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.e integration of machine learning techniques and metaheuristic algorithms is an area of interest due to the great potential for
applications. In particular, using these hybrid techniques to solve combinatorial optimization problems (COPs) to improve the
quality of the solutions and convergence times is of great interest in operations research. In this article, the db-scan unsupervised
learning technique is explored with the goal of using it in the binarization process of continuous swarm intelligence metaheuristic
algorithms. .e contribution of the db-scan operator to the binarization process is analyzed systematically through the design of
random operators. Additionally, the behavior of this algorithm is studied and compared with other binarizationmethods based on
clusters and transfer functions (TFs). To verify the results, the well-known set covering problem is addressed, and a real-world
problem is solved. .e results show that the integration of the db-scan technique produces consistently better results in terms of
computation time and quality of the solutions when compared with TFs and random operators. Furthermore, when it is compared
with other clustering techniques, we see that it achieves significantly improved convergence times.

1. Introduction

In recent years, different optimization methods based on
evolutionary concepts have been explored. .ese methods
have been used to solve complex problems, therein obtaining
interesting levels of performance [1–3], and many such
methods have been inspired by concepts extracted from
abstractions of natural or social phenomena. .ese ab-
stractions can be interpreted as search strategies according
to an optimization perspective [4]. .ese algorithms are
inspired, for example, by the collective behavior of birds, e.g.,
the cuckoo search algorithm [5]; the movement of fish, e.g.,
the artificial fish swarm algorithm (AFSA) [6]; particle
movement, e.g., particle swarm optimization (PSO) [7]; the
social interactions of bees (ABC) [8]; and the process of
musical creation, as in the search for harmony (HS) [9] and
in genetic algorithms (GA) [10], among others. Many of
these algorithms work naturally in continuous spaces.

On the other hand, lines of research that allow robust
algorithms associated with the solution of combinatorial
optimization problems (COPs) to be obtained are of great
interest in the areas of computer science and operations
research. .is interest is currently mainly related to decision
making in complex systems. Many of these decisions require
the evaluation of a very large combination of elements in
addition to having to solve a COP to find a feasible and
satisfactory result. Examples of COPs can be found in the
areas of logistics, finance, transportation, biology, and many
others. Depending on the definition of the problem, many
COPs can be classified as NP-hard. Among the most suc-
cessful ways to address such problems, one commonmethod
is to simplify the model to attempt to solve instances of small
to medium size using exact techniques. Large problems are
usually addressed by heuristic or metaheuristic algorithms.

.e idea of hybridization between metaheuristic tech-
niques and methods from other areas aims to obtain more
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robust algorithms in terms of solution quality and convergence
times. State-of-the-art proposals for hybridization mainly in-
clude the following: (i) mateheuristics, which combines heu-
ristics or metaheuristics with mathematical programming [11];
(ii) hybrid heuristics, which corresponds to the integration of
different heuristic or metaheuristic methods [12]; (iii) sim-
heuŕıstics, which combines simulation and metaheuristics [13];
and (iv) the hybridization betweenmetaheuristics andmachine
learning [14]. Machine learning can be considered as a set of
algorithms that enable the identification of significant, po-
tentially useful information and learning through the use of
data. In this work, useful informationwill be obtained using the
data generated by a continuous metaheuristic algorithm
through the use of the db-scan unsupervised learning tech-
nique to obtain robust binarizations of this algorithm.

Within the lines of this discussion, we aim to provide the
following contributions:

(i) A novel automatic learning binarization algorithm
is proposed to allow metaheuristics commonly
defined and used in continuous optimization to
efficiently address COPs. .is algorithm uses the
db-scan unsupervised learning technique to per-
form the binarization process. .e selected meta-
heuristics are particle swarm optimization (PSO)
and cuckoo search (CS). .eir selection is based on
the fact that they are commonly used in continuous
optimization and enable a method for adjusting
their parameters in continuous spaces.

(ii) .ese hybrid metaheuristics are applied to the
well-known set covering problem (SCP). .is
problem has been studied extensively in the lit-
erature, and therefore, there known instances
where we can clearly evaluate the contribution of
the db-scan binarization operator. On the other
hand, the SCP has numerous practical real-world
applications such as vehicle routing, railways,
airline crew scheduling, microbial communities,
and pattern finding [15–18].

(iii) Random operators are designed to study the con-
tribution of the db-scan binarization algorithm in
the binarization process. Additionally, the behavior
of db-scan binarization is studied, comparing it with
binarization methods that use k-means and transfer
functions (TFs). Finally, the binarizations obtained
by db-scan are used to solve a real-world problem.

.e remainder of this article is structured as follows.
Section 2 describes the SCP and some of its applications. In
Section 3, a state-of-the-art hybridization between the areas of
machine learning andmetaheuristics is provided, and themain
binarization methods are described. Later, in Section 4, the
proposed db-scan algorithm is detailed. .e contributions of
the db-scan operator are provided in Section 5. Additionally, in
this section, the db-scan technique is studied by comparing it
with other binarization techniques that use k-means and TFs as
a binarization mechanism. In Section 6, a real-world appli-
cation problem is solved. Finally, in Section 7, conclusions and
some future lines of research are given.

2. Set Covering Problem

SCP is one of the oldest and most-studied optimization
problems and is well known to be NP-hard [19]. Never-
theless, different solution algorithms have been developed.
.ere exist exact algorithms that generally rely on the
branch-and-bound and branch-and-cut methods to obtain
optimal solutions [20, 21]. .ese methods, however, struggle
to solve SCP instances that grow exponentially with the
problem size. Even medium-sized problem instances often
become intractable and can no longer be solved using exact
algorithms. To overcome this issue, different heuristics have
been proposed [22, 23].

For example, [22] presented a number of greedy algo-
rithms based on a Lagrangian relaxation (called Lagrangian
heuristics). Caprara et al. [24] introduced relaxation-based
Lagrangian heuristics applied to the SCP. Metaheuristics,
e.g., genetic algorithms [25], simulated annealing [26], and
ant colony optimization [27], have also been applied to solve
the SCP. More recently, swarm-based metaheuristics, such
as the cat swarm [28], cuckoo search [29], artificial bee
colony [8], and black hole [30] metaheuristics, have also
been proposed.

.e SCP has many practical applications in engineering,
e.g., vehicle routing, railways, airline crew scheduling, mi-
crobial communities, and pattern finding [15, 16, 18, 31].

.e SCP can be formally defined as follows. Let A � (aij)

be an n × m zero-onematrix, where a column j covers a row i
if aij � 1, and a column j is associated with a nonnegative
real cost cj. Let I � 1, . . . , n{ } and J � 1, . . . , m{ } be the row
and column set of A, respectively. .e SCP consists of
searching a minimum cost subset S ⊂ J for which every row
i ∈ I is covered by at least one column j ∈ J, i.e.,

minimizef(x) � 􏽘

m

j�1
cjxj, (1)

subject to􏽘
m

j�1
aijxj ≥ 1, ∀i ∈ I, and xj ∈ 0, 1{ }, ∀j ∈ J,

(2)

where xj � 1 if j ∈ S and xj � 0, otherwise.

3. Related Work

3.1. Related Binarization Work. A series of metaheuristic
algorithms designed to work in continuous spaces have been
developed. Particle swarm optimization (PSO) and cuckoo
search (CS) are two of the most commonly used meta-
heuristic algorithms. On the other hand, the existence of a
large number of NP-hard combinatorial problems moti-
vates the investigation of robust mechanisms that allow these
continuous algorithms to be adapted to discrete versions.

In a review of the state-of-the-art binarization techniques
[32], two approximations were identified. .e first approach
considers general methods of binarization. In those general
methods, there is a mechanism that allows the transformation
of any continuous metaheuristic into a binary one without
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altering the metaheuristic operators. In this approach, the
main frameworks used are TFs and angle modulation. .e
second approach corresponds to binarizations in which the
method of operating metaheuristics is specifically altered.
Under this second approach, notable techniques include
quantum binary and set-based approaches.

3.1.1. Transfer Functions. .e simplest and most widely
used binarization method corresponds to TFs. TFs were
introduced by [33] to generate binary versions of PSO.
.is algorithm considers each solution as a particle. .e
particle has a position given by a solution in an iteration
and a velocity that corresponds to the vector obtained
from the difference of the particle position between two
consecutive iterations. .e TF is a very simple operator
and relates the velocity of the particles in PSO with a
transition probability. .e TF takes values from Rn and
generates transition probability values in [0, 1]n. .e TFs
force the particles to move in a binary space. Depending
on the function’s shape, they are usually classified as
S-shape [34] and V-shape functions [1]. Once the function
produces a value between 0 and 1, the next step is to use a
rule that allows obtaining 0 or 1. For this, well-defined
rules are applied that use the concepts of complement,
elite, and random, among others.

3.1.2. Angle Modulation. .is method is based on the family
of trigonometric functions shown in equation (3). .ese
functions have four parameters responsible for controlling
the frequency and displacement of the trigonometric
function:

gi xj􏼐 􏼑 � sin 2π xj − ai􏼐 􏼑bi cos 2π xj − ai􏼐 􏼑ci􏼐 􏼑􏼐 􏼑 + di. (3)

.e first time this method was applied to binarizations
was in PSO. In this case, binary PSO was applied to
benchmark functions. Assume a given binary problem of
dimension n, and let X � (x1, x2, . . . , xn) be a solution. We
start with a four-dimensional search space. Each dimension
represents a coefficient of equation (3). .en, every solution
(ai, bi, ci, di) is associated with a trigonometric function gi.
For each element xj, the following rule is applied:

bij �
1, if gi xj􏼐 􏼑≥ 0,

0, otherwise.

⎧⎪⎨

⎪⎩
(4)

.en, for each initial solution of 4 dimensions
(ai, bi, ci, di), the function gi, which is shown in equation
(3), is applied and then equation (4) is utilized. As a
result, a binary solution of dimension n, (bi1, bi2, . . . , bin),
is obtained. .is is a feasible solution for our n-binary
problem. .e angle modulation method has been applied
to network reconfiguration problems [35] using a binary
PSO method, to an antenna position problem using an
angle modulation binary bat algorithm [36], and to a
multiuser detection technique [37] using a binary
adaptive evolutionary algorithm.

3.1.3. Quantum Binary Approach. .ere are three main
types of algorithms in research that integrates the areas of
evolutionary computation (EC) and quantum computation
[38].

(1) Quantum evolutionary algorithms: these methods
correspond to the design of EC algorithms to be
applied in a quantum computing environment

(2) Evolutionary-based quantum algorithms: these al-
gorithms attempt to automate the generation of new
quantum algorithms using evolutionary algorithms

(3) Quantum-inspired evolutionary algorithms: this
category uses quantum computing concepts to
strengthen EC algorithms

In particular, the quantum binary approach is a type of
quantum-inspired evolutionary algorithm. Specifically, this
approach adapts the concepts of q-bits and superposition
used in quantum computing applied to traditional
computers.

In the quantum binary approach, each feasible solution
has a position X � (x1, x2, . . . , xn) and a quantum q-bit
vector Q � [Q1, Q2, . . . , Qn]. Q represents the probability of
xj taking the value 1. For each dimension j, a random
number between [0, 1] is generated and compared with Qj: if
rand<Qj, then xj � 1; otherwise, xj � 0. .e upgrade
mechanism of theQ vector is specific for each metaheuristic.

.e main difficulty that general binarization frameworks
face is related to the concept of spatial disconnect [39]. A
spatial disconnect originates when nearby solutions gener-
ated by metaheuristics in the continuous space are not
transformed into nearby solutions when applying the
binarization process. Roughly speaking, we can think of a
loss of the continuity of the framework. .e spatial dis-
connect phenomenon consequently alters the properties of
exploration and exploitation, and therefore the precision
and convergence of the metaheuristics decrease. A study was
conducted on how the TFs affect the exploration and ex-
ploitation properties in [40]. For angle modulation, a study
was conducted in [39].

On the other hand, specific binarization algorithms that
modify the operators of the metaheuristic are susceptible to
problems such as Hamming cliffs, loss of precision, search
space discretization, and the curse of dimensionality [39].
.is was studied by [41] and for the particular case of PSO by
[42]. In the latter, the authors observed that the parameters
of the Binary PSO change the speed behavior of the original
metaheuristic.

3.2. Hybridizing Metaheuristics with Machine Learning.
Machine learning concerns algorithms that are capable of
learning from a dataset [43]..is learning can be supervised,
unsupervised, or semisupervised. Usually, these algorithms
are used in problems of regression, classification, trans-
formation, dimensionality reduction, time series, anomaly
detection, and computational vision [44], among others. On
the other hand, metaheuristics correspond to a broad family
of algorithms designed to solve complex problems without
the need for a deep adaptation of their mechanism when
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changing problems. .ey are incomplete techniques and
generally have a set of parameters that must be adjusted for
proper operation.

When a state-of-the-art integration between meta-
heuristic and machine learning algorithms is developed, the
integration is considered bidirectional..is means that there
are studies whereby metaheuristic algorithms contribute to
improving the performance of machine learning algorithms,
and there are investigations where machine learning algo-
rithms improve the convergence and quality of meta-
heuristic algorithms. In the case of metaheuristics that
improve the performance of machine learning algorithms,
we see that integration is found in all areas. In classification
problems, we find that such algorithms have been used
mainly in feature selection, feature extraction, and the
tuning of parameters. In [45], a genetic-SVM algorithm was
developed to improve the recognition of breast cancer
through image analysis. In this algorithm, genetic algorithms
were used for the extraction of characteristics. A multiverse
optimizer algorithm was used in [46] to perform the feature
selection and parameter tuning of SVM on a robust system
architecture. .e training of feed-forward neural networks
was addressed using an improved monarch butterfly algo-
rithm in [47]. In [48], a geotechnical problem was addressed
by integrating a firefly algorithm with the least squares
support vector machine technique. For the case of regression
problems, we found in [49] an application in the prediction
of the compressive strength of high-performance concrete
using metaheuristic-optimized least squares support vector
regression. .e improved prediction of stock prices was
addressed in [50], therein integrating metaheuristics and
artificial neural networks. Additionally, in [51], a stock price
prediction technique was developed using a sliding-window
metaheuristic-optimized machine learning regression ap-
plied to Taiwan’s construction companies. In [52], using a
firefly version, the least squares vector regression parameters
were optimized with the aim of improving the accuracy of
the prediction in engineering design. In the case of un-
supervised learning techniques, we find that metaheuristics
have contributed significantly to clustering techniques. For
example, in [53], an evolutionary-based clustering algorithm
that combines a metaheuristic with a kernel intuitionistic
fuzzy c-means method was proposed with the aim of de-
signing clustering solutions to apply them to different types
of datasets. Also in clustering, centroid search is a problem
type that suffers a large algorithmic complexity. .is
problem consists of the search for centroids with the ob-
jective of grouping the set of objects studied in an improved
manner. Because this problem is NP-hard, approximation
methods have been proposed. For example, an improved
artificial bee colony algorithmwas developed in [54] with the
goal of solving the energy efficiency clustering problem in a
wireless sensor network. In [55], a mathematical model and
a clustering search metaheuristic were developed for
addressing the helicopter transportation planning of oil and
gas production platform employees.

On the other hand, when looking for the contributions of
machine learning techniques in metaheuristic algorithms,
twomain lines of research can be distinguished..e first line

of research corresponds to specific integrations. In these
integrations, machine learning techniques are integrated
through a specific operator in one of the modules that
establish the metaheuristic. .e second line of research
explores general integrations, where the machine learning
techniques work as a selector of different metaheuristic
algorithms, therein choosing the most appropriate for each
instance. A metaheuristic, in addition to its evolution
mechanism, usually uses solution initiation operators,
solution perturbation, population management, binar-
ization, the tuning of parameters, and local search oper-
ators, among others. .e specific integrations explore the
machine learning application on some of these operators.
For the case of parameter tuning in [56], the parameter
tuning of a chess rating system was implemented. Based on
decision trees and using fuzzy logic, a semiautomatic
parameter tuning algorithm was designed in [57]. Another
relevant area of research is related to the design of binary
versions of algorithms that work naturally in continuous
spaces. .is line of research aims to apply these binary
versions in combinatorial problems. In this area, we find in
[2] the application of unsupervised learning techniques to
perform the binarization process. In [29], the percentile
concept was explored in the process of generating binary
algorithms. Additionally, in [17], the big data Apache
spark framework was applied to manage the size of the
solution population to improve the convergence times and
quality of results. .e randomness mechanism is fre-
quently used for the initialization of the solutions of a
metaheuristic. However, machine learning has been used
to improve the solution initialization stage. In [58], case-
based reasoning was used to initialize a genetic algorithm
and apply it to the weighted-circle design problem.
Hopfield neural networks were used in [59] to initiate
solutions of a genetic algorithm that was used to solve an
economic dispatch problem.

When analyzing the methods found in the literature
addressing general integrations of machine learning al-
gorithms on metaheuristics, we find three main groups:
algorithm selection, hyperheuristics, and cooperative
strategies. .e objective of algorithm selection is to choose
from a set of algorithms and a group of associated char-
acteristics for each instance of the problem an algorithm
that performs best for similar instances. In the hyper-
heuristics strategy, the goal is to automate the design of
heuristics or metaheuristic methods to address a wide
range of problems. Finally, cooperative strategies consist of
combining algorithms in a parallel or sequential manner to
obtain more robust methods. .e cooperation can be
completed by sharing the complete solution or partially
when only part of the solution is shared. In [60], the berth
scheduling problem at bulk terminals was addressed by
algorithm selection techniques. .e problem of nurse
rostering through a tensor-based hyperheuristic algorithm
was addressed in [61]. Finally, a distributed framework
based on agents was proposed in [62]. In this case, each
agent corresponds to a metaheuristic, and it has the ability
to adapt through direct cooperation. .is framework was
applied to the problem of permutation flow stores.
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4. Binary Db-Scan Algorithm

.e binary db-scan algorithm is composed of five oper-
ators. .e first operator, which will be detailed in Section
4.1, initializes the solutions. After the solutions are
started, the next step is to verify if the maximum iteration
criterion is met. When the criterion has not been met, the
binary db-scan operator is executed. .is operator con-
tinuously executes the metaheuristics and then clusters
the solutions considering the absolute value of the velocity
of the solutions. .e details of this operator are described
in Section 4.2. Subsequently, using the clusters generated
by the db-scan operator, the transition operator will
proceed to binarize the solutions generated by the con-
tinuous metaheuristics. When points are identified by db-
scan as outliers, a transition operator for outliers is ap-
plied. .e transition operator and the outlier operator are
described in Section 4.3. Finally, when the obtained so-
lutions do not satisfy all the restrictions, the repair op-
erator described in Section 4.4 is applied. Additionally, a
heuristic operator is used in the initiation and repair of the
solutions. .is operator is detailed in Section 4.5. .e flow
diagram of the binary db-scan algorithm is shown in
Figure 1.

4.1. Initiation Operator. .is operator attempts to initiate
the solutions that the binary db-scan algorithm will use.
.e first step, the SelectRandomColumn() function select
a column randomly. .en, the operator asks if the row
coverage constraint is fulfilled. When the constraint is not
met, the initiating operator calls the heuristic operator.
.is heuristic operator receives the list of columns that
currently has the solution and returns a new column to be
incorporated. .e details of the heuristic operator are
described in Section 4.5. .e call to the heuristic operator
is executed until all rows are covered. .e procedure for
initiating the solutions is shown in Algorithm 1.

4.2. Binary Db-Scan Operator. .e goal of the binary db-
scan operator is to group the different solutions obtained
by the execution of the continuous metaheuristics. When
considering solutions as particles, we will understand the
position of the particle as the location of the solution in
the search space. On the other hand, the velocity repre-
sents the transition vector of the particle from iteration t
to iteration t + 1.

To perform the clustering, the density-based spatial
clustering of applications with noise (db-scan) algorithm
is used. Db-scan is a data grouping algorithm proposed in
1996 by [63]. Db-scan uses the concept of density to
perform the clustering: given a set of S points in a metric
space, db-scan groups the points with many nearby
neighbors, marking as outliers those that are alone in low-
density regions. Db-scan requires two parameters: a ra-
dius ϵ and a minimum number of neighbors δ. .e db-
scan algorithm can be divided into the following steps:

(i) Find the points in the ϵ neighborhood of every point
and identify the core points with more than δ
neighbors

(ii) Find the connected components of core points on
the neighbor graph, ignoring all noncore points

(iii) Assign each noncore point to a nearby cluster if the
cluster is an ϵ neighbor; otherwise, assign it to noise

Let Mh be a swarm intelligence continuous meta-
heuristic and ListP(t) be the position list of the solutions
given by Mh at iteration t. .e binary db-scan operator has
input parameters Mh and ListP(t) and aims to cluster the
solutions given by Mh. .e first step of the operator is to
iterate the list ListP(t) using Mh to obtain the list of po-
sitions ListP(t + 1) at iteration t + 1. Subsequently, using
ListP(t) and ListP(t + 1), we obtain the list with transition
velocities ListV(t + 1).

Let vp(t + 1) ∈ ListV(t + 1) be the velocity vector in the
transition between t and t + 1 corresponding to particle p.
.is vector has n dimensions, where n depends on the
number of columns that the problem possesses. Let v

p
i (t +

1) ∈ vp(t + 1) be the value for dimension i of the vector
vp(t + 1). .en, ListVi(t + 1) corresponds to the list of
absolute values of v

p
i (t + 1),∀vp(t + 1) ∈ ListV(t + 1). Next,

we apply db-scan to the list ListVi(t + 1), thereby obtaining
the number of clusters nClusters(t + 1) and the cluster to
which each vi(t + 1) belongs ListViClusters(t + 1), where
abs(vi(t + 1)) ∈ ListVi(t + 1). .e procedure for the binary
db-scan operator is shown in Algorithm 2.

4.3. Transition Operator. .e db-scan operator returns the
number of clusters and a list with the cluster identifier to
which each element belongs: vp

i ∈ ListVi(t + 1). .e purpose
of the transition operator is to binarize the solutions gen-
erated by Mh and clustered by the binary db-scan operator.
To perform the binarization, we must consider that the
identifier Id(J) ∈ Z of the clusters will be assigned in the
following manner: a value of 0 will be assigned to the cluster
that has vi with the lowest absolute value. Let vj ∈ J and
vi ∈ I be elements of clusters J and I, respectively, and
abs(vj)> abs(vi); then, Id(J)> Id(I). .e value of Id will be
consecutive integers and if J≠ I⟹ Id(J)≠ Id(I). Finally,
for the cases identified by db-scan as outliers, we have
(Id(Ol) � − 1, whereOl ∈ outliers). .en, each cluster will
be assigned a transition probability given by equation (5). In
this equation, α corresponds to the initial transition co-
efficient, and β corresponds to the transition probability
coefficient.

Ptr(J) � α + β
Id(J)

T
, (5)

where T is the total number of clusters not considering
outliers.

Finally, to execute the binarization process, consider
x(t) as the position of a particle in iteration t. Let xi(t) be
the value of the dimension i for the particle x(t), and let
vx

i (t + 1) be the velocity of the particle x(t) in the i
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dimension to transform x(t) from iteration t to iteration
t + 1. Additionally, consider that vx

i (t + 1) ∈ J, where J is
one of the clusters identified by the binary db-scan oper-
ator. .en, we use equation (6) to generate the binary
position of the particles in iteration t + 1.

xi(t + 1) ≔
􏽢xi(t), if rand<Ptr(J)where vx

i (t + 1) ∈ J,

xi(t), otherwise.
􏼨

(6)

When vx
i (t + 1) ∈ outliers, the procedure is as follows:

From the complete list of outliers, the vx
i (t + 1) are ordered,

starting with the solution with the best fitness and pro-
ceeding to those with the worst performance..e top 20% of
solutions in terms of fitness is chosen, and a transition value
of α is applied. For the remaining elements, a transition value
of α + β is applied. Finally, once the transition operator is
applied, a repair operator is used, as described in Section 4.4
for solutions that do not satisfy some of the restrictions. .e
details of the transition operator are shown in Algorithm 3.

4.4. Repair Operator. .e repair operator is executed after
the execution of the transition operator. In the event that the

Begin
Execute initial

solutions
operator

Stopping criteria
were completed? End

Execute
db-scan
operator

Is the solution
an outlier?Execute

repair
operator

Execute
outlier

operator

Execute
transition
operator

Yes

No

Yes

No

Figure 1: A general flow chart of the binary db-scan algorithm.

(1) Function Initiation ()
(2) Input
(3) Output Solution S
(4) Sini⟵ SelecRandomColumn ()
(5) while All row are not covered do
(6) Sini.append (Heuristic (Sini))
(7) end while
(8) S⟵ Sini
(9) return S

ALGORITHM 1: Initialization operator.

(1) Function BinaryDbscan (Mh, ListP(t))
(2) Input Mh, ListP(t)

(3) Output nClusters(t + 1), ListViClusters(t + 1)

(4) ListP(t + 1)⟵ applyMh (Mh(ListP(t)))
(5) ListV(t + 1)⟵ getVelocityList (ListP(t), ListP(t + 1))
(6) ListVi(t + 1)⟵ getClusterList (ListV(t + 1))
(7) nClusters(t + 1), ListViClusters(t + 1)⟵ applyDbscan (ListVi(t + 1))
(8) return nClusters(t + 1), ListViClusters(t + 1)

ALGORITHM 2: Binary db-scan operator.

6 Computational Intelligence and Neuroscience



coverage condition of the rows is not met, the repair op-
erator uses the heuristic operator to add new columns. After
all the rows are covered, we verify that there are no groups of
columns that cover the same rows. .e details of the repair
operator are shown in Algorithm 4.

4.5. Heuristic Operator. When a solution needs to be started
or repaired, a heuristic operator is used that selects a new
element. As an input parameter, the operator considers the
solution Sin, which needs to be completed. In the case of
being a new solution, Sin � ∅. With the list of columns
belonging to Sin, we obtain the set of rows R not covered by
the solution. With the set of rows not covered and using
equation (7), we obtain in line 4 the best 10 rows to be
covered. With this list of rows (listRows) online 5, we obtain
the list of the best columns according to the heuristic shown
in equation (8). Finally, in line 6, we randomly obtain the
column to incorporate. .e details of the heuristic operator
are shown in Algorithm 5.

Weight row(i) �
1
Li

, (7)

where Li is the sum of all ones in row i.

Weight column(j) �
cj

R ∩​ Mj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (8)

where Mj is the set of rows covered by Colj.

5. Results

To determine the contribution of the db-scan algorithm to
the binarization process, three groups of experiments are
performed. .e first group compares the db-scan algo-
rithm with two random operators, as detailed in Section
5.2. .e second group considers comparing db-scan with
the k-means clustering technique. .e results are shown in
Section 5.3, and the details of the k-means technique can
be found in [1]. Finally, the third group is shown in
Section 5.4 and compares the binarization performed by
db-scan with the binarization using TFs. .e latter is a

technique widely used in the binarization of continuous
algorithms. Additionally, in Section 5.1, we describe the
methodology used to define the parameters of the utilized
algorithms.

CS [5] and PSO [7] were the selected algorithms. .ese
algorithms are chosen for three reasons. Both algorithms are
quite simple to parameterize; thus, the study can focus on the
binarization technique rather than the parameterization. On
the other hand, both algorithms have satisfactorily resolved
nonlinear optimization problems [17, 32, 64–66]. Finally,
simplified theoretical convergence models for both PSO [39]
and CS [67] have been developed.

For the evaluation of the db-scan algorithm, instances E,
F, G, andH, which correspond to the most difficult instances
from Beasley’s OR library, were used. For the execution of
the instances, we used a PC with Windows 10 and an Intel
Core i7-8550U processor with 16GB of RAM..e algorithm
was programmed in Python 3.7. To perform the statistical
analysis in this study, the nonparametric Wilcoxon signed-
rank test and violin charts were used. .e analysis was
performed by comparing the dispersion, median, and
interquartile ranges of the distributions.

5.1. Parameter Settings. To obtain the parameters necessary
to generate the binary algorithms db-scan-PSO and db-scan-
CS, the methodology proposed in [1, 2] was selected. .is
methodology uses 4 measures defined in equations (9) to
(12) to determine the best configuration. To be able to
compare the different configurations, there are 4 measures,
which are located on a radar chart, and the area under the
curve is calculated for each configuration. .e configuration
with the largest area is selected.

(1) .e percentage deviation of the best value obtained
in the ten executions compared with the best known
value (see equation (9))

bSolution � 1 −
KnownBestValue − BestValue

KnownBestValue
. (9)

(1) Function Transition (ListP(t), ListX(t), nClusters(t + 1))
(2) Input ListP(t), ListViClusters(t + 1), nClusters(t + 1)

(3) Output List BinaryP(t + 1)

(4) for xi(t), vx
i (t + 1) in (ListP(t), ListVi(t + 1)) do

(5) if vx
i (t + 1) not in ouliers then

(6) Ptr(xi)⟵ getTransitionProbabily (ListViClusters(t + 1), nClusters(t + 1)) –equation (5)
(7) else
(8) Ptr(xi)⟵ getOutlierTransitionProbabily (ListViClusters(t + 1), nClusters(t + 1))
(9) end if
(10) List BinaryP(t + 1).append (xi(t + 1))⟵ getBinaryPosition (Ptr(xi(t)), ListViClusters(t + 1)) –equation (6)
(11) end for
(12) for x(t + 1) in List BinaryP(t + 1) do
(13) List BinaryP(t + 1)[x(t + 1)]⟵ Repair (x(t + 1))
(14) end for
(15) return List BinaryP(t + 1)

ALGORITHM 3: Transition algorithm.
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(2) .e percentage deviation of the worst value obtained
in the ten executions compared with the best known
value (see equation (10))

wSolution � 1 −
KnownBestValue − WorstValue

KnownBestValue
. (10)

(3) .e percentage deviation of the average value ob-
tained in the ten executions compared with the best
known value (see equation (11))

aSolution � 1 −
KnownBestValue − AverageValue

KnownBestValue
. (11)

(4) .e convergence time for the best value in each
experiment normalized according to equation (12)

nTime � 1 −
convergenceTime − minTime

maxTime − minTime
. (12)

For PSO, the coefficients c1 and c2 are set to 2.ω is linearly
decreased from 0.9 to 0.4. For the parameters used by db-scan,
the minimum number of neighbors (minPts) is estimated as a
percentage of the number of particles (N). Specifically, if N �

50 andminPts � 10, then the minimum number of neighbors
for the point to be considered within a cluster is 5. To select the
parameters, problems E.1, F.1, G.1, and H.1 were chosen. .e
parameter settings are shown in Tables 1 and 2. In both tables,
the column labeled Value represents the selected value, and the
column labeled Range corresponds to the set of scanned values.

5.2. Contribution of Db-Scan Binary Operator. .is section
attempts to understand the contribution of the db-scan

operator when compared with two random operators. .e
random operator models the situation whereby the transition
probability does not depend on the velocity of the particle,
unlike the db-scan operator, where the velocity strongly in-
fluences the cluster in which it will be located. Two random
operators were considered. .e first case (naive) is whereby
each point has the same probability of transition and therefore
is independent of the velocity. In the experiment, two con-
ditions were considered for the random operator. First, the
operator N random-0.25 has a fixed probability of 0.25;
second, the operator N random-0.5 uses a fixed transition
probability of 0.5. To make the comparison, CS was used. .e
second random operator, C random-5, additionally includes
the concept of clusters. In this second operator, 5 clusters are
defined, where 5 corresponds to, on average, the clusters
obtained by db-scan when executing the different instances.
Subsequent to each cluster, a transition probability of the set
0.1, 0.2, 0.3, 0.4, 0.5{ } is assigned without repetitions. Finally,
each particle randomly assigns a cluster.

.e results obtained using the N random operator are
shown in Table 3 and Figure 2. When we analyzed the best
and average indicators shown in the table, the superiority of
the results obtained by db-scan over those obtained by the
N random-0.5 and N random-0.25 operators was observed.
.is difference is consistent in all instances. .e Wilcoxon
test indicates that the difference is significant. When ana-
lyzing the violin charts, we see that the dispersion,
interquartile range, and median are substantially more ro-
bust when using the db-scan operator. .is experiment is a
strong indicator that, in the binarization process, i.e., the
assignment of a transition probability to a particle, it is
critical to consider the behavior of the particle in the search
space. .is allows us to obtain better behaving methods.

For the C random operator, the results are shown in
Table 4 and Figure 3. In this experiment, the PSO and CS
algorithms were used. When we analyzed the results of the

(1) Function Repair (x(t + 1))
(2) Input Input solution x(t + 1)

(3) Output .e repaired solution xrep(t + 1)

(4) while needRepair (x(t + 1))� �True do
(5) x(t + 1).append (Heuristic (x(t + 1)))
(6) end while
(7) xrep(t + 1)⟵ deleteRepeatedItem (x(t + 1))
(8) return xrep(t + 1)

ALGORITHM 4: Repair algorithm.

(1) Function Heuristic (Sin)
(2) Input Input solution Sin
(3) Output .e new column Cout
(4) listRows⟵ getBestRows (Sin, N� 10)
(5) listcolumsnOut⟵ getBestColumns (ListRows, M� 5)
(6) columnOut⟵ getColumn (listcolumnsOut)
(7) return columnOut

ALGORITHM 5: Heuristic operator.

8 Computational Intelligence and Neuroscience



table, it is observed that db-scan has a better behavior than
C random in both algorithms. When analyzing Figure 3, it is
observed that the median, interquartile range, and disper-
sion measures obtain better results with the db-scan oper-
ator. Additionally, we should note that C random achieves a
better performance than N random, which suggests that
assigning random transition probabilities by groups is more
appropriate than assigning them randomly.

5.3. K-Means Algorithm Comparison. K-means is another
clustering technique that was used in [2] to binarize

continuous swarm intelligence algorithms and applied to the
knapsack problem. .e objective of this section is to
compare the behavior of the binarization used by db-scan
with that used by k-means. .e k-means technique, unlike
db-scan, is necessary to define the number of clusters. On the
other hand, the computational complexity of k-means once
the number of clusters (k) and the dimension (d) of the
points are fixed is O(ndk+1log n), where n is the number of
points to be clustered. .e computational complexity of db-
scan is O(nlogn). In this experiment, the quality of the
solutions and their execution times are compared. For the
case of k-means, k� 5. In the case of db-scan, the number of

Table 1: Parameter setting for PSO Algorithm.

Parameters Description Value Range
α Initial transition coefficient 0.1 [0.08, 0.1, 0.12]
β Transition probability coefficient 0.6 [0.5, 0.6, 0.7]
N Number of particles 50 [30, 40, 50]
ϵ ϵ db-scan parameter 0.4 [0.3, 0.4, 0.5]
minPts Point db-scan parameter 10% [10, 12, 14]
Iteration number Maximum iterations 800 [600, 700, 800]

Table 2: Parameter setting for CS algorithm.

Parameters Description Value Range
α Transition probability coefficient 0.1 [0.08, 0.1, 0.12]
β Transition probability coefficient 0.5 [0.5, 0.6, 0.7]
N Number of particles 50 [30, 40, 50]
ϵ ϵ db-scan parameter 0.4 [0.3, 0.4, 0.5]
minPts Point db-scan parameter 12% [10, 12, 14]
c Step length 0.01 [0.009, 0.01, 0.011]
κ Levy distribution parameter 1.5 [1.4, 1.5, 1.6]
Iteration number Maximum iterations 800 [600, 700, 800]

Table 3: Comparison between db-scan and Nrandom operators.

Instance Best known
db − scan-CS Nrandom-0.25-CS Nrandom-0.5-CS

Best Avg Time (s) Best Avg Time (s) Best Avg Time (s)
E.1 29 29 29.0 12.1 29 30.4 7.7 29 30.7 8.2
E.2 30 30 30.2 11.8 31 32.6 8.1 30 32.4 7.8
E.3 27 27 27.3 12.9 28 29.4 6.6 28 29.8 8.1
E.4 28 28 28.0 11.5 29 30.3 6.5 28 30.7 8.3
E.5 28 28 28.0 11.4 29 29.8 6.7 28 30.1 8.2
F.1 14 14 14.0 12.7 15 16.1 9.1 15 16.9 14.1
F.2 15 15 15.2 13.1 16 17.8 8.7 16 18.1 15.3
F.3 14 14 14.1 12.6 15 15.4 9.3 15 15.5 14.8
F.4 14 14 14.0 12.9 15 16.2 9.4 15 16.2 14.9
F.5 13 13 13.2 13.2 14 15.7 8.9 14 15.9 14.1
G.1 176 176 177.1 73.1 183 187.4 54.6 184 189.1 60.3
G.2 154 156 156.6 72.6 162 167.1 57.3 161 166.3 61.2
G.3 166 168 168.4 70.3 174 179.4 58.6 173 178.4 59.7
G.4 168 169 169.7 68.9 173 177.2 56.6 174 178.2 60.5
G.5 168 168 168.2 72.1 172 176.7 54.1 171 177.8 58.1
H.1 63 64 64.8 65.3 68 72.3 52.7 68 73.1 54.9
H.2 63 63 63.6 68.1 69 73.1 55.3 68 73.5 53.1
H.3 59 60 60.9 69.7 64 68.4 57.2 64 67.9 58.9
H.4 58 59 59.2 70.3 63 66.3 56.6 62 67.1 60.4
H.5 55 55 55.2 69.3 61 64.2 55.3 60 64.9 59.1
Average 67.1 67.5 67.84 41.2 70.5 73.29 31.97 70.1 73.63 35.0
Wilcoxon p − value 1.03e− 4 8.84e− 5 5.20e− 4 8.85e− 5
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clusters is variable. For comparison, the same dataset as in
the previous experiment is used. In Table 5, the results of the
binarization for CS and PSO are shown using the k-means
and db-scan operators. When we observe the best and

average indicators, we see that their values are very similar for
both the implementation with k-means and the imple-
mentation with db-scan. Moreover, when we use the Wil-
coxon test, we see that the small differences are not significant.
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Figure 2: Gap comparison between db-scan and Nrandom algorithms for the SCP dataset.

Table 4: Comparison between db-scan and Crandom operators.

Instance Best known
Crandom-5.PSO db − scan-PSO Crandom-5.CS db − scan-CS

Best Avg Time Best Avg Time Best Avg Time Best Avg Time (s)
E.1 29 29 29.9 11.1 29 29.0 13.4 29 29.8 10.6 29 29.0 12.1
E.2 30 30 31.1 10.8 30 30.1 13.7 31 31.6 10.9 30 30.2 11.8
E.3 27 28 28.7 10.6 27 27.5 14.1 28 28.5 9.8 27 27.3 12.9
E.4 28 29 29.9 10.1 28 28.1 12.9 29 29.6 10.2 28 28.0 11.5
E.5 28 28 28.7 10.5 28 28.3 13.2 28 28.4 10.4 28 28.0 11.4
F.1 14 15 15.5 10.9 14 14.1 12.8 15 15.7 11.3 14 14.0 12.7
F.2 15 16 16.8 11.5 15 15.4 13.5 16 16.8 12.1 15 15.2 13.1
F.3 14 14 14.9 11.9 14 14.4 13.7 15 15.9 10.9 14 14.1 12.6
F.4 14 15 15.8 12.1 14 14.1 13.1 15 15.7 11.2 14 14.0 12.9
F.5 13 14 14.7 11.4 13 13.4 13.4 14 15.1 11.4 13 13.2 13.2
G.1 176 180 183.9 68.2 176 176.8 81.3 181 184.2 67.2 176 177.1 73.1
G.2 154 160 163.8 69.1 156 156.8 77.4 160 164.1 64.3 156 156.6 72.6
G.3 166 171 174.6 68.7 168 168.9 79.8 172 175.3 65.1 168 168.4 70.3
G.4 168 172 175.1 68.4 169 170.1 78.1 172 174.9 66.3 169 169.7 68.9
G.5 168 173 176.4 67.1 169 169.6 81.2 172 175.8 64.8 168 168.2 72.1
H.1 63 68 70.6 65.8 64 64.5 74.2 68 70.4 61.4 64 64.8 65.3
H.2 63 68 71.2 67.2 64 64.3 73.2 68 71.7 59.7 63 63.6 68.1
H.3 59 63 66.1 68.1 60 60.4 72.1 62 65.4 62.3 60 60.9 69.7
H.4 58 63 65.9 65.7 59 59.8 76.5 63 66.1 61.8 59 59.2 70.3
H.5 55 58 61.5 63.2 55 55.2 74.6 59 62.3 60.2 55 55.2 69.3
Average 67.1 69.7 71.76 39.12 67.6 68.04 45.11 69.85 71.87 37.09 67.5 67.84 41.2
Wilcoxon p − value 3.65e− 4 8.84e− 5 1.58e− 4 8.82e− 5
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However, when we analyze the execution times, we see that
db-scan improves the times obtained by k-means. When we
compare the interquartile range and the dispersion shown in
Figure 4, we see that the results are very similar. Considering
that k-means handles a fixed number of clusters and given

that, in the case of db-scan, this can be variable, the quality of
the solutions is not affected significantly.

5.4. Transfer Function Comparison. In this section, we detail
the experiments that allow us to evaluate the behavior of
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Figure 3: Gap comparison between db-scan and Crandom algorithms for the SCP dataset.

Table 5: Comparison between db-scan and k-means operators.

Instance Best known
k-means.PSO db − scan-PSO k-means.CS db − scan-CS

Best Avg Time Best Avg Time Best Avg Time Best Avg Time (s)
E.1 29 29 29.2 17.1 29 29.0 13.4 29 29.1 18.1 29 29.0 12.1
E.2 30 30 30.1 18.1 30 30.1 13.7 30 30.2 17.9 30 30.2 11.8
E.3 27 27 27.6 16.8 27 27.5 14.1 27 27.1 19.1 27 27.3 12.9
E.4 28 28 28.3 17.3 28 28.1 12.9 28 28.2 16.4 28 28.0 11.5
E.5 28 28 28.6 17.9 28 28.3 13.2 28 28.2 16.9 28 28.0 11.4
F.1 14 14 14.1 17.5 14 14.1 12.8 14 14.1 19.1 14 14.0 12.7
F.2 15 15 15.4 18.1 15 15.4 13.5 15 15.3 17.2 15 15.2 13.1
F.3 14 14 14.5 18.4 14 14.4 13.7 14 14.2 17.3 14 14.1 12.6
F.4 14 14 14.1 17.3 14 14.1 13.1 14 14.3 17.7 14 14.0 12.9
F.5 13 13 13.3 17.8 13 13.4 13.4 13 13.0 18.1 13 13.2 13.2
G.1 176 176 176.5 98.5 176 176.8 81.3 176 176.8 102.7 176 177.1 73.1
G.2 154 156 157.1 95.5 156 156.8 77.4 156 156.9 96.5 156 156.6 72.6
G.3 166 168 168.6 93.4 168 168.9 79.8 169 169.7 99.1 168 168.4 70.3
G.4 168 169 170.4 103.2 169 170.1 78.1 169 169.4 97.4 169 169.7 68.9
G.5 168 168 170.0 101.8 169 169.6 81.2 168 168.4 96.3 168 168.2 72.1
H.1 63 64 64.7 99.7 64 64.5 74.2 63 63.6 101.3 64 64.8 65.3
H.2 63 63 63.5 101.2 64 64.3 73.2 64 64.5 99.8 63 63.6 68.1
H.3 59 60 60.3 96.6 60 60.4 72.1 60 60.8 97.4 60 60.9 69.7
H.4 58 59 59.7 97.3 59 59.8 76.5 59 59.7 99.5 59 59.2 70.3
H.5 55 55 55.3 98.2 55 55.2 74.6 55 55.4 95.1 55 55.2 69.3
Average 67.1 67.5 68.07 58.09 67.6 68.04 45.11 67.55 67.94 58.14 67.5 67.84 41.2
Wilcoxon p − value 0.16 0.42 0.56 0.21
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binarization using db-scan with respect to the TF..e TF is
a general binarization mechanism that, instead of using the
cluster concept to assign a transition probability, uses
functions that map Rn in the space (0, 1)n. Usually,
two families of functions are used: v-shape ((eτ|xd

i
| − 1)/

(eτ|xd
i
| + 1)) and s-shape (1/(e− τxd

i + 1)) functions. For more
details about TFs, we recommended [32].

In our case, we used the v-shape function with the
parameter τ � 2.5 for both the CS and PSO algorithms. .e
methodology used to determine the family and the pa-
rameter τ corresponds to the same detailed in Section 5.1.
.e results are shown in Table 6 and Figure 5. For the TFs,
2000 iterations were considered for the experiment. From
Table 6, it is observed when analyzing the best and average
indicators that the binary algorithms obtained through db-
scan achieve better performance than those obtained with
the TF. When performing the Wilcoxon test, the obtained
differences are significant. When we look at Figure 5, we see
that the dispersion and interquartile ranges are considerably
improved when using db-scan. We should note that the TF
assigns a particular value of the transition probability to each
solution based on a function, unlike db-scan, uses assign-
ment by groups of solutions.

6. Real-World Application

.e crew scheduling problem (CSP) is related to building the
work schedules of crews necessary to cover a planned
timetable. .e CSP is studied in operations research and is
usually related to the airline industry, transit companies, and
railways, among others. In this section, we are interested in

using the binarizations obtained from applying the db-scan
algorithm to the CSP.

.e CSP, due to its difficulty, needs to be decomposed in
several stages, where each stage has a given computational
complexity. .e literature contains variations of the CSP.
.ese variations consider integration with other problems or
the inclusion of new restrictions. For example, in the CPS in
[68], attendance rates were studied. A CSP integration with
the vehicle scheduling problem was developed in [69]. In
[70], an application of the CSP with fairness preferences was
explored. .e crew pairing and fleet assignment problems
were studied in [71].

.e CSP starts with a timetable of services that must be
executed with a certain frequency. On the other hand, the
service needs to be executed in a certain time window. A
service consists of a sequence of trips, where a trip has the
following attributes: a start time, an end time, a departure
station, an arrival station, and a crew that delivers the
service. In terms of the above attributes, each trip is
assigned a cost. When we consider a period of time and a
crew, a roster must be generated. .en, the CSP consists of
finding a subset of rosters that covers all trips at the
minimum cost. .e problem can be divided into two
phases. .e first phase corresponds to the generation of a
pairing. A pairing is defined as a set of trips that are
assigned to a single crew in a short period of time. In this
pairing phase, a large number of pairings is generated that
satisfy the constraints of the problem. A match must start
and end at the same depot, and a cost must be associated.
.e second phase corresponds to the pairing optimiza-
tion. At this stage, a selection is made of the best subset of
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Figure 4: Gap comparison between db-scan and k-means algorithms for the SCP dataset.
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all generated pairings to ensure that all trips are covered at
a minimum cost. .e modeling of this phase follows an
approach based on the solution to set covering or set
partitioning problems. In this work, we use a dataset on

which the pairs were generated; therefore, we focus our
efforts on performing the pairing optimization phase. To
verify our algorithm, 7 datasets associated with real-world
crew scheduling problems were used. .ese datasets come

Table 6: Comparison between db-scan and TF operators.

Instance Best known
TF-PSO db − scan-PSO TF-CS db − scan-CS

Best Avg Time Best Avg Time Best Avg Time Best Avg Time (s)
E.1 29 29 30.8 47.4 29 29.0 13.4 29 29.7 37.2 29 29.0 12.1
E.2 30 30 30.7 41.5 30 30.1 13.7 30 31.3 36.5 30 30.2 11.8
E.3 27 28 30.1 39.8 27 27.5 14.1 28 29.2 38.3 27 27.3 12.9
E.4 28 29 29.8 45.7 28 28.1 12.9 29 29.7 37.7 28 28.0 11.5
E.5 28 29 29.6 44.2 28 28.3 13.2 29 30.1 34.1 28 28.0 11.4
F.1 14 14 14.9 46.1 14 14.1 12.8 14 14.9 39.5 14 14.0 12.7
F.2 15 15 15.1 49.2 15 15.4 13.5 15 15.2 43.2 15 15.2 13.1
F.3 14 14 14.6 49.3 14 14.4 13.7 14 14.9 47.1 14 14.1 12.6
F.4 14 14 14.7 45.2 14 14.1 13.1 14 14.8 46.3 14 14.0 12.9
F.5 13 14 14.9 41.4 13 13.4 13.4 14 14.7 44.1 13 13.2 13.2
G.1 176 177 178.4 286.4 176 176.8 81.3 177 177.9 324.4 176 177.1 73.1
G.2 154 157 158.3 301.3 156 156.8 77.4 158 159.1 351.3 156 156.6 72.6
G.3 166 169 170.2 314.5 168 168.9 79.8 170 171.4 346.7 168 168.4 70.3
G.4 168 169 170.7 322.1 169 170.1 78.1 169 171.2 358.1 169 169.7 68.9
G.5 168 169 170.5 303.1 169 169.6 81.2 169 169.9 354.2 168 168.2 72.1
H.1 63 64 65.1 265.2 64 64.5 74.2 64 65.1 286.8 64 64.8 65.3
H.2 63 64 65.3 246.4 64 64.3 73.2 64 65.7 279.4 63 63.6 68.1
H.3 59 60 61.8 298.1 60 60.4 72.1 61 62.1 277.2 60 60.9 69.7
H.4 58 59 60.3 293.7 59 59.8 76.5 60 60.6 298.1 59 59.2 70.3
H.5 55 56 57.4 300.1 55 55.2 74.6 56 57.2 305.2 55 55.2 69.3
Average 67.1 68.0 69.16 169.03 67.6 68.04 45.11 68.2 69.23 179.27 67.5 67.84 41.2
Wilcoxon p − value 4.6e − 3 1.2e − 4 1.05e − 3 1.3e − 4
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Figure 5: Gap comparison between db-scan and TF algorithms for the SCP dataset.
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from an application from the Italian railways and have
been provided by Ceria et al. [72]. Table 7 shows the
datasets and their results. When we analyzed the table, we
observed that although the problems were larger than the
previous problems, the performances of the db − scan—
PSO and db − scan— binarizations were adequate. In the
case of db − scan—PSO, the gap for the best value was
0.52%, and, on average, it was 1.17%. For db − scan—CS,
the gap for the best value was 0.52%, and, on average, it
was 1.08%.

7. Conclusions

In this article, an algorithm was proposed that uses the db-
scan technique with the goal of binarizing continuous swarm
intelligence metaheuristics. To evaluate the proposed algo-
rithm, as a first step, two random operators were designed
with the objective of identifying the contribution of db-scan
to the binarization process. Subsequently, the proposed db-
scan algorithm was compared with two binarization tech-
niques..e first technique is based on the clustering concept
and uses the k-means technique, where the number of
clusters is fixed. .e second technique uses TFs as a
binarization mechanism. In the comparison with the
binarization technique that uses the concept of i-means, the
results were very similar. .ose results were confirmed with
the Wilcoxon test, which showed no significant differences
between the two techniques. However, we must emphasize
that the execution times of db-scan were shorter than those
of k-means. One point to consider is that the different
methods of generating the clusters do not affect the quality of
the solutions. In the case of k-means, a fixed number of
clusters, generated based on the proximity of the points, is
defined. For db-scan, the number of clusters is variable and
is generated based on the proximity and density of points. In
comparison with the TFs, we observed that there is a sig-
nificant difference in favor of db-scan..is suggests that it is
more efficient in the binarization process to assign transition
probabilities to groups than to assign them individually. .e
application of machine learning to metaheuristic algorithms
is a line of research that has several aspects. We see that
machine learning techniques can learn and help to un-
derstand under which conditions a metaheuristic algorithm
performs efficiently. However, these techniques can be ap-
plied to other operators, such as perturbation operators,
when a metaheuristic algorithm is trapped in a local

minimum, and operators that control the population of a
swarm intelligence algorithm to improve the intensification
and diversification properties. Additionally, appealing to the
no-free-lunch theorem, it would be interesting to evaluate
these algorithms when including machine learning tuning
applied to other combinatorial problems.
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[69] M. Horváth and T. Kis, “Computing strong lower and upper
bounds for the integrated multiple-depot vehicle and crew
scheduling problem with branch-and-price,” Central Euro-
pean Journal of Operations Research, vol. 27, no. 1, pp. 39–67,
2019.
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