially methylated regions (DMRs).

The single-cell methylation profiles at base resolution were merged for each cluster. CG 

sites from the two strands were merged to enhancer the statistic power. DMRs were 

identified using methylpy DMRfind50.

Identification of differential interaction regions

Single-cell contact maps were binned at a resolution of 50kb. We retained bins if they 

contain non-zero values in at least 10% of single cells. Differential interactions were called 

using edgeR. Specifically, each single cell was treated as a replicate for each corresponding 

cluster. The data were normalized using calcNormFactors and dispersions were estimated 

using estimateDisp. We performed quasi-likelihood F-tests identifying differentially 

interacting regions across all samples using glmQLFit and glmQLFTest. Benjamini-

Hochberg corrections were applied for multiple testing, and we retained bins with FDR 
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<0.1%. Finally, we applied additional filters such that we required the maximum cluster-

wide average interaction frequency to be at least 2-fold higher than the minimum cluster-

wide average interaction frequency, and that the percentage of single cells with contacts had 

to be least 3 fold greater in the highest cluster than the lowest.

Identification of differential domain boundaries.

For this analysis, we only used cells with more than 50k contacts. The TAD-like structures 

(TLSs) in single cells were identified using TopDom after scHiCluster imputation at 25kb 

resolution 56. For the j-th bins, we counted the number of cells where the bin was identified 

as TLS boundaries in cluster i, denoted as cij. Then we computed the boundary probability 

by pi j =
Ci j
ti

, where ti is the number of cells in cluster i. For each bin, we used the 

contingency table O to compute the p-value by chi-square test, where Oi0 = cij and Oi1 = ti – 

cij, and performed multiple test correction using Benjamini-Hochberg procedure. For 

differential domain boundaries, we required FDR < 0.01, minjpij < 0.05 and maxjpij – minjpij 

> 0.1. To eliminate the effect of limited resolution for TAD identification (which could shift 

for 1 or 2 bins), we expanded 50kb on both sides of the selected differential boundaries and 

repeated the test. We used c'ij to denote the number of cells in which one of the 25kb bins in 

the 125kb region was called as TLS boundaries. To filter for the significant differential 

boundaries, we required FDR < 0.01, minjp'ij < 0.3 and maxjp'ij – minjp'ij > 0.1.

Comparison of methylation levels at differential domain boundaries.

In each cell type i, we separated 25kb bins into boundaries (pij > 0.15) and non-boundaries 

(pij < 0.05). We compared the mCG or mCH level between the boundaries and non-

boundaries at 1) those bins, 2) CTCF motifs that overlapping with those bins, 3) the gene 

bodies whose TSS are within 2kb of those bins.

CTCF Methylation analysis

For analysis of CTCF ChIP-seq binding site methylation, we downloaded data from in vitro 

differentiated neurons generated by ENCODE (ENCSR822CEA)45,57. Methylation levels 

were calculated within peak regions. For comparison with differential interacting regions, 

the CTCF binding site methylation levels were averaged across all CTCF sites within the 

pair of interacting bins.

For CTCF motif analysis, we used position weight matrices generated by SELEX58. The 

reason we use SELEX defined motifs for this analysis is that we wanted to limit any biases 

that may result from using ChIP-seq defined motifs due to the possibility of CpG 

methylation may change the relative likelihood of observing specific motifs due to the 

known sensitivity of CTCF to bind to methylated CpGs at the 4th position in the motif. 

Motifs were identified in the genome using Homer scanMotifGenomeWide using a log-odds 

detection threshold of 659. We identified variably methylated sites motifs as those that 

showed at least 1 cell type with methylation of position 4 >80% and one cell type <20%, 

where at least 10 reads cover the cytosine.
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Statistics.

The following statistical tests were used in this manuscript: Fisher’s Exact test and 

Hypergeometric tests were used to compute associations in contingency tables. Wilcoxon 

rank-sum tests were used to test for differences between groups and does not make any 

assumptions regarding the distribution of the underlying data. Pearson correlations were 

used to evaluate the linear relationship between samples, in particular related to replicate 

experiments for reproducibility. The Stratum Adjusted Correlation Coefficient was used to 

compare Hi-C datasets for reproducibility 26. EdgeR was used to analyze differential count 

data between groups39, namely Hi-C contact frequencies. It assumes the data follows an 

underlying Negative Binomial distribution. All statistical tests were two-sided.

Reporting Summary.

Further information regarding the experimental design, key resources, statistical analysis, 

and software used in this study can be found in the Nature Research Reporting Summary 

linked to this article.

Data Availability Statement

Raw data and processed data for culture mouse cells mESC and NMuMG are available from 

NCBI GEO accession GSE124391. Raw data and processed data for human prefrontal 

cortex are available from GEO accession GSE130711. Intermediate files for DNA 

methylation and chromatin contacts can be downloaded from https://github.com/dixonlab/

scm3C-seq

Code Availability Statement

The source code used is publicly available at https://github.com/dixonlab/Taurus-MH and 

https://github.com/dixonlab/scm3C-seq
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Outline of the single-nucleus methyl-3C sequencing (sn-m3C-seq) method.
Samples are processed with a typical in situ 3C/Hi-C procedure following by single-cell 

DNA methylome library preparation using snmC-seq2.
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Figure 2. Data processing and analysis of m3C-seq sequencing reads.
Reads derived from non-bisulfite treated regular Hi-C sequencing are converted C to T 

(read1) and G to A (read2) in silico and aligned using BWA-meth, Bismark (bowtie1), and 

Bismark (bowtie1) followed by split-read alignment. Alignment of non-converted reads 

using conventional alignment pipeline is used as a standard (Conventional, Non-converted). 

For (a-d), the mapping algorithms were applied to a common test dataset (n=1) to make a 

fair comparison of their performance. (a) Percent of aligned reads as a pair. (b) Alignment 

accuracy of different alignment strategies compared with conventional Hi-C alignment using 

in silico converted reads. (c) Fraction of read pairs with cis short-range reads (cis < 1kb), cis 

long-range interactions (cis > 1kb), and trans interactions (trans) using different alignment 

strategies. (d) Similar to panel (c), but for 3C-seq (without conversion), bulk m3C-seq (with 

conversion, from the same sample as bulk 3C-seq), and combined 192 single-nucleus m3C-

seq results. (e) Contact maps from chromosome 17 for conventional bulk Hi-C and bulk 

m3C data. (f) mC profiles near the Pou5f1 gene for conventional bulk MethylC-seq as well 

bulk m3C-seq. The experiment was repeated twice independently with similar results.
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Figure 3. Bulk and single-nucleus m3C-seq of mouse embryonic stem cells.
(a) Comparison of HiC and bulk m3C-seq chromatin contact profiles . Green bar plot shows 

CpG methylation level from m3C-seq. (b) Reconstructed mESC chromatin conformation 

map from sn-m3C-seq profiles compared to Hi-C or bulk m3C-seq. Red bar plot shows CpG 

methylation level from sn-m3C-seq. (c) Bulk and single-nucleus m3C-seq chromatin contact 

profiles of the Sox2 locus in mESC compared to published HiC data generated from mESC, 

cortical neurons (CN) and neural progenitor cells (NPC). . (d) Bulk and single-nucleus m3C-

seq DNA methylation profiles at Dppa2/4 locus compared to published methylome data 

generated from mESC, mouse CN and frontal cortex. The experiment was repeated twice 

independently with similar results.
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Figure 4. Single-nucleus m3C-seq reconstructs cell-type specific chromatin conformation maps.
(a) tSNE of single-cell mC profiles of mouse ES cells and NMuMG cells . (b) Chromosome 

wide Pearson correlation matrix from pooled sc-m3C-seq maps for ES cells and NMuMG 

cells . (c-d) Principal component analysis (PCA) of whole genome contact matrices from sc-

m3C-seq from ES from NMuMG cells (Percentage of variance are marked on the axis). PC1 

and PC2 are shown in (c); PC1 and PC3 are shown in (d). (e) PCA of local interactions 

(<2Mb) from sc-m3C-seq data from NMuMG cells showing PC1 and PC2. (f) Correlation of 

PC1 and per cell contacts . For (a) and (c-f), n=2 independently prepared mouse ES cell 

cultures were analyzed. The two mESC replicates each contained 379 and 93 cells. One 

(n=1) replicate of NMuMG cells containing 96 cells was analyzed.

Lee et al. Page 21

Nat Methods. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Single-nucleus m3C-seq in human brain prefrontal cortex (PFC).
(a-c) Dimension reduction (t-Distributed Stochastic Neighbor Embedding, tSNE) 

visualization of single human PFC cells using mCH (a) and mCG (b) of non-overlapping 

100kb genomic bins, or chromatin interaction at 1Mb resolution (c). L2/3, L4, L5 and L6: 

excitatory neuron subtypes located in different cortical layers. Ndnf and Vip: CGE derived 

inhibitory sub-types. Pvalb and Sst: MGE derived inhibitory sub-types. Astro: astrocyte. 

ODC: oligodendrocyte. OPC: oligodendrocyte progenitor cell. MG: microglia. NN1: non-

neuronal cell type 1. Endo: endothelial cell. (d) looping between the SATB2 and 
LINC01923 locus in excitatory neuron (L2/3, L4, L5 and L6) (e) chromatin looping between 
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PROX1 and RPS6KC1 region in CGE derived inhibitory cell types - Vip and Ndnf. (f-g) 
mCH (f) and mCG (g) levels at SATB2 locus in excitatory neuron clusters. (h-i) mCH (h) 

and mCG (i) levels at PROX1 locus in CGE derived inhibitory neuron clusters. All analyses 

were performed with 4,238 sn-m3C-seq profiles generated from n=2 independent human 

specimen.
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Figure 6. Differential mC signature associated with cell-type specific chromatin interactions .
(a The violin plot of the distribution of the overlap between permuted differential interacting 

region anchor sites and DMRs ; the labelled point indicates the observed overlap. Violin plot 

elements: maximum=14,234; minimum=13,822; mean=14038.7. (DMRs, p<0.0001, two-

sided permutation test, n=10,000 permutations). (b-d) Heatmap visualization of cell-type 

specific chromatin interaction (b), CG methylation at anchor regions (c) and CG methylation 

at CTCF binding sites overlapping with the anchor regions (d).
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