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Abstract

Multi-compartment tissue modeling using diffusion magnetic resonance imaging has proven 

valuable in the brain, offering novel indices sensitive to the tissue microstructural environment in 

vivo on clinical MRI scanners. However, application, characterization, and validation of these 

models in the spinal cord remain relatively under-studied. In this study, we apply a diffusion 

“signal” model (diffusion tensor imaging, DTI) and two commonly implemented “microstructural” 

models (neurite orientation dispersion and density imaging, NODDI; spherical mean technique, 

SMT) in the human cervical spinal cord of twenty-one healthy controls. We first provide 

normative values of DTI, SMT, and NODDI indices in a number of white matter ascending and 

descending pathways, as well as various gray matter regions. We then aim to validate the 

sensitivity and specificity of these diffusion-derived contrasts by relating these measures to indices 

of the tissue microenvironment provided by a histological template. We find that DTI indices are 

sensitive to a number of microstructural features, but lack specificity. The microstructural models 

also show sensitivity to a number of microstructure features; however, they do not capture the 

specific microstructural features explicitly modelled. Although often regarded as a simple 

extension of the brain in the central nervous system, it may be necessary to re-envision, or 

specifically adapt, diffusion microstructural models for application to the human spinal cord with 

clinically feasible acquisitions – specifically, adjusting, adapting, and re-validating the modeling 

as it relates to both theory (i.e. relevant biology, assumptions, and signal regimes) and parameter 

estimation (for example challenges of acquisition, artifacts, and processing).
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1. Introduction

The spinal cord (SC) acts as the primary neurological signaling conduit between the brain 

and the extremities as well as interfacing with the peripheral nervous system, and performs 

primary functions such as conducting motor information to the extremities, relaying sensory 

information to the brain, acting as the center for controlling various autonomic reflexes, and 

is also responsible for generating complex patterns such as those involved in locomotion. 

The SC structure consists of a central, butterfly-shaped gray matter (GM) region composed 

of neuronal cell bodies, dendrites, and synapses, as well as surrounding white matter (WM) 

tissue composed of bundles of ascending and descending axons that convey the signals 

between the central and peripheral nervous systems. Both the SC WM and GM are known to 

exhibit a range of tissue microstructural environments, with relatively large variations in 

axon density, size, and myelination [1–4].

A number of neurodegenerative and immunological diseases, spinal cord pathologies, and 

traumatic or non-traumatic injuries can damage or affect these axons, resulting in motor and 

sensory deficits and a decreased quality of life. For example, inflammatory (multiple 

sclerosis (MS) [5, 6], transverse myelitis [7]), degenerative (amyotrophic lateral sclerosis 

[8], Friedreich’s ataxia [9, 10]), developmental (cerebral palsy [11, 12], spina bifida [13]), 

and orthopedic (stenosis [14]) disorders, as well as injury [15, 16] and tumors [17], are 

known to lead to changes in spinal cord microstructure, including demyelination, edema, 

axonal loss, reduced axon integrity, or axonal reorganization. Thus, characterizing the SC 

microstructure can serve an important role in diagnosis and prognosis of these pathologies, 

as well as lead to a better understanding of disease pathophysiology, functional impairment, 

or treatment efficacy.

Towards this end, non-invasive biomarkers based on quantitative magnetic resonance 

imaging (MRI) have shown potential for characterizing SC microstructure [18–27]. In 

particular, diffusion MRI (dMRI) shows promise for non-invasively characterizing tissue 

micro-environments. To date, the most readily available diffusion MRI technique (in both 

the brain and spinal cord) is diffusion tensor imaging (DTI) [28], which represents the 

diffusion of water in tissue as a 3D Gaussian distribution. DTI provides quantitative indices 

such as fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial 

diffusivity (RD) [29, 30] which have been shown to be sensitive to SC tissue properties [31–

33], such as axon density, axonal injury, and degree of myelination. While DTI is sensitive 

to a number of microstructural features, it lacks the specificity to disentangle precise 

microstructural changes.

As an alternative to “signal” models (i.e., DTI), recent years have seen a proliferation of 

techniques - termed “microstructural” or “multi-compartment” models - which explicitly 

model certain aspects of the tissue environment [34–39]. Two of the more commonly 

implemented (and clinically feasible) microstructural models to date are the Neurite 
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Orientation Dispersion and Density Imaging (NODDI) technique [40] and the Spherical 

Mean Technique (SMT) [41]. The NODDI model represents the signal in each voxel as the 

sum of three tissue compartments – intra-cellular, extra-cellular, and CSF compartments. 

The intra-cellular compartment is composed of neurites (modelled as zero-radius sticks) 

with a distribution of directions (i.e. a bipolar symmetric Watson distribution) that includes 

both an average direction and a spread of orientations around that direction. Thus, 

application of NODDI results in the isotropic (or CSF) volume fraction (FISO), the intra-

cellular volume fraction (FICVF), and an orientation dispersion index (ODI) where a higher 

value represents a larger spread of axon orientations. SMT uses a two-compartment model 

that estimates microscopic features specific to the intra- and extra-neurite compartments un-

confounded by the effects of fiber orientation and their distributions, by modelling the intra-

neurite compartment as zero-radius sticks, and the extra-neurite tissue as a symmetric tensor. 

This technique results in an intra-neurite volume fraction (INTRA), a tissue intrinsic 

diffusivity (DIFF), and diffusivities of the (potentially) anisotropic extra-neurite 

compartment including its transverse microscopic diffusivity (EXTRA-TRANS) and mean 

diffusivity (EXTRA-MD).

Several microstructural models were originally applied to and validated within the spinal 

cord [37, 42, 43], due to its rather coherent white matter orientations, making it an ideal 

model for validation. However, many tissue models, including both NODDI and SMT, were 

developed for, and are largely applied to, the brain [44–55]. While application of multi-

compartment models in the SC is limited, several studies have demonstrated feasibility and 

potential clinical utility of these techniques. For example, Grussu et al. [56] characterize 

WM and GM NODDI contrast, demonstrate superior fitting and reproducibility of NODDI 

metrics in comparison to DTI, and validate NODDI ODI index in characterizing MS lesions 

[57]. In parallel, By et al. [58] observed a decrease in FICVF in MS lesions and superior 

WM/GM contrast compared to DTI. Additionally, By et al. [59] implemented SMT in the 

same subjects, characterizing normal WM and GM indices, and demonstrating abnormal 

compartmental diffusivities in normal appearing WM of MS patients. Together, these studies 

suggest that the contrast provided by these models may offer useful, clinically feasible, 

outcomes that offer unique insight into the SC microstructure.

One limitation of clinically feasible diffusion microstructural modeling of the in vivo human 

SC is that currently they provide global characterization of WM and GM indices. However, 

these models have been unexplored in as to whether they provide contrast among the various 

SC pathways and regions where heterogeneous axonal environments are expected (we note 

several exceptions in animal models [37, 43] or using advanced hardware [60]). Thus, the 

first aim of the current study is to investigate WM and GM sub-regions of the SC and 

provide tissue- and column-specific normative values of both the signal models (DTI) and 

clinically achievable microstructural models (NODDI, SMT). We do this by analyzing 

twenty-one healthy subjects, in a standard space, and performing simple region-of-interest 

analysis. This aim is made possible by recent advancements in SC analysis and processing 

tools (i.e. the Spinal Cord Toolbox [61]) as well as the creation of a standard space SC atlas 

and templates [62] with integrated WM pathways and GM regions of interest (ROI).
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While characterization of normative values is important, it is also necessary to properly 

validate potential biomarkers against ground truth measures of microstructure. Thus, our 

second aim is to validate sensitivity and specificity of these models. Validation can be 

performed against numerical or physical phantoms [63–68]; however, it is hard to replicate 

the enormous complexity and exact microstructural environments of the SC. Alternatively, 

comparisons against known anatomy (through histological analysis) can be made [52, 69–

75], Knowledge about SC WM and GM composition is an accumulation of decades of 

research by neuroanatomists (see Saliani et al. for a review [1]). Most cyto- and myelo-

architecture is described qualitatively, with microstructural metrics measured quantitatively 

in only specific tracts (most commonly the corticospinal and pyramidal tracts) and often 

using different methodologies – making comparisons across sub-regions difficult. However, 

recently Duval et al. [76] have imaged a fixed human spinal cord using high resolution 

scanning electron microscopy from C1 to L5 spinal levels, quantifying morphometric 

features across the entire cord (including both WM and GM) and essentially creating a 

“microstructural” template of the human spinal cord. Fortuitously, Duval et al [76], also 

register this to the same PAM50 template space in which we provide normative dMRI 

values, facilitating comparison of these values to expected trends observed in histological 

analysis.

This manuscript is organized as follows. We first describe methodologies related to image 

acquisition, processing, and alignment to standard space which facilitates quantification of 

dMRI-derived metrics in WM and GM, as well as in a number of SC sub-regions. We show 

qualitatively what these measures look like in the healthy human SC, and describe normative 

values in each ROI. Finally, we compare these measures to that expected from histological 

analysis and calculate correlation coefficients for all dMRI-estimated features against all 

histological microstructure features.

2. Methods

2.1 MRI experiments

Twenty-one healthy controls participated in this study. All experiments were performed on a 

3.0T whole body MR scanner (Philips Achieva, Best, Netherlands). A two-channel body coil 

was used for excitation and a 16-channel SENSE neurovascular coil was used for reception. 

The maximum gradient strength of the system was 80 mT/m at a slew rate of 100 mT/m/s. 

All data were acquired under a protocol approved by the local institutional review board and 

signed, informed consent was obtained prior to the study.

For each subject, a high-resolution (0.65 × 0.65 × 5 mm3) multi-slice, multi-echo gradient 

echo (mFFE) anatomical image (Held et al., 2003) was acquired (TR/TE/ΔTE = 753/7.1/8.8 

ms, α = 28°, number of slices = 14, 6:12 min) for co-registration and to serve as a reference 

image for segmentation. The diffusion sequence consisted of a cardiac-triggered (using a 

peripheral pulse oximeter with a delay set to 127ms), spin echo sequence with single-shot 

echo planar imaging (EPI) readout with the following parameters: TR/TE = 5 beats (~3000 

ms)/65 ms, resolution = 1.25 × 1.25 mm2, slice thickness = 5 mm, FOV = 68 × 52 mm, 

SENSE (AP) = 1.5 and NEX = 3, number of slices ranged from 1-5 as the study progressed. 

Importantly, all images were centered on the C3 level and the middle slice of each was used 
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for analysis. Reduced field-of-view was applied using an outer volume suppression 

technique [77] and fat suppression was achieved using SPIR. A multi-shell acquisition, 

similar to the previously published NODDI protocol in the brain [40] and the one 

implemented in the spinal cord [56] was used with uniform sampling: (i) b = 711 s/mm2 

with 32 directions and (ii) b = 2855 s/ mm2 with 64 directions, with constant gradient times 

of Δ (separation between gradients) = 31.8 ms and δ (gradient duration) = 21.0 ms. A non-

diffusion weighted scan (b = 0 s/mm2 or b0) was acquired with each shell. Total scan time 

was 18:11 min. Images were acquired in the axial plane for both the anatomical and 

diffusion images. SNR in the b0 images was found to be approximately 30 across the entire 

cord where noise was defined using the standard deviation of the difference of two 

measurements.

2.2 Image Processing and diffusion MRI-derived measures

A pipeline similar to the template-based analysis pipeline implemented in the SCT [61] was 

utilized. SCT diffusion MRI motion correction was performed [78], followed by registration 

of the b0 image to template space. Registration was assisted by segmentation of the spinal 

cord and vertebral labeling (i.e. designating that the slice is centered on C3) and performed 

in three steps: affine registration of the segmentation as initialization, affine registration of 

the b0 using a mean squares cost function, and finally a non-linear symmetric normalization 

algorithm. The resulting warp field was applied to all scalar quantitative diffusion MRI 

metrics (detailed below), resulting in all measures aligned with the PAM50 WM and GM 

labels, and the WM and GM tissue- and column-specific labels, as well as aligned with the 

histological template [76].

NODDI fitting was performed using the NODDI MATLAB Toolbox (https://www.nitrc.org/

projects/noddi_toolbox). Diffusion coefficients for the intra-axonal and isotropic 

compartments were fixed with values of 1.7 μm2/ms and 3.0 μm2/ms respectively as in [40]. 

As described in the introduction, after fitting the derived NODDI indices included: the 

isotropic volume fraction (FISO) representing the fraction of free water such as CSF, the 

apparent intra-cellular volume fraction (FICVF) representing the fraction of dendrites and 

axons, and an orientation dispersion index (ODI) a measure of how axons disperse around a 

central orientation.

SMT fitting to the diffusion-weighted data was performed using C++ code provided by the 

authors of [41] (https://github.com/ekaden/smt). SMT fitting yielded maps of the apparent 

intra-axonal volume fraction (INTRA), the intrinsic diffusivity (DIFF), and the diffusivities 

associated with the extra-axonal compartment including the transverse (EXTRA-TRANS) 

and mean diffusivity (EXTRA-MD).

Finally, in contrast to microstructural models, the conventional DTI analysis (i.e. a signal 

model) was also performed using a non-linear fit in Camino utilizing both shells, resulting in 

fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial 

diffusivity (RD) indices.
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2.3 Quantitative analysis

WM and GM comparison—To reproduce previous results characterizing indices over the 

full WM and GM ROIs, we calculated the medians of each derived index within both WM 

and GM. A nonparametric Wilcoxon rank sum test was performed for each index to probe 

statistically significant differences and discriminatory power of contrasts.

ROI-based normative values—To assess normative values in the tissue and column 

labels, we utilized those in the PAM50 template. In our data, this includes 33 labels (ROI 

names and abbreviations are given in the appendix), including 6 GM regions, 26 WM 

regions, and the CSF contour. For ease of visualization in boxplots, the WM can be 

hierarchically grouped into dorsal columns (4 labels), lateral funiculi (8 labels), and ventral 

funiculi (14 labels). We note that variations in microstructural environments are expected 

even within this hierarchical grouping.

Correlation with histological template—Finally, we related the median derived 

contrasts from DTI, NODDI, and SMT across all subjects to the ROI-median microstructural 

values provided in the histological template. The histological template includes axon 

diameter (μm), myelin volume fraction (%), axon volume fraction (%), the number of axons 

(axons/100μm2), and the density of axons (axons/100μm2) with a size range of 1-4μm and 

with a larger size of 4-8μm. Pearson’s linear correlation coefficients were determined 

between the diffusion-derived parameters and histological measures, with the two-tailed 

Student’s t-distribution used to determine statistical significance of correlations. We note 

that for extraction of ROI-based normative values and correlation of histological template a 

weighted average metric extraction [79] was utilized to attempt to account for possible 

partial volume effects, with similar (although not the same) results when using a simple 

binary average metric extraction.

3. Results

3.1 Anatomy and Template

Figure 1 illustrates the ascending and descending WM pathways, as well as GM ROIs 

separated based on cytoarchitectural features, and is the standard diagram used to depict SC 

anatomy (figure illustrated by Frank H. Netter, and reproduced and adapted from Netter’s 

Atlas of Neuroscience, with permission from Elsevier). For comparison, Figure 2 (top) 

displays the T2* contrast from the SC template, as well as labels, which correspond well 

spatially to those from expected anatomy, although limited to a coarse spatial resolution 

defined by MRI.

Additionally, Figure 2 (bottom) displays the microstructural metrics extracted from the 

SEM-derived histological template. A delineation of WM and GM is clear, with GM 

consisting of microenvironments with smaller axon diameters, axon densities (of all sizes), 

axon volume fractions, and myelinated volume fractions. Notably, and as described by 

Duval et al. [76], several trends are also apparent across the WM pathways, revealing a 

somatotopic and/or functional organization [80]. For example, contrast between the 

fasciculus cuneatus and gracilis sensory axons originating from different parts of the body 
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(i.e., arms and legs, respectively) [80] clearly shows an increased diameter, volume fraction, 

and myelin content of the cuneatus. Areas of high density small axons include many of the 

descending ventral funiculi (vCST, TST, vRST, IVST), while the spinocerebellar tract 

generally consists of large, myelinated axons. Thus, while not perfectly delineated by the 

atlas labels, key morphological differences are apparent.

3.2 Qualitative comparisons

Figures 3, 4, and 5 show montage diffusion-derived maps for all 21 subjects for DTI, 

NODDI, and SMT, respectively. Note that the gray-scale background of each image is the 

individual subject’s non-diffusion weighted image, highlighting quality template 

normalization for all subjects. Most notable differences in contrast are observed between 

WM and GM, which are generally distinguishable in the DTI AD, FA, RD maps, the 

NODDI ODI map (which indicates high dispersion particularly in the ventral horns), and is 

somewhat distinguishable in the SMT DIFF and INTRA maps for several subjects. 

Interestingly, the DTI parametric maps are generally consistent across subjects, while there 

is some variation in scale and spatial patterns derived from the microstructural models.

3.3 Normative Values

The subject-averaged parametric maps in template space are shown in Figure 6. After 

averaging, spatial trends are apparent. DTI values tend to separate WM from GM. NODDI 

ODI clearly highlights the ventral horn and intermediate zones, and the dorsal horn to a 

lesser extent. FISO and FICVF show distinct patterns that do not necessarily follow the 

WM/GM boundaries. One clear feature near the left and right lateral corticospinal tracts is 

an increase in FISO and FICVF (white arrows). This unique, symmetrical feature is also 

apparent as high indices for all SMT metrics. SMT and NODDI qualitatively show similar 

boundaries or organization of spatial patterns, again not limited to highlighting WM/GM 

contrast.

Quantitative WM and GM comparisons agree with qualitative results, as well as past 

quantitative SC diffusion studies [56, 58, 59, 81], with boxplots of the median value for all 

subjects shown in Figure 7. As in [56], DTI shows an increased AD, increased FA, increased 

MD, and decreased RD in WM compared to GM. Similarly, NODDI indicates a decreased 

ODI and increased FISO [56], although we found no significant difference in FICVF. A 

direct comparison with [59] is not possible because control WM was only compared to MS 

normal appearing WM, but we find significantly increased DIFF and EXTRA-MD in WM 

compared to GM.

We next probe whether these metrics show contrast across heterogeneous WM pathways and 

GM sub-divisions. Figures 8, 9, and 10 show normative values over all subjects, across all 

33 anatomical locations, for DTI, NODDI, and SMT, respectively. Note that vertical lines 

subdivide dorsal column labels, lateral funiculi, ventral funiculi, GM, and CSF for ease of 

viewing, although we may not expect the same values within or across regions. It is clear 

that there is significant variation across both WM and GM (and expected extreme values for 

CSF) for all metrics from all models. Inspection of inter-quartile range, which gives an 

indication of intersubject variability, indicates that DTI measures are more reproducible 
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across subjects, while those of the more complex models generally show increased inter-

subject variability. For all models, larger variation is observable in the ventral funiculi 

regions, which are generally smaller in size (i.e., prone to possible partial volume effects) 

than other white matter regions. We next ask whether these metrics follow expected 

histological trends.

3.4 Comparisons and Correlations with histology

Figures 11, 12, and 13 show plots of the diffusion-derived indices plotted against 

histological measures for DTI, NODDI, and SMT, respectively. Correlation coefficients are 

indicated on each plot, with significance indicated by asterisks (and BOLD outline 

surrounding plot). We note that these plots include both WM and GM ROIs (they exclude 

CSF). Diffusion and histological correlations in WM only are given as supplementary 

Figures 1, 2, and 3 (for DTI, NODDI, and SMT, respectively) which indicate that some, but 

not all, of the correlations described below are driven by differences between WM and GM. 

Because these tissue and signal models estimate features that inherently exist in both white 

and gray matter (i.e., diffusivities, dispersion, and volume fractions), we chose to include the 

plots that validate microstructure of both tissue types in the main body of the manuscript.

As expected [31–33], DTI (Figure 11) is sensitive to nearly all microstructural features. For 

example, intuitively, RD decreases with an increased axonal volume fraction, increased 

axonal density (of all axons), and increased myelination, while FA increases under the same 

conditions. However, we note that most DTI correlations are driven by global differences in 

white and gray matter, rather than distinguishing white matter microstructure alone (see 

Supplementary Figure 1).

Similarly, NODDI (Figure 12) exhibited intuitive correlations. For example, isotropic 

volume fraction decreased with increasing densities of microstructural tissue (increasing 

densities, increasing axon and myelin volume fractions) although correlations were not as 

significant as DTI. However, FICVF, intended specifically to be a surrogate marker of axon 

volume fraction, did not significantly vary with this index. Additionally, ODI varied with 

diameter, density of larger axons, AVF and MVF, although none of these are measures of 

tissue orientation. Like DTI metrics, The FICVF and ODI trends described above are largely 

driven by the large dynamic range provided by including gray matter in the analysis (see 

Supplementary Figure 2)

SMT (Figure 13) showed most sensitivity to axonal diameter with an increasing diameter 

resulting in increased intracellular volume fraction and decrease extra-neurite diffusivities 

(similar trends are observed in WM analysis alone, although no longer statistically 

significant – see Supplementary Figure 3). While the intracellular volume fraction did 

positively correlate with the axon volume fraction, the correlation was small. Further, 

intracellular volume fraction and axon volume fraction correlation was non-existent when 

analyzing WM ROIs alone (Supplementary Figure 3).
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Discussion

Often, in the diffusion literature, the spinal cord is assumed to be an extension of the brain, 

with a much-simplified geometry. In fact, due to its mostly parallel fiber orientations, it has 

served as the model of choice [82] for assessing anisotropy in the central nervous system 

[83, 84], demonstrating performance of microstructure or geometric models [42, 85], or 

studying diffusion time effects [86–89]. Here, however, we find that microstructural models 

created for the brain (and demonstrated to be quite useful for understanding normal and 

abnormal development and diseases) are not as strongly associated with the histological 

values they intend to recover (and sometimes explicitly model). In fact, the spinal cord may 

be one of the more simple neurological structures with which to validate models due to 

minimal confounds such as crossing fibers or large orientation dispersions yet has 

somatotopic organization. While this may seem like a relatively cynical view of these 

results, it is important to emphasize that these models still show strong sensitivity to various 

microstructural features relevant to a number of diseases and disorders, which have already 

proven to be potentially relevant markers of pathology [57]. Thus, although these “models” 

may not provide absolute interpretations of the tissue microstructure, they are still both 

practical and valuable [90]. However, it may be necessary to re-envision multi-compartment 

diffusion models and improved acquisitions for spinal cord architecture in order to exactly 

determine the tissue parameters of interest with high sensitivity and specificity.

For example, these models are not exempt from limiting assumptions and consequent biases. 

An example is the fixed diffusivity assumption and representation of distributions as a 

specific distribution in NODDI (both of which SMT is ideally unaffected by) [91], or the 

assumption of a discrete number of compartments (both studied models incorporate this, 

although others do not [92, 93]), or assumptions on diffusivity profiles or differences/

similarities of intra and extra-cellular diffusivities [94]. Many of these assumptions can 

possibly be better adapted for the spinal cord. Possibly by utilizing prior knowledge of 

expected fiber orientation (at least in WM regions), largely parallel single fiber populations, 

or expected axonal diameters (which show greater variation of smaller spatial scales than 

that of the brain). Acquisition can additionally be optimized using similar prior information 

[95] (i.e. images acquired with diffusion weighting in the direction of axons are at or near 

the noise floor).

While the multi-compartment models show limited correlations with histology, the model 

itself may not be the sole source of the problem. Rather, the model in combination with 
analysis and acquisition may be the limiting factor. SC imaging is inherently noisy, 

susceptible to a number of artifacts, and a community consensus is lacking on acquisitions, 

analysis tools, and processing pipelines. Thus, partial-volume effects, subject-to-template 

registration, Gibbs ringing, susceptibility distortions, the relationship between cardiac 

triggering and CSF pulsation, and metric extraction all likely play a role in the limited 

microstructural sensiviity and specificity. However, our study was performed using a 

clinically acceptable acquisition (one which has been shown to be adequate for brain multi-

compartment imaging) with preprocessing, processing, and analysis pipelines that are 

commonly applied (and are arguably the current state-of-the-art) in the in vivo human SC 

literature [16, 56, 58, 60–62, 79, 81, 96, 97]. Thus, there are limitations when using these 
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multi-compartment models, in combination with standard clinical imaging protocols and 

open-sourced processing pipelines, and improvements in any or all of these areas are needed 

for accurate and precise SC tissue quantification in a clinically feasible scan. All aspects of 

the analysis should be carefully considered when designing diffusion studies of the cord, and 

we should be mindful of these potential shortcomings and how it affects what we study.

As described by Novikov et al. [90] modeling involves both theory and parameter 

estimation. In this study, while we cannot explicitly define the lack of sensitivity and 

specificity to either of these individually, our results suggest that “modeling” these 

microstructural measures (specifically axon volume fractio) in the spinal cord on clinical-

quality datasets is not able to recover expected spatial trends in microstructure in the 

individual (or population averaged) cord. As described above, these limitations are likely a 

combination of both theory (i.e., the framework and assumptions of the model) and 

parameter estimation (inherently affected by image quality, image acquisition, and artifacts).

Although several tissue model parameters were indeed sensitive to microstructural indices, 

much of the strong correlation was driven by differences and the heteroscedasticity of 

variables between WM and GM. The variability between the two tissue types is greater than 

the variability between them, resulting in a large dynamic range (of both histology and 

diffusion metrics) and a strong correlation. However, within a tissue type (i.e., the WM), the 

variability between sub-regions is smaller than that detectable by the multi-compartment 

models and correlations are no longer apparent (see next paragraph on possible contributions 

to the low detectability of models in the SC). Although not broadly discussed, this is a 

common result in the literature. For example, when comparing an index between two 

populations (i.e., healthy and diseased) strong correlations may be present which are driven 

by the large dynamic range presented by the two populations together. This, in itself, doesn’t 

make the metric less valuable, as a strong effect size (i.e. Cohen’s d) can certainly result in a 

useful biomarker, even if biological interpretation is unclear or imprecise.

There are a number of modeling approaches and strategies not evaluated in this study due to 

relevant scan time or gradient strength limitations. For a time, spinal cord diffusion imaging 

was limited by motion, pulsatile flow artifacts, susceptibility artifacts, and the size of the 

cord [98] in addition to lack of SC specific tools for pre-processing. However, with advances 

in acquisition, tools [61], and templates [62], in parallel with advances in microscopy [76, 

96], clinically feasible application and validation of these techniques is likely to increase in 

the future [37, 75, 99–103]. These may prove more sensitive to a number of indices.

Adding more contrasts, possibly in combination with diffusion data, may provide more 

sensitive and specific measures of SC microstructure. For example, magnetization transfer or 

quantitative magnetization transfer [18, 25, 104], g-ratio mapping [24, 105], or T1w/T2w 

imaging [106] may better quantify the myelin volume fraction (which diffusion is blind to) 

thereby improving estimates of the additional compartment sizes. Additionally, standard 

relaxometry [26, 27] can be combined with diffusion to gain insights into local tissue 

volumes or physiological environments. Finally, post-processing of diffusion data using fiber 

tractography may enable the ability to distinguish SC environments through tract density 

images [107], streamline clustering [108], or connectivity profiles [109]. As both diffusion 
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and non-diffusion techniques become clinically viable, future in vivo human validation 

should be performed against prior anatomical knowledge or histological templates as in the 

current study.

Observations

While the brain and spinal cord share many of the same structures on the scale of microns 

(i.e. neurites, axons), they can vary dramatically in the scale of bundles of axons. For 

example, the pathways in the brain (e.g. the corpus callosum, internal capsule) can be as 

wide as multiple centimeters in diameter, whereas the entire spinal cord (and all associated 

pathways) is on the order of a single centimeter. Thus, the pathways we measure in this 

study are of a much finer scale than is typical in the brain. Although our in-plane resolution 

is higher than typical brain acquisitions (usually 2-2.5mm isotropic), many of the WM tracts 

analyzed occupy very few voxels (Figure 2), and partial volume effects are almost certain to 

occur (see Limitations section). Future microstructural models may incorporate not only 

multiple compartments with varying diffusivities, but multiple compartments of the same 

matter (i.e. multiple extracellular compartments) that also can vary in diffusivities.

Looking at the montage images (Figures 3–5) and subject-average templates (Figure 6) gives 

insight into potential limitations of some aspects of each model. DTI shows consistent 

indices, across all subjects, for all measures, and WM/GM boundaries are clearly delineated. 

These results are confirmed by significant differences in all metrics between WM and GM 

(Figure 7) for DTI. However, SMT and NODDI have some measures that vary greatly across 

subjects, in particular INTRA for SMT and FISO for NODDI. The FISO can possibly be 

explained by the fixed intrinsic diffusivity (which we see does indeed vary across and within 

subjects based on SMT DIFF values), causing estimates of FISO (which represents the 

compartment fraction with that fixed diffusivity) to increase/decrease unexpectedly. 

However, the other measures from these models show consistent patterns. Interestingly, 

these patterns do not always follow the WM/GM boundaries (with the exception of NODDI 

ODI). The templates show a unique “cheek-like” feature, near the left and right CST, which 

are expected to have high numbers of heavily myelinated large fibers (see Figure 2). 

Although boundaries between regions are not clearly delineated, there is the ability to 

distinguish some microstructural environments.

We anticipate that the normative values (Figures 8–10) should be useful when comparing 

healthy and patient populations as done for WM and GM in [58, 59]. Although not specific 

to any single microstructural environment, significant differences in quantitative metrics in 

specific tracts may provide more specific indices of disease progression or prognosis.

Correlations between histology and diffusion estimated microstructure provides insights into 

limitations of multi-compartment modeling. Most notably, the signal model (DTI) which 

makes no explicit assumptions on microstructure, showed strong correlations with all ground 

truth indices. The multi-compartment indices in which we expect strong correlations are the 

FICVF with the volume fraction of axons (r=−0.15) and INTRA with the same (r=0.18), 

both of which showed non-significant correlations. Additionally, although not direct 

measurements, we expect additional diffusion measures to be sensitive to several 

microstructural measures. For example, the extra-cellular diffusivities would intuitively be 
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inversely related to the density, diameter, and number of axons (i.e. more, big axons result in 

less extra-neurite space with more restrictions). We did find these trends, although with 

limited statistical significance. One interesting observation was the strong correlations with 

ODI. Ideally, ODI would be independent of axons diameters and densities, and only 

dependent on orientation, however this was not the case. ODI decreased with increasing 

density and volume fraction, possibly due to a higher packing of parallel axons. The 

explanation for a decrease in ODI with increasing axon diameter requires further 

investigation.

Limitations

There are a number of limitations to the current study. Most importantly, the histological 

analysis and template is based on a single adult human SC, whereas we compare these 

measures to diffusion-based metrics from a population of 21 adults, making direct one-to-

one comparisons impossible. However, we simply aim to ask whether the diffusion models 

show expected trends, or correlate well with known anatomy. It is important to point out that 

this single-subject histological template shows anatomical variation that agrees with decades 

of previously published histological literature in human and animal models [1]. Thus, rather 

than expect exact quantification or correlation, we also ask whether the diffusion contrasts 

allow identification or separation of the expected microstructural environments. The second 

limitation could occur in registration to template space. Diffusion MRI is inherently SNR-

limited, and spatial alignment may not be exact for all subjects, contributing to intra-subject 

variability. Additionally, tools for spinal cord pre-processing, normalization, and analysis are 

lacking in comparison to those of the brain, although several strides have been made with 

atlases, templates, and normalization tools. However, mis-registration in combination with 

expected anatomical variation, could lead to lower correlation that expected. Qualitatively 

(see montage Figures 3–5), all subjects appear to be adequately registered and aligned. 

Third, there is inherent variability in the spinal cord imaging data, as expected in spinal cord 

diffusion imaging [56, 58, 59, 81, 110] – both due to noise and inherent inter-subject 

variations. This can cause possible inaccuracies in the derived metrics. As the imaging gets 

better, we expect accuracy and correlations to improve. Several experimental and design 

decisions could contribute to variability, including diffusion acquisition, registration 

algorithm utilized, metric extraction method, region of interest delineation. As discussed 

previously, the SC is composed of many small ROIs in both WM and GM, and partial 

volume effects contribute to both inter-subject variability and inter-ROI variability, 

particularly in small regions adjacent to the CSF.

Finally, the utilization of histology as a validation tool presents its own challenges, including 

choices of fixation procedures, myelin integrity preservation, staining limitations, and 

cutting/tissue preparation (see [76] for a full discussion of limitations related to the creation 

and quantification of the histological template). Together, these limitations may impact the 

magnitude and variance in all derived quantitative measures, as well as lead to biases (for 

example due to tissue shrinkage or lack of preservation). While biases and variation exist, 

the variation of microstructure within regions was shown to be less than that between 

regions (and less than that between various staining procedures) [76], and it is important to 

re-emphasize that our analysis (ie., correlation analysis) simply ask whether these tissue or 
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signal models are able to allow identification and separation of the expected trends in 

microstructural environments.

Conclusion

In this study, we apply advanced quantitative diffusion microstructural models to the human 

cervical spinal cord. We provide normative values of DTI, SMT, and NODDI indices in a 

number of WM ascending and descending pathways, as well as various GM regions. We 

then relate these measures to indices of the tissue microenvironment provided by a 

histological template. We find that DTI indices are sensitive to a number of microstructural 

features, but lack specificity. The multi-compartment modeling strategies, while sensitive to 

a number of microstructural features, do not capture the appropriate specific microstructural 

environment that are explicitly modelled. Although often regarded as a simple extension of 

the brain in the CNS, it may be necessary to re-envision diffusion microstructural models, or 

rely on pure signal models, to provide microstructure-sensitive contrast in the human SC.
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Appendix A:: Abbreviations

All regions of interest have both a left (L) and right (R) label.

FG: fasciculus gracilis; FC: fasciculus cuneatus; lCST: lateral corticospinal tract; vSCT: 

ventral spinocerebellar tract; RST: rubrospinal tract; SL: spinal lemniscus (spinothalamic 

and spinoreticular tracts); SOT: spino-olivary tract; vlRST: ventrolateral reticulospinal tract; 

lVST: lateral vestibulospinal tract; vRST: ventral reticulospinal tract; vCST: ventral 

corticospinal tract; TST: tectospinal tract; mRST: medial reticulospinal tract; DH: dorsal 

horn; IZ: intermediate zone; VH: ventral horn; CSF: CSF contour

Appendix B:: Region grouping

WM dorsal column: FG, FC

WM lateral funiculi: lCST, vSCT, RST, SL

WM ventral funiculi: SOT, vlRST, lVST, vRST, vCST, TST, mRST

GM: VH, IZ, DH

CSF: CSF
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Abbreviations:

SC spinal cord

GM gray matter

WM white matter

DTI diffusion tensor imaging

NODDI neurite orientation dispersion and density imaging

SMT spherical mean technique

CSF cerebrospinal fluid

FA fractional anisotropy

MD mean diffusivity

AD axial diffusivity

RD radial diffusivity

FISO isotropic volume fraction

FICVF intra-cellular volume fraction

ODI orientation dispersion index

INTRA intra-neurite volume fraction

DIFF intrinsic diffusivity

EXTRA-TRANS extra-neurite transverse diffusivity

EXTRA-MD extra-neurite mean diffusivity

ROI regions of interest
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Figure 1. 
Spinal cord cross sectional anatomy. Illustration of the principal WM fiber tracts of the 

spinal cord (left) and GM ROIs and architectural features (right) are shown for a cross-

section through the cord. Note that figure is only for educational purposes (and in our case, 

to orient reader to spinal cord anatomy) of white and gray matter regions and is not 

illustrative of one specific spinal cord level. Figures illustrated by Frank H. Netter, and 

reproduced and adapted from [111] with permission from Elsevier.
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Figure 2. 
PAM50 T2* template at the C3 vertebral level with WM pathways and GM subdivisions 

(top) and histological template of tissue microstructure indices (bottom). Note that 

histological indices were down-sampled to native atlas resolution.
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Figure 3. 
Montage of DTI metrics (fractional anisotropy, mean diffusivity, axial diffusivity, and radial 

diffusivity) for all subjects in atlas space. Diffusivity in units of 10−3 mm2/s. Note that each 

axial view corresponds to a different subject at the C3 vertebral level in atlas space.
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Figure 4. 
Montage of NODDI metrics (isotropic volume fraction, orientation dispersion index, 

intracellular volume fraction) for all subjects in atlas space. Note that each axial view 

corresponds to a different subject at the C3 vertebral level in atlas space.
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Figure 5. 
Montage of SMT metrics (intra-neurite volume fraction, extra-neurite transverse 

microscopic diffusivity, extra-neurite mean diffusivity, and tissue intrinsic diffusivity) for all 

subjects in atlas space. Diffusivity in units of 10−3 mm2/s. Note that each axial view 

corresponds to a different subject at the C3 vertebral level in atlas space.
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Figure 6. 
Metrics averaged over all subjects in atlas space. Diffusivity in units of 10−3 mm2/s.
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Figure 7. 
Medians of DTI, NODDI, and SMT metrics within WM (blue) and GM (green). Statistical 

significance is determined by a nonparametric Wilcoxon rank sum test and is indicated by 

asterisks (*p < 0.05; **p < 0.01; ***p < 0.001).
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Figure 8. 
Normative DTI values, averaged across 21 healthy subjects, for 33 regions of interest. ROIs 

are subdivided with vertical lines (from left to right) into dorsal column labels, lateral 

funiculi, ventral funiculi, GM, and CSF.
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Figure 9. 
Normative NODDI values, averaged across 21 healthy subjects, for 33 regions of interest. 

ROIs are subdivided with vertical lines (from left to right) into dorsal column labels, lateral 

funiculi, ventral funiculi, GM, and CSF.

Schilling et al. Page 30

Neuroimage. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Normative SMT values, averaged across 21 healthy subjects, for 33 regions of interest. ROIs 

are subdivided with vertical lines (from left to right) into dorsal column labels, lateral 

funiculi, ventral funiculi, GM, and CSF.
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Figure 11. 
Correlation between expected histological indices and DTI-derived metrics. Linear 

correlation coefficient is indicated in each sub-plot and statistical significance indicated by 

asterisk (*p < 0.05; **p < 0.01; ***p < 0.001) and bold plot outline. Histology and diffusion 

values are median values from histological template and diffusion population average, 

respectively.
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Figure 12. 
Correlation between expected histological indices and NODDI-derived metrics. Linear 

correlation coefficient is indicated in each sub-plot and statistical significance indicated by 

asterisk (*p < 0.05; **p < 0.01; ***p < 0.001) ) and bold plot outline. Histology and 

diffusion values are median values from histological template and diffusion population 

average, respectively.
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Figure 13. 
Correlation between expected histological indices and SMT-derived metrics. Linear 

correlation coefficient is indicated in each sub-plot and statistical significance indicated by 

asterisk (*p < 0.05; **p < 0.01; ***p < 0.001) ) and bold plot outline. Histology and 

diffusion values are median values from histological template and diffusion population 

average, respectively.
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