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Abstract: To provide theoretical support for the protection of dispersed drinking water sources
of groundwater, we need to accurately evaluate the time and scope of groundwater pollution
hazards to human health. This helps the decision-making process for remediation of polluted soil and
groundwater in service stations. In this study, we conducted such an evaluation by coupling numerical
modeling with a health risk assessment. During the research, soil and groundwater samples were
collected and analyzed for 20 pollutants. Fifty-six percent of the heavy contaminants and 100% of the
organic contaminants exhibited maximum values at the location of the oil depot. Gray correlation
analysis showed that the correlation between background samples and soil underlying the depot
was 0.375–0.567 (barely significant to insignificant). The correlation between the reference sequence
of other points was 0.950–0.990 (excellent correlation). The correlation of environmental impact
after oil depot leakage followed the order: organic pollutants > heavy metals > inorganic pollutants.
The groundwater simulation status and predictions indicated that non-carcinogenic health risks
covered 25,462 m2 at the time of investigation, and were predicted to extend to 29,593 m2 after five
years and to 39,873 m2 after 10 years. Carcinogenic health risks covered 21,390 m2 at the time of
investigation, and were predicted to extend to 40,093 m2 after five years and to 53,488 m2 after
10 years. This study provides theoretical support for the protection of a dispersed drinking water
source such as groundwater, and also helps the decision-making process for groundwater and soil
environment improvement.
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1. Introduction

Vehicle service stations and underground oil depots are among the main polluting sites of soil and
groundwater because of the leakage of oil storage tanks and oil transshipment spills [1–3]. When an oil
tank leaks, oil will pollute the surrounding groundwater and soil. As a non-aqueous liquid, oil will be
first intercepted in the soil pore [4], which will not only change the soil structure and lead to settlement,
but also become a potential source of contamination for groundwater. Over time, even pollutants trapped
in the vadose zone will migrate vertically into an aquifer under the effect of leaching [5–8]. According to
previous research, the composition of stored oil products at service stations or underground oil tanks is
complex, and controlled by production processes and standard requirements [9–11]. Adeniji et al. [12]
studied the types and composition of oil pollutants; Innocenti et al. [13], Lueders et al. [14],
Wade et al. [15], and Meyer et al. [16] studied the main organic pollutants in oil, including methyl
tert-butyl ether, benzene series, total petroleum hydrocarbons, and polycyclic aromatic hydrocarbons,
as well as their migration in the environment. After entering the ecological environment, pollutants
contained in oil will affect the growth and development of animals and plants. Some refractory
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components can be enriched in humans and animals through drinking water and diet and even cause
cancer [17–20].

The environmental risk of oil tank leakage increases as the tanks age. According to the US
Environmental Protection Agency’s (USEPA) statistics for 2011, 71% of the buried oil tanks in the USA
that have operated for more than 10 years have leaked [21]. As of 2015, the majority of service stations
in China still used single-wall tanks [22]. An investigation and monitoring of soil and groundwater at
242 service stations in six provinces of China showed that the proportion of pollutants detected at the
stations in each province was 24–89% [23]. In the red beds regions of southwestern China, many rural
residents still extract drinking water directly from groundwater that has not been purified or treated.
If such drinking water sources are close to a source of pollution, human health can be harmed through
drinking contaminated water. Therefore, research on the prevention and control of groundwater
pollution cannot be ignored.

Numerical models are the main method by which to study and solve many environmental
problems. Models that predict groundwater dynamics can be used to calculate the migration path and
concentration trend of pollutants in the environment by generalizing hydrogeological conditions and
designing various working conditions; such models have been used widely [24,25]. Environmental
risk assessment reflects the change of environmental protection from post-pollution treatment to
pre-pollution prediction and management. The “four step method” proposed by the US National
Academy of Sciences consists of hazard identification, dose-effect relationship assessment, exposure
assessment and risk characterization. Based on this “four step method”, the USEPA proposed a
method for assessing the risk of carcinogenesis from toxic chemicals. The USEPA method has been
recognized and widely used to assess the risk of human health at contaminated sites. Zhang et al. [26],
Ching-Ping et al. [27], and Sany et al. [28] applied the USEPA method to assess the health risks of
various pollutants from different sources. A numerical risk assessment value is actually a function
related to a pollutant concentration, and most of the risk representation forms are expressed in discrete
time and space [29,30].

The objective of this study was to characterize the spatiotemporal trend of regional risk arising
from soil and groundwater contamination. The USEPA risk assessment method and a numerical model
were used to make a health risk assessment of oil tank leakage at a service station in Yibin, China.
The study provides a practical and theoretical basis for protecting groundwater drinking water sources.

2. Study Area

The study area was located in the low mountains and hills in southern Sichuan
(104◦57′40′′–105◦14′33′′ E, 28◦22′20′′–28◦56′45′′ N). This area belongs to the humid climate zone
of the central subtropical Sichuan basin, and has an annual average temperature of 18.1 ◦C, annual
average humidity of 83%, annual average sunshine duration of 1199.3 h, and an annual frost-free
period of 347 d. According to long-term rainfall data, the annual average rainfall in the region is
1111 mm and varies obviously by seasons, in which 68% of the annual rainfall occurs from June to
September, and only 2.3% occurs from December to February.

The service station examined in this study was located in the western suburbs of Yibin County in
Sichuan Province, and covered an area of 3900 m2. The functional area of the service station mainly
included the oil tank area and the oil filling work area. The oil tank area (110 m2) was distributed along
the northern and western sides of the property. In the tank area, there were four buried single-wall
oil tanks, each containing 30 m3. Residents lived within 500 m around the service station and were
not served by a municipal water supply system. Thus, the residents used the groundwater as their
source of drinking water and extracted the groundwater directly without purification. The pumping
volumes ranged from 2.5 to 4 m3 d−1 (Figure 1). Since the gas station was put into operation in 2015,
there have been many tank leaks and flooding overflows of the single-wall oil tanks. Pollutants that
are characteristic of petroleum products have been detected in several monitoring wells at the study
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site. Among the pollutants, benzene, ethylbenzene, dichloroethane, and other organic contaminants
are carcinogenic risk factors that threaten the safety of residents’ drinking water source.
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shows the service station layout and various monitoring points. The locations of monitoring wells are
shown in the inset in the lower left.

According to the field investigation, the aquifer from which water is withdrawn by residential
wells, which is polluted by contaminants leaked from the service station, is a shallow weathered
fissured aquifer (J2s, Figure 1). To construct the hydrogeological model of the study area, exploratory
drilling and other physical explorations were used to obtain the structural information about the
aeration zone (i.e., vadose zone) and the aquifer. The hydrogeological information for the service
station location is shown in Figure 2. The depth of exploration and drilling was 15–30 m, and the
depth of the strongly weathered layer was 8.9–16.6 m. The strongly weathered layer was underlain
by a moderately weathered layer. The drilling did not pass through the moderately weathered layer.
The survey results indicated that the aeration zone varied from 1.1 m to 6.59 m in thickness, and was
composed of loose sediments. Furthermore, the strongly weathered zone of bedrock had a vertical
permeability coefficient in the range 0.5–1 m d−1. Otherwise, the permeability coefficient of the strongly
weathered bedrock layer in main area of groundwater occurrence was in the range 1–8 m d−1, and the
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permeability coefficient of the moderately weathered layer was in the range 0.001–0.1 m d−1. Thus, the
moderately weathered layer acted as a relative water barrier.
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3. Materials and Methods

3.1. Sampling and Measurement Techniques

Taking the location of the oil depot as a reference point, soil samples and groundwater samples in
the reference area and the potentially contaminated areas were collected during July 2019 (Table 1).
Soil samples were collected according to the Technical Guidelines for Soil Sampling in China [31].
At sampling points 1#–6# in the potentially contaminated areas, 18 non-disturbed soil samples were
collected using a power probe; three intact samples were retrieved at each location from depths 0.5–1 m,
1–2 m, and 2–3 m, respectively. Sampling point #7 was the background (reference) monitoring point,
and was located 350 m north of the oil depot. A composite soil sample representing the 0.5–3 m soil layer
was collected at sampling point #7. According to the composition characteristics of petroleum-related
pollution sources, 20 heavy metals, inorganic substances, and organic contaminants posing a high
threat to human health were selected for monitoring. Samples of soil were pretreated according to
monitoring specifications [32], and placed in brown glass bottles fitted with tightly screwed caps.
The samples were prepared for analysis by air drying, rough grinding, and fine grinding and then
placed in different containers based on the requirements of analytical methods. At the same time,
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19 water level measurements were made and 11 groundwater samples were collected. Groundwater
samples were analyzed for the same parameters, as were soil samples. Samples were analyzed using
standard methods of the American Public Health Association [33] to determine pollutant concentrations.
Table 2 shows the detection method and minimum detectable value of each parameter. All water
quality parameters are expressed in milligrams per liter (mg L−1).

Table 1. Details of groundwater sampling.

Soil Samples Groundwater Samples

ID Location ID Location Monitoring
Elements

Groundwater
Level

1#
1-1# Next to the south of

the oil depot (W04)

W01 65 m to the northeast of the oil depot

Head and
Quality

300.95 m
1-2# W02 40 m to the northeast of the oil depot 300.76 m
1-3# W03 22 m to the southwest of the oil depot 299.7 m

2#
2-1# 31 m to the

southwest of the oil
depot (W5)

W04 Next to the south of the oil depot 299.5 m
2-2# W05 31 m to the southwest of the oil depot 299.55 m
2-3# W06 12 m to the south of the oil depot 300.15 m

3#
3-1# 36 m to the

southeast of the oil
depot (W14)

W07 18 m to the southeast of the oil depot 300.12 m
3-2# W08 62 m to the southeast of the oil depot 300.31 m
3-3# W09 32 m to the southeast of the oil depot 299.5 m

4#
4-1# 62 m to the

southeast of the oil
depot (W08)

W10 66 m to the southeast of the oil depot 299.88 m
4-2# W11 77 m to the southeast of the oil depot 299.42 m
4-3# W12 5 m to the north of the oil depot 300 m

5#
5-1# 30 m to the west of

the oil depot

W13 24 m to the south of the oil depot

Head

299.5 m
5-2# W14 36 m to the southeast of the oil depot 299.35 m
5-3# W15 47 m to the southeast of the oil depot 299.3 m

6#
6-1# 56 m to the

northeast of the oil
depot

W16 272 m to the northwest of the oil depot 302.33 m
6-2# W17 310 m to the northeast of the oil depot 300.37 m
6-3# W18 246 m to the southeast of the oil depot 298.32 m

7# Background
point

350 m to the north
of the oil depot W19 279 m to the southeast of the oil depot 297.5 m

Table 2. Details of analytical methods and minimum detection values.

Number Monitoring Factors

Soil Groundwater

Detection Method Instrument

Minimum
Detectable

Value
(mg/L)

Detection Method Instrument

Minimum
Detectable

Value
(mg/L)

1 As

Inductively
Coupled Plasma

Mass Spectrometry
(ICP-MS)

Inductively
Coupled Plasma

Mass Spectrometer:
Nex ION 350X

0.00009
Metal Index Atomic

Fluorescence
Spectrometry

Atomic fluorescence
spectrophotometer:

AFS-930
0.01

2 Cu 0.00009
Flame Atomic

Absorption
Spectrophotometry

Atomic Absorption
Spectrophotometer

AA-7000

1

3 Zn 0.0008 0.5

4 Mn 0.00006 0.1

5 Ni 0.00007 5

6 Pb 0.00007
Graphite Furnace

Atomic Absorption
Spectrophotometry

(GF-AAS)

Atomic Absorption
Spectrophotometer

AA-9000T

0.1

7 Cd 0.00007 0.01

8 Hg
Metal Index Atomic

Fluorescence
Spectrometry

Atomic fluorescence
spectrophotometer:

AFS-930
0.00001

Cold Atomic
Absorption

Spectrophotometry

Differential mercury
analyzer (WCG209) 0.1

9 Cr6+
Diphenyl

carbonyl hydrazine
spectrophotometry Ultraviolet-visible

Spectrophotometer:
UV-7504

0.001
Diphenyl carbonyl

hydrazine
spectrophotometry

Ultraviolet-visible
Spectrophotometer:

UV-7504
0.16

10 Cyanide Spectrophotometry
method 0.004

Colorimetric
method of

isonicotinic
acidpyrazolone

Ultraviolet-visible
Spectrophotometer:

UV-7504
0.04

11 Fluoride Ion chromatography
Ion

chromatography:
ECOIC

0.006
Ion selective

electrode analysis
method

PHSJ-4A 5
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Table 2. Cont.

Number Monitoring Factors

Soil Groundwater

Detection Method Instrument

Minimum
Detectable

Value
(mg/L)

Detection Method Instrument

Minimum
Detectable

Value
(mg/L)

12 Naphthalene

Purge and trap/gas
chromatography-

Mass spectrometry

Gas
chromatography-

mass spectrometer
GC-MS: SHIMADZ

QP-2010 Ultra

0.0001

Purge and trap/gas
chromatography-

mass spectrometry

Gas
chromatography-

mass spectrometer
GC-MS: SHIMADZ

QP-2010 Ultra

0.0004

13 Benzene 0.0001 0.0009

14 Methylbenzene 0.0001 0.0009

15 Ethylbenzene 0.0001 0.0009

16 m-Xylene;
para-xylene 0.0002 0.0008

17 ortho-xylene 0.0002 0.0008

18 Dichloromethane 0.0003 0.0011

19
MTBE

(methyl tert-butyl
ether)

Determination of
volatile organic
compounds by
purge/trap/gas

chromatography
mass spectrometry

Gas chromatograph-
mass spectrometer:

Agilent
7890A-5975C

0.0005

Determination of
volatile organic
compounds by
purge/trap/gas

chromatography
mass spectrometry

Gas chromatograph-
mass spectrometer:

Agilent
7890A-5975C

/

20
Total

petroleum
hydro-carbon

(TPH)

C6-C9 Nonhalogenated
Organics Using
GC/FID (Flame

Ionization Detector)

Gas chromatograph:
7890B

0.05

Determination of
Non-halogenated

Organic
Compounds by

GC/FID

Gas Chromatograph
(GC) 7890B 0.1

C10-C36 0.03 Gas
Chromatography

Gas Chromatograph
GC-2010plus 0.43

3.2. Groundwater Modeling

The commonly used groundwater pollution transportation simulation software, Visual Modflow
(https://www.waterloohydrogeologic.com/) was selected for application in this study. Visual Modflow
predicts the impact of different management actions on pollutant transport under different boundary
conditions in different saturated heterogeneous regions [34]. Visual Modflow establishes a groundwater
flow model by applying a module to perform three-dimensional finite-difference numerical simulation
of groundwater through a porous medium. This module involves the following partial differential
equation [35]:

∂
∂xi

(
Kxx

∂h
∂x

)
+

∂
∂y

(
Kyy

∂h
∂y

)
+

(
Kzz

∂h
∂z

)
−W = Ss

∂h
∂t

(1)

where h is the piezometric head (L), W is the volumetric flux per unit volume that is represented for
pumping, recharge or other sources, such as reservoirs (T−1), Ss is the specific storage coefficient of the
porous material (L−1), t is the time (T), Kxx, Kyy, and Kzz represent the values of hydraulic conductivity
along the x, y, and z coordinate axes, respectively (L T−1), and x, y, and z are the coordinate directions (L).

The MT3DMS (three-dimensional modular pollutant transport model, https://hydro.geo.ua.
edu/mt3d/mt3dms2.htm) model is used widely to simulate solute transport in polluted aquifers.
To determine the pollution plume, the transport model (MT3DMS) was used in combination with
the flow field generated by the common flow model (Visual Modflow). In general, the mathematical
model describing solute transport is as follows [36–38]:

∂
(
ωCk

)
∂t

=
∂
∂xi

(
ωDi j

∂Ck

∂x j

)
−
∂
∂xi

(
ωviCk

)
+ qsCs

k +
∑

Rn (2)

where Ck denotes k concentrations in water (M L−3), ω is the porosity of the porous medium
(dimensionless), t is time (T), xi is the distance along the respective cartesian coordinate axis (L), Dij is
the hydrodynamic dispersion cofficient (L2 T−1), vi is the seepage or linear porewater velocity (LT−1),
qs is the volumetric flux of water per unit volume of aquifer representing sources (positive) and sinks
(negative) (T−1), Cs is the concentration of sources or sinks (M L−3), and

∑
Rn is a chemical reaction

term (M L−3 T−1).

https://www.waterloohydrogeologic.com/
https://hydro.geo.ua.edu/mt3d/mt3dms2.htm
https://hydro.geo.ua.edu/mt3d/mt3dms2.htm
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3.3. Health Risk Assessment

Based on the “four-step method” proposed by the US National Academy of Sciences (Figure 3),
the USEPA issued a series of technical documents and guidelines on risk assessment, and created a
scientific risk assessment system. At present, some environmental risk assessment models in China and
elsewhere consider air transmission and soil migration as pollutant pathways, and some only consider
groundwater migration. Groundwater transmission is often considered in groundwater ecological
vulnerability assessment and groundwater health risk assessment [39,40]. As outlined in Figure 3,
the research process includes spot investigation, data collection, virulence assessment, exposure
assessment, model construction, and risk characterization of pollution. Based on the “World Health
Organization International Agency for Research on Cancer Carcinogens List” and the characteristics of
pollutants from service stations, pollutants examined in this study were classified as carcinogens and
non-carcinogens. Then, the carcinogenic slope factor (SF) and drinking water quality requirements
were collected to serve as threshold values (Rf D) for health risk assessment [41,42]. Grey correlation
analysis was used to show that the soil pollution occurred near the oil tank, and the indicator of
groundwater pollution was also detected in the groundwater that served as the drinking water of
residents. Therefore, the exposure path for the risk assessment was assumed to be the ingestion of
pollutants by residents drinking groundwater, and the risk values of carcinogens and non-carcinogens
were expressed for oral absorption [39,40]:

CDIoral-water =
Cw×IR× EF× ED

BW ×AT
(3)

where CDIoral-water is the long-term daily exposure, Cw is the concentration of a particular pollutant in
groundwater (mg/(L·d)), IR is the daily water consumption (L/d), EF is the frequency, number of days
exposed in a year (d/a), ED is the total years of exposure (a), BW is the weight of an adult (kg), and AT
is the average exposure time (d). The values of the parameters are shown in Table 3.

Table 3. Parameters of oral absorption pathway in health risk assessment.

Symbol Name Unit Recommended
Values (Adult) Symbol Name Unit Recommended

Values (Adult)

Cw
Concentration of i in

groundwater Mg/(L·d) Measured value ED Total years of
exposure a 70–40

IR Daily water consumption L/d 2 BW Weight kg 61.52

EF
Exposure frequency,

number of days exposed
in a year

d/a 350 AT Average
exposure time d 25,550–14,600
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Trace carcinogens can have adverse effects on human health. Researchers often use relevant
carcinogenic risk values to express the risk of adverse effects. The equation for calculating low-dose
carcinogenic risk (Ro) is as follows [1/mg·(kg·d)−1] [43]:

Ro = CDIoral-water×SF (4)

The numerical value of total carcinogenic risk (TRo) is the sum of carcinogenic risk values of
different substances, without considering their synergistic or antagonistic effects:
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TRO =
n∑

i=1

Roi (5)

The USEPA-recommended value is usually used to judge the risk of carcinogenesis. When TRo
is less than 10−6, the risk of cancer is considered to be relatively low; when TRo is 10−4–10−6, cancer
risk is considered likely to result in cancer; when TRo exceeds 10−4, the risk of cancer is relatively
high [44–46].

The equation for calculating non-carcinogenic risk (HI) is:

HI =
CDIoral-water

R f D
(6)

If HI ≤ 1, the exposure dose is lower than the threshold that causes adverse reactions, and the
exposure is not expected to cause significant harm to health. If HI > 1, the exposure dose exceeds the
threshold, and exposure may exert adverse non-carcinogenic effects on humans [45]. According to the
above equations, the parameters are calculated in which the main variable is Cw (the concentration
of a particular pollutant in groundwater). When the instantaneous concentration of a pollutant is
obtained from monitoring, the health risk can be calculated, but the results are instantaneous and
discrete. In this study, numerical simulation was used to carry out health risk assessment and realize
the continuous representation of groundwater carcinogenic risk value TRo and risk index HI in the time
and space dimensions, which is conducive to risk zoning and health risk prevention and management
of groundwater drinking water sources.

4. Results and Discussion

4.1. Status of soil Pollution and Identification of Pollution Factors

4.1.1. Unsaturated Soil Pollution Characteristics

According to USEPA regional screening [47] levels and Ministry of Ecology and Environmental
of China soil environmental quality [48,49], a single factor index was used. The maximum standard
percentage of heavy metal constituents in each sample ranged between 0.001 and 0.529, and the peak
concentrations of copper, lead, arsenic, hexavalent chromium, and manganese among the nine heavy
metals monitored all appeared in #1-1 and #1-2 at monitoring point #1, which was located within
the oil depot (Figure 1 and Table 1). Among the inorganic pollutants the fluoride concentration was
580.3–634.0 mg kg−1, accounting for 0.187–0.205 of the exceeding the standard rate. Cyanide was not
detected in any samples. The maximum standard percentage of the nine organic pollutants monitored
was 0.008–0.432. However, such organic pollutants were only detected at monitoring point #1 where
the peak concentrations all appeared in #1-1. The concentrations of organic pollutants in #1-1, #1-2, and
#1-3 at monitoring point #1 exhibited an obvious trend of decreasing with increasing depth. Monitoring
data showed that the vertical infiltration of pollutants after oil tank leakage was the main pollutant
pathway through the soil in the unsaturated zone underlying the oil tank. In the identification of
groundwater pollution paths, the unsaturated zone is considered to be an important protective barrier
for the groundwater environment because the vadose zone has the ability to intercept pollutants and
prevent them from permeating. The vertical attenuation of pollutants at monitoring point 1# verifies
this function. Analyzing the horizontal distribution of pollutants in soil, any difference between
monitoring point #1 and other monitoring points should be affected by the presence of exogenous
pollutants rather than by lateral movement of pollutants from the oil depot.

4.1.2. Grey Relational Analysis

Grey relational analysis (GRA) was conducted to further analyze the pollution characteristics of
oil tank leakage into the soil environment in the aeration zone, and to identify characteristic factors for
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the risk assessment of the groundwater environment. GRA is a multi-factor statistical analysis method
that uses grey correlation degree to describe the strength and magnitude of the relationship between
factors based on the sample data of each factor. If the sample data column indicates that the changes of
factors at two different locations are basically the same, the correlation degree between them is large.
On the contrary, the degree of correlation is small if the factors at the two locations do not change in a
similar way. GRA has been applied in hydrogeological research fields, such as to study mining tunnels
and sources of water in-rush from tunnels [50–52]. Thus, in this study GRA was used to quantify the
correlation between the pollutants found at different monitoring points (#1–6) and those found at the
background monitoring point (#7) based on the monitoring of all pollutants and the criterion of only
examining the different types of pollutants.

Analysis Steps

Assume that X0 (soil background value) is a reference sequence:

X0 =
{
x0(1), x0(2), · · · , x0(n)

}
X1, X2, . . . , Xm (sample detection values) are comparative sequences:

X1 =
{
x1(1), x1(2), · · · , x1(n)

}
X2 =

{
x2(1), x2(2), · · · , x2(n)

}
. . .

Xm =
{
xm(1), xm(2), · · · , xm(n)

}
The steps of GRA are (a) calculating the grey relevance coefficient, (b) calculating the grey relevance

degree, and (c) grey relational analysis.
(a) Grey relevance coefficient ξ0i(k) can be calculated using Equation (7):

ξoi(k) =
min

i
min

k
∆i(k) + ρmax

i
max

k
∆i(k)

∆i(k) + ρmax
i

max
k

∆i(k)
(7)

where, ∆i(k) = |x0(k) − xi(k)|; k = 1, 2, . . . , n; i = 1, 2, . . . , m, and ρ is the resolution coefficient, the
general value for which is 0.5 [51].

(b) Grey relevance degree γ0i can be calculated using Equation (8):

γoi =
1
N

N∑
k=1

wkξoi(k) (8)

where, wk (k = 1, 2, . . . , n) is the weight of each index. The coefficient of variation objective weighting
method is used as defined by Equations (9)–(11) [50].

First, the standard deviation of each index is calculated (σk), which reflects the absolute variation
degree of each index:

σk =

√√
1
m

m∑
i=1

(xik − xk)
2(k = 1, 2,. . . , n) (9)

where xk is the average of the k indexes.
Next, the coefficient of variation of each index is calculated (Ck), which reflects the relative

variation degree of each index:
ck = σk/x, (k = 1, 2,. . . , n) (10)

Last, the weight of each index is obtained by normalizing the coefficient of variation of each index
(wk):
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wk = ck/
n∑

k=1

ck, (k = 1, 2,. . . , n) (11)

The weight vector of each index is described as W = (w1, w2, . . . , wn).
(c) In the grey relational analysis, the degree of correlation γ0i can be regarded as a measure of

the overall correlation between the reference sequence and the comparison sequence. The closer γ0i
is to the value of 1, the better is the correlation between the reference sequence and the comparison
sequence. It is generally believed that when ρ = 0.5, γ0i ≥ 0.85 indicates a good correlation. Similarly,
γ0i = 0.7–0.85 indicates good correlation, γ0i = 0.6–0.7 indicates acceptable correlation, γ0i = 0.5–0.6
indicates poor correlation, and γ0i < 0.5 indicates non-significant correlation [53].

Grey Correlation Degree Results

The grey correlation degree results for different types of pollutants are shown in Table 4.
The correlation degree between the types of pollutants for each of the three sampling sections at
monitoring point #1 and the background (#7) was in the range 0.375–0.567, indicating that the correlation
varied from barely significant to insignificant; however, the correlation between sampling sections and
background increased with the increase of sampling depth. In other words, the composition of soil at
monitoring point #1 was significantly different from that at the reference point #7. The correlation
degree between the types of pollutants for each sampling section at other monitoring points and the
background monitoring point (#7) was excellent (0.950–0.990). Furthermore, the vertical correlation
degree at these points exhibited no obvious pattern. Thus, GRA indicated that the oil tank leakage
mainly polluted the underlying soil, and that horizontal migration range of the examined contaminants
in the soil was relatively limited. Soil intercepts pollutants during the infiltration process, and retards
or degrades some of them; thus, the influence of surface pollution sources on monitoring points deep
in the soil profile is relatively weak, at least initially. However, this interception effect is limited.
For example, the monitoring data from layers #1-1 and #1-2 and their correlation with background
values are similar. These results suggest that the soil interception at the depth of 0–2 m had become
saturated at the time of sampling. Therefore, the difference in pollutant concentrations and correlation
between the two sections was no longer obvious.

Assuming that only one type of pollution is considered (i.e., ignoring interactions among
pollutants), the GRA showed that for inorganic factors, the correlation degree between all samples and
background values was high (0.989–1.000). Furthermore, fluoride and cyanide may not be considered
as indicators of groundwater pollution. Among the remaining two pollutants, excluding organic
pollutants and only considering the heavy metal pollutant, the correlation degree of monitoring
point #1 with the background (#7) increased to 0.404–0.626; however, these correlations were barely
significant or insignificant. The correlation degree of soil sections at other monitoring points was
high (0.780–0.958). Considering only organic pollutants, the correlation degree of monitoring point #1
decreased to 0.333–0.520, but the correlation degree for soil layers at other monitoring points was high
(as much as 1.000). In summary, GRA indicated that the oil tank leakage caused the most significant
changes to the organic components in the soil, and the order of pollution significance was organic
pollutant > heavy metal pollutant > inorganic pollutant. Therefore, the organic pollutant was selected
as the indicator for the subsequent risk analysis. In analyzing the groundwater detection data, total
petroleum hydro-carbon (THP) was used as the comprehensive indicator of organic pollutants for
the non-carcinogenic risk assessment. Benzene, ethylbenzene, and methylene chloride were used as
indicators in the carcinogenic risk assessment factors due to their carcinogenicity, with slope factors of
0.55, 0.011, and 0.002, respectively [41,42].
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Table 4. Grey correlation analysis results.

Sampling Point Comprehensive
Pollution Factor

Heavy Metal
Pollution Factor

Inorganic
Pollution Factor

Organic
Pollution Factor

1#
1-1# 0.375 0.411 0.989 0.333
1-2# 0.387 0.404 0.990 0.353
1-3# 0.562 0.626 1.000 0.520

2#
2-1# 0.982 0.923 1.000 1.000
2-2# 0.990 0.958 0.998 1.000
2-3# 0.972 0.875 0.999 1.000

3#
3-1# 0.977 0.899 0.999 1.000
3-2# 0.983 0.928 0.993 1.000
3-3# 0.978 0.905 0.993 1.000

4#
4-1# 0.964 0.844 0.994 1.000
4-2# 0.967 0.856 0.989 1.000
4-3# 0.976 0.894 0.995 1.000

5#
5-1# 0.963 0.837 0.996 1.000
5-2# 0.950 0.780 1.000 1.000
5-3# 0.958 0.817 0.998 1.000

6#
6-1# 0.968 0.859 0.998 1.000
6-2# 0.963 0.837 0.997 1.000
6-3# 0.968 0.861 0.997 1.000

4.2. Risk Assessment

To determine the Cw trend in the continuous space and time dimensions, the Visual Modflow
software was used to construct a hydrogeological numerical model of the study area. Based on the
monitored groundwater level and quality, the rationality of the model was verified. Thereafter, the
trend of groundwater pollutant concentration was calculated. Finally, the numerical model was used
to predict changes in Cw and accurately depict the range of various risk areas in different periods.

4.2.1. Model Construction and Calibration

Model Grid Construction and Parameterization

Based on hydrogeological drilling and physical exploration data, a groundwater model with an
area of 0.51 km2 was constructed, in which the Yijiang River was defined as the excretory surface.
The vertical cross-section of the simulated area was divided into a strongly weathered layer and a
moderately weathered layer according to the permeability coefficients, and the depth of the strongly
weathered layer was 15–25 m. Rectangular grids of 5 m × 5 m were used to subdivide the modeled area.
The main factors controlling the accuracy of the model predictions were hydrogeological parameters
and solute transport parameters, which were obtained by in situ hydrogeological experiments and
other data collection techniques. The values of various parameters for the reasonable-fit model are
shown in Table 5, including the values of hydraulic conductivities (K) of each layer. The model
boundaries and other simulation features are shown in Figure 4.
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Table 5. Model parameter values used in numerical simulations.

Model Parameter Value

Length of model domain in x-direction/m 930 m
Length of model domain in y-direction/m 650 m

Dimension of one grid cell/m 5 × 5
Average annual rainfall 1110

Rainfall infiltration coefficient 0.08–0.12
Specific yield (Sy) 0.1
Effective porosity 0.1

Total porosity 0.15
Specific storage, (Ss/m) 1.0 × 10−7

hydraulic conductivity (Kx, Ky) First layer 0.0008
Second layer 0.00001

Kz 1/10Kx
DL longitudinal dispersion 0.467

DT Ratio of longitudinal dispersion to transverse dispersion 1/10DL

Boundary Conditions and Pollution Source Setting

Boundary conditions reflect the process and intensity of a model and the external water quantity and
material exchange, all of which are necessary for an accurate simulation [54]. The boundary conditions
should be based on a correct understanding of the hydrogeological conditions in the simulated area,
while ensuring a true reflection of the mathematical model. The hydrodynamic conditions of shallow
weathered fissure water in China’s southwestern red bed aquifer are characterized by local topography
and adjacent water bodies. Therefore, the boundary settings were as follows. The west side and
the north side of the simulation area were upstream (up-gradient) of the simulation area and were
set as the inflow boundaries. The east side was set as the outflow boundary in the lateral direction.
The south side was the drainage boundary of the simulation area; combined with the hydrological and
hydrodynamic conditions, this was set as the river boundary. The south of the river boundary was
divided into different hydrogeological units and was set as the invalid unit. According to the actual
groundwater survey, 14 water quality monitoring wells were distributed in the simulated area, and the
water intake was 2.5–4 m3 d−1. At the same time, 19 water level monitoring wells were set for the
verification of the water flow model; 11 water quality monitoring wells were set for the calibration of
the solute transport model. The model domain (including the boundary conditions, positions of the
observation wells and pumping wells) is shown in Figure 4.
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Flow Model Calibration

The hydrogeological parameters measured in the survey, as well as the parameters of hydraulic
conductivity, recharge, and specific yield, were set in the numerical model. The predicted output flow
field was compared with the measured water level data to verify the rationality of the model [55].
The smaller was the value of the standard error of the estimate, the closer were the model predictions
to the actual observation values, and the higher was the model accuracy. As shown in Figure 5,
19 observed wells were used in flow model validation. Table 6 shows the observed and predicted
water levels (heads) for the various monitoring wells. Figure 5 shows that the standard error of the
estimate was very small, only 0.109 m. Thus, the groundwater model predictions were consistent with
the observed water heads.

Table 6. Computed versus observed head values.

Well/Point
Name

Obs.
(Observation

Value)

Calc.
(Calculated

Value)
Calc.-Obs. Well/Point

Name Obs. Calc. Calc.-Obs.

W1 300.95 300.39 −0.56 W11 299.42 299.74 0.32
W2 300.76 301.36 0.6 W12 300.00 300.57 0.57
W3 300.05 299.68 −0.37 W13 299.50 300.34 0.84
W4 299.98 299.49 −0.49 W14 299.35 300.15 0.80
W5 300.26 299.65 −0.61 W15 299.30 300.01 0.71
W6 300.15 300.42 0.27 W16 302.33 302.18 −0.15
W7 300.12 300.30 0.18 W17 300.37 300.16 −0.21
W8 300.31 299.96 −0.35 W18 298.32 298.34 0.02
W9 299.50 300.18 0.68 W19 297.80 297.60 −0.20

W10 299.88 299.87 −0.01
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Figure 5. Calibration of initial flow field of groundwater: (a) schematic chart of initial flow field of
groundwater, which indicates the direction and magnitude of groundwater flow; (b) residual analysis
diagram of groundwater level in the research area. Transport model calibration.

After calibrating the flow model, the solute transport model was calibrated by trial-and-error [56].
According to the mathematical equation of solute transport (Equation (2)), the uncertain parameters
affecting the solute transport model include the dispersion coefficient of pollutants and the pollutant
flux; the pollutant flux is equal to the product of solvent infiltration and pollutant concentration.
The dispersion coefficient is regarded as being quantified after the flow model has been successfully
calibrated. The only parameters affecting the predicted concentration of a pollutant are solvent
infiltration and initial pollutant concentration. By adjusting the pollutant flux, the model predictions
and the observed values of the pollutant factors were compared.

Figure 6 shows that data from 11 water quality observation wells were used for the transport
model calibration. After calibrating the solute-transport model, the root mean square error for THP
was 1.416 mg L−1. The absolute residual mean was 0.853 mg L−1.

The model simulations showed that leakage from the oil depot affected the groundwater
environment around the oil depot and down-gradient in the direction of groundwater flow.
The maximum THP concentration (25 mg L−1) was predicted at the location of the pollution source;
this corresponded to a risk assessment value (HI) of 26, which was much larger than the risk standard
value of 1. Furthermore, the predicted pollution coverage was 25,580 m2, which exceeded the footprint
of the service station and extended 149 m down-gradient of the southeast side of the station.
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4.2.2. Analysis of Model Simulation Results

In reality, once pollution sources are interrupted and other remediation measures are taken, the
maximum pollutant concentration in groundwater typically continues to increase, the migration range
of pollutants keeps expanding, and the health risk gradually accumulates. The groundwater model
was used to predict the HI and TRo characteristics in five and 10 years (Figure 7).

After five years, the predicted maximum non-carcinogenic risk index HI was 25.2, and the area in
which HI exceeded the value of 1 was 29,593 m2; this area extended 193.0 m down-gradient from the
southeast boundary of the service station and was only 6.9–46.2 m from the surrounding intake wells
for residents. Compared with the situation at the time of the survey, the predicted risk area increased
by 16.22% after five years. Similarly, the predicted maximum value of the carcinogenic risk index TRo
was 4.73 × 10−5 after five years, and the area in which TRo exceeded 10−6 was 40,093 m2. The risk
area extended 222.4 m down-gradient from the southeast boundary of the service station and was
18.5–60.5 m from the surrounding residential area.

After 10 years, the predicted maximum non-carcinogenic risk index HI was 25.3, and the area in
which HI exceeded the value of 1 was 39,873 m2, which extended 255.4 m down-gradient from the
southeast boundary of the service station and was 5.9–46.2 m from the surrounding residential area.
Compared with the situation at the time of the survey, the risk area increased by 56.60%. Similarly, the
predicted maximum value of the carcinogenic risk index TRo was 4.8 × 10−5, and the area in which
TRo exceeded 10−6 was 53,488 m2. The risk area extended 285.9 m down-gradient from the southeast
boundary of the gas station and was 22.7–65.2 m from the surrounding residential area.

The model simulations predicted that the maximum pollutant concentrations in groundwater
would increase in 5–10 years, but at a slow rate (1.2–1.5% per annum). Likewise, the average expansion
rate of the total area of the risk was predicted to be 0.033–0.055 m2 per annum. The maximum risk
distance along the main groundwater flow direction was predicted to increase by 0.057–0.071 m
per annum. Conversely, the pollutant diffusion distance up-gradient from the service station was
predicted to increase very little in 10 years, while the vertical diffusion distance in the main flow path
of groundwater was predicted to increase at a rate of 0.015 m per annum. Thus, drinking water wells
located down-gradient of the main volume of polluted groundwater were most at risk and should be a
priority for pollution prevention and control efforts. According to the results of the field investigation,
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drinking water wells W18 and W19 were already contaminated at the time of the survey. After 10 years,
the TRo and HI values of W19 were predicted to be 1.6 × 10−6 and 1.3, respectively. Thus, urgent action
is needed to implement measures to improve the soil and groundwater environment.
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5. Conclusions and Recommendations

This study examined the soil and groundwater around a service station in Yibin, China, which
was the site of a leaking underground oil storage tank. Combining numerical modeling and health
risk assessment, we established a hydrogeological numerical model of the study area using Visual
MODFLOW software (Waterloo Hydrogeologic, Vancouver, Canada) to determine the health risks
trend in the continuous space and time dimensions. The results justify the following conclusions.
Pollution of the soil by leakage from the buried oil tank is mainly concentrated in the oil storage area.
The pollutants leaked from the oil tank also have penetrated groundwater in the vicinity of the station.
The groundwater is the source of drinking water for local residents. According to the risk assessment
that was performed, the contamination in this risk zone may harm human health and even cause
cancer. According to simulation results, the contamination will worsen over time. Therefore, pollution
control measures must be taken to reduce the risk posed to human health.

Among the measures that can be taken, replacing the existing single-wall storage tanks with
double-walled tanks manufactured using upgraded material should be part of any prevention and
control program to eliminate the source of pollution at the station. Furthermore, contaminated soil can
be removed, but this may cause “secondary pollution”. Implementing strict anti-seepage measures
in the storage tank area should be considered to create artificial barriers for the pollutant migration
path. Moreover, to promote the rehabilitation speed of contaminated groundwater, taking measures
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such as controlling the local hydrodynamic conditions in the aquifer and setting grouting curtains
in the down-gradient direction of pollutant migration can help mitigate pollutant movement and
increase the groundwater flow flux. The polluted groundwater can be removed and treated or disposed.
In summary, a variety of source-process-end controls are needed to eliminate the health risks of
drinking contaminated groundwater at the study site and effectively ensuring the future safety this
drinking water source.
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