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Activation of the renin-angiotensin system (RAS) contributes to the pathogenesis of cardiovascular diseases. Sodium potassium
ATPase (NKA) expression and activity are often regulated by angiotensin II (Ang II). This study is aimed at investigating
whether DR-Ab, an antibody against 4th extracellular region of NKA, can protect Ang II-induced cardiomyocyte hypertrophy.
Our results showed that Ang II treatment significantly reduced NKA activity and membrane expression. Pretreatment with
DR-Ab preserved cell size in Ang II-induced cardiomyopathy by stabilizing the plasma membrane expression of NKA and
restoring its activity. DR-Ab reduced intracellular ROS generation through inhibition of NADPH oxidase activity and protection
of mitochondrial functions in Ang II-treated H9c2 cardiomyocytes. Pharmacological manipulation and Western blotting analysis
demonstrated the cardioprotective effects were mediated by the activation of the AMPK/Sirt-3/PPARγ signaling pathway. Taken
together, our results suggest that dysfunction of NKA is an important mechanism for Ang II-induced cardiomyopathy and
DR-Ab may be a novel and promising therapeutic approach to treat cardiomyocyte hypertrophy.

1. Introduction

Cardiovascular disorders are one of the most common dis-
eases in adults and the leading cause of death worldwide
[1]. Pathological activation of renin-angiotensin system
(RAS) is a keyfactor in several cardiovascular diseases [2].
Angiotensin (Ang) II, a critical component of RAS, presents
in both systemic circulation and local organs such as the
brain, blood vessel, kidney, and heart [2, 3]. Multiple studies
reported that increased Ang II leads to hypertension and also
directly promotes cardiomyocyte death, hypertrophy, and
remodeling [2]. They have proved that Ang II is involved in
cardiomyocyte damage [4–6]. Unscrambling the underline
mechanisms of Ang II may supply a new therapeutic target
for the prevention and treatment of these diseases.

In most mammalian cells, sodium potassium ATPase
(NKA) is an energy-transducing ion pump across the plasma
membrane [7]. In the past decade, NKA has also been proved
to be an ion-pumping-independent receptor function that
confers a ligand-like effect of cardiotonic steroids (CTS) on
protein/lipid kinases, intracellular Ca2+ oscillation, and ROS
production [8, 9]. However, drugs targeted at NKA are
mainly CTS which was used to treat chronic heart failure, a
kind of cardiovascular diseases. These chemical drugs also
often cause severe toxic effects, such as cardiac arrhythmias
and atrioventricular block, gastrointestinal disorders, ner-
vous system disorders, anorexia, blurred vision, nausea, and
vomiting [10]. In recent years, we and other groups have
demonstrated that antibody targeted at DR region
(897DVEDSYGQQWTYEQR911, amino acid sequence
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number showed as in rat), the 4th extracellular domain of α-
subunit of NKA, can activate NKA’s function [10, 11]. Our
previous studies have already proved that DR-Ab produces
cardioprotection and protects isoproterenol-induced mouse
cardiac injury [10, 12]. Therefore, this antibody was a kind
of ideal tool to study the NKA function in relative studies.

Recently, extensive studies have demonstrated that Ang
II has a close relationship with NKA. Rasmussen’s group
reported that Ang II induced NKA inhibition in cardiac myo-
cytes via PKC-dependent activation of NADPH oxidase [13].
Massey et al. also reported that Ang II-dependent phosphor-
ylation of the rat kidney NKA at specific sites can regulate
how the NKA releases bound cardiac glycoside [14]. More-
over, Ang II inhibits the NKA activity accompanied with
the involvement of an increase in NADPH oxidase-derived
O2

∗- [15]. Thus, the present study was designed to study
the effects of DR-Ab in Ang II-induced cardiac myocyte
damage and its underlying mechanism.

2. Material and Methods

2.1. Chemicals and Reagents. Antibodies against p22phox,
p47phox, Na+/K+-ATPase alpha 1 (NKA α1), PPAR-γ,
Sirt-3, β-actin, GAPDH, β-tubulin, and the horseradish
peroxidase-conjugated secondary antibodies were purchased
from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA).
Antibodies against phosphorylated and total AMPK were
purchased from Cell Signaling Technology (Beverly, MA,
USA). The specific primers were synthesized by Integrated
DNA Technologies Pte. Ltd. (Singapore). Antibody against
α-actinin was obtained from Abcam (Cambridge, MA,
USA). Mitochondrial membrane potential assay kit with
JC-1 and the kits for measurement of ATP were purchased
from Beyotime Institute of Biotechnology (Shanghai, China).
Dihydroethidium (DHE) and 2′,7′-dichlorofluorescin diace-
tate (DCFH-DA) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). MitoSOX™ was purchased from
Invitrogen (Carlsbad, CA, USA). AMPK inhibitor compound
C, a selective Sirt3 inhibitor 3-TYP, and PPARγ antagonists
GW9662 were obtained from Cayman Chemical Company
(Ann Arbor, MI, USA). DR-Ab was generated and identified
in our lab as previously described [12, 16].

2.2. Cell Culture. Embryonic rat heart-derived cells (H9c2,
passage 15) preserved by our lab were cultured in high-
glucose Dulbecco’s modified Eagle’s medium (4.5 g/l glucose)
supplemented with 10% fetal bovine serum (FBS) and 1%
antibiotics (penicillin-streptomycin, Gibco) in humidified
air containing 5% CO2 at 37

°C.
Primary neonatal mouse cardiomyocytes: the cardiomyo-

cytes were isolated from 1- to 3-day-old C57BL/6 neonatal
mice as described previously [17–19]. In short, the hearts
were placed into ice-cold Hanks’ balanced saline solution
(HBSS; Life Technologies). After removal of atrial and aortic
appendages, the cardiomyocytes were collected by using
0.2mg/ml collagenase type II (Worthington Biochemical,
Lakewood, NJ) and 0.6mg/ml pancreatin (Sigma, MAK030,
St. Louis, MO) at common cellular incubator. The
supernatant-containing suspended cells were cultured in

minimum essential medium with 10% fetal bovine serum
for 2 h to remove nonmyocytes. Then, the culture medium
was changed to minimum essential medium containing
10% FBS with 1% antibiotics after seeding for 48h. Cardio-
myocytes were seeded 3 days prior to use.

All primary cell culture protocols were performed strictly
according to the principles and guidance of Institutional
Animals Care and Use Committee at the National University
of Singapore.

2.3. Intracellular andMitochondrial ROSMeasurement.After
fixing collected H9c2 cells, they were incubated with DHE
(10 μM) and DCFH-DA (10μM) in a dark and humidified
incubator at 37°C for 30min as previously described [20]
and changed the solution to phosphate-buffered saline
(PBS) and observed on microscope immediately.

Mitochondrial ROS production was measured with a
fluorogenic dye named MitoSOX Red (Invitrogen, Darm-
stadt, Germany). Cells were loaded with 1 μM MitoSOX
Red for 30min at 37°C protecting from light and washed
cells with PBS and then observed on microscope (DMi 8;
Leica, Microsystems, Germany).

The fluorescence signals were captured and analyzed
with the Image-Pro Plus 6.0 (Version 6.0, Media Cybernetics,
Bethesda, MD, USA) in same parameters.

2.4. Western Blotting Analysis. After washing twice with PBS,
the cells were lysed with ice-cold lysis buffer. The cell lysate
was centrifuged at 10,000 g for 10min at 4°C. Equal amount
of proteins was electrophoresed, transferred, blotted, and
then incubated with required primary antibodies at 4°C over-
night. After washing with TBST buffer three times, the mem-
branes were incubated with appropriate secondary
horseradish peroxidase- (HRP-) conjugated antibodies.
Then, membranes were detected using an ECL Advanced
Western Blot Detection Kit (Millipore Darmstadt, Ger-
many). The integrated optical density was quantified with
the Image-Pro Plus 6.0 software.

2.5. Measurement of Mitochondrial Membrane Potential.
Mitochondrial membrane potential was dectected with 5,5′
,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocya-
nine iodide (JC-1) (Beyotime Institute of Biotechnology,
Shanghai, China). The H9c2 cells were stained with JC-1
and observed with a fluorescence microscope (DMi 8; Leica,
Microsystems, Germany).

2.6. Real-Time PCR. Total RNA extraction was performed
with TRIzol (Life Technologies, USA) according to the man-
ufacturer’s instructions, and then RevertAid First-Strand
cDNA Synthesis Kit (Thermo Scientific, USA) was used for
reverse transcription. Following, GoTaq® quantitative PCR
(qPCR) Master Mix (Promega, USA) was used for quantita-
tive PCR with indicated primers on a VIIA(TM) 7 System
(Applied Biosystems). Data were analyzed by normalization
against GAPDH. The primers used are indicated as in
Table 1.

2.7. Plasma Membrane Extraction. EZ-Link NHS-SS-biotin
(Pierce Chemical Co., USA) was used to label surface protein
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for 1 h. Cells were washed with PBS containing 100mM gly-
cine and then lysed in lysis buffer. After protein quantitative,
equal proteins (150–300 μg) were added to Streptavidin
(Pierce Chemical Co.) beads at 4°C overnight. Next day,
beads were washed thoroughly, resuspended in 30 μl loading
buffer, and analyzed using Western blots.

2.8. Isolation of Endosomes. The preparation of endosomes
was fractioned on a floatation gradient. In brief, the treated
cells were washed by cold PBS and homogenization buffer
(250mM sucrose and 3mM imidazole, pH 7.4). After
centrifuging for 10min at 2000×g in 4 °C, the supernatant
was adjusted to 40.6% sucrose, followed by incubation of
35% sucrose supplemented with 3mM imidazole and
0.5mM EDTA and homogenization buffer. The samples
were centrifuged at 210,000×g for 1.5 h; the endosomes were
then obtained at the homogenization buffer—35% sucrose
interface. The endosome fraction was identified by immuno-
blots for Rab 7 as previously described [12, 21].

2.9. Measurement of NKA Activity. NKA activity was deter-
mined according to previous study [22, 23]. H9c2 cells were
homogenized in buffer A containing 20mM HEPES,
250mM sucrose, 2mM EDTA, 1mM MgCl2, pH 7.4, and
then centrifuged at 20,000 g for 30min. Consequently, resus-
pended the pellet in buffer A again and quantified the pro-
tein. One 50 μl aliquot of homogenate was mixed with 50
μl of reaction buffer 1 (200mM Tris-HCl, 30mM MgCl2,
200mM NaCl, 60mM KCl, 10mM EGTA, pH 7.5). Another
50 μl aliquot was mixed with reaction buffer 2 (buffer 1
+1mM ouabain). To prevent protein degradation, 100 μg/ml
PMSF, 2μg/ml apronitin, and 2μg/ml pepstatin A were
added in. After 1mM of ATP was added, the mixtures were
incubated for 10min at 37°C and then stopped by adding
10 μl of 100% (w/v) trichloroacetic acid. After incubating
them on ice for 1 h, they were centrifuged at 20,000 g for
30min. The supernatant without phosphate was assayed with
the Phosphate Colorimetric Kit (Sigma, MAK030, St. Louis,
MO) at 650nm.

2.10. Immunofluorescence Staining. Immunofluorescent
staining was performed as described previously [24]. The
collected H9c2 cardiomyocytes or primary neonatal mouse
cardiomyocytes were fixed in freshly made -20°C ethanol at
room temperature for 10min and then permeabilized with
0.1% Triton X-100. After blocking with 5% BSA at room
temperature for 1 h, the cells were incubated with the mouse
anti-NKA antibody or mouse anti-α-actinin overnight at 4°C.
Next, the cells were washed with PBS three times, and then
incubated with goat anti-mouse cross-adsorbed secondary
antibody, Alexa Fluor 488 (Invitrogen, Carlsbad, CA, USA)
for 1 h at room temperature, and the nucleus was stained
with DAPI. Goat anti-mouse IgG (H+L) cross-adsorbed sec-
ondary antibody, Alexa Fluor 488 (Invitrogen, Carlsbad, CA,
USA). The images were captured with a fluorescence micro-
scope (Leica DMi8, Leica, Wetzlar, Germany).

2.11. Statistical Analysis. Data were expressed as mean ± SD.
One-way or two-way ANOVA followed by the post hoc
Bonferroni test was used for multiple comparisons. A value
of p < 0 05 was considered statistically significant.

3. Results

3.1. DR-Ab Improves Ang II-Induced Cardiomyocyte
Hypertrophy through Preservation of NKAActivity. The immu-
nofluorescence staining of α-actin was performed to reveal the
H9c2 cardiomyocyte morphology (Figure 1(a)) and primary
cultured neonatal mouse cardiomyocytes (Figure S1A). It was
found that Ang II (100nM, 48h) treatment significantly
increased the cell size of cardiomyocytes, and this effect was
attenuated by pretreatment with DR-Ab (2 μM, 30min)
(Figure 1(b) and Figure S1B). We also examined the mRNA
expression of various hypertrophic biomarkers like atrial
natriuretic peptide (ANP), brain natriuretic peptide (BNP),
and beta-myosin heavy chain (β-MHC). Similar to what we
observed in myocyte morphology, pretreatment with DR-Ab
significantly attenuated Ang II-stimulated the above three
hypertrophic biomarkers (Figure 1(c) and Figures S1C–S1E).

Table 1

Gene (rat) Primer sequences (5′-3′)

GAPDH
Forward: AGGAGTAAGAAACCCTGGAC

Reverse: CTGGGATGGAATTGTGAG

ANF
Forward: CCGTATACAGTGCGGTGTCC

Reverse: CAGAGAGGGAGCTAAGTGCC

BNP
Forward: AGCTGCTTTGGGCAGAAGAT

Reverse: AAAACAACCTCAGCCCGTCA

β-MHC
Forward: GACAACGCCTATCAGTACATG

Reverse: TGGCAGCAATAACAGCAAAA

ND1
Forward: AAGCGGCTCCTTCTCCCTACAAAT

Reverse: GAAGGGAGCTCGATTTGTTTCTGC

Cytb
Forward: GCAGCTTAACATTCCGCCCAATCA

Reverse: TGTTCTACTGGTTGGCCTCCGATT

mt-co1
Forward: AAGGTTTGGTCCTGGCCTTA

Reverse: GGCAAGGCGTCTTGAGCTAT

CPT-1β
Forward: TCAAGGTTTGGCTCTATGAGGGCT

Reverse: TCCAGGGACATCTTGTTCTTGCCA

CPT-2
Forward: TCCTGCATACCAGCAGATGAACCA

Reverse: TATGCAATGCCAAAGCCATCAGGG

LCAD
Forward: AATGGGAGAAAGCCGGAGAAGTGA

Reverse: GATGCCGCCATGTTTCTCTGCAAT

MCAD
Forward: CTGCTCGCAGAAATGGCGATGAAA

Reverse: CAAAGGCCTTCGCAATAGAGGCAA

Gene (mouse) Primer sequences (5′-3′)

β-Actin
Forward: CCGTGAAAAGATGACCCAGA

Reverse: CTGGGATGGAATTGTGAG

ANP
Forward: ACCTGCTAGACCACCTGGAG

Reverse: CCTTGGCTGTTATCTTCGGTACCGG

BNP
Forward: GAGGTCACTCCTATCCTCTGG

Reverse: GCCATTTCCTCCGACTTTTCTC

β-MHC
Forward: CCGAGTCCCAGGTCAACAA

Reverse: CTTCACGGGCACCCTTGGA
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To study the underlying mechanisms, we first deter-
mined the effect of DR-Ab on NKA activity. As shown in
Figure 1(d), DR-Ab attenuated Ang II-impaired NKA activ-
ity in the H9c2 cardiomyocytes (Figure 1(d)). We further

examined the plasma membrane and total expression of
NKA with Western blots and immunostaining. As shown
in Figures 1(e)–1(g), treatment with Ang II reduced plasma
membrane NKA expression (Figures 1(e) and 1(f) and S1F)
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Figure 1: Effects of DR-Ab on Ang II-induced H9c2 cardiomyocyte hypertrophy. DR-Ab (2 μM) was given 30min before treatment with Ang
II (100 nM) for 48 h. (a, b) Representative immunofluorescence staining (a) and group data (b) showing that DR-Ab reversed enlarged cell
size caused by Ang II. Red: α-actinin. Blue: DAPI. Scale bar, 25μm. n = 6. (c) qRT-PCR analysis showing the mRNA levels of ANP, BNP,
and β-MHC. n = 4. (d–g) DR-Ab reversed Ang II-induced loss of plasma membrane NKA α1 (e, f), increase of endosome NKA α1 (g),
and downregulation of NKA activity (d). n = 4~6. Scale bar, 30μm. Blue: DAPI. Green: NKA α1 staining. ∗p < 0 05 versus control group,
†p < 0 05 versus Ang II alone group.
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and increased endosome NKA expression (Figures 1(g)
and S1G), but had minor effect on its total protein expres-
sion. Pretreatment with DR-Ab reversed the effect of Ang II
on plasma and endosome NKA expression. Taken together,
our experiments indicated that DR-Ab inhibits plasma mem-
brane NKA endocytosis. Our data imply that membrane
NKA expression and activity are important in regulation of
cell size when RAS is upregulated.

3.2. DR-Ab Alleviates Ang II-Induced Intracellular ROS
Generation in H9c2 Cells.Oxidative stress plays an important
role in Ang II-induced cardiomyopathy [2]. We first detected
whether DR-Ab can affect Ang II-induced intracellular ROS
production by using both DHE and DCFH-DA staining kits.
As shown in Figures 2(a)–2(c), Ang II (100nM, 48 h) signif-
icantly increased the generation of superoxide, hydroxyl,
peroxyl, and other ROS. Pretreatment with DR-Ab (2 μM,
30min), which itself had no obvious effect, significantly
reduced Ang II-induced intracellular ROS generation
(Figures 2(a)–2(c)).

To examine the involvement of NADPH oxidase, we
detected the protein expression of two subunits of NADPH
oxidase (NOX2): p22phox and p47phox. Western blotting

analysis showed that treatment with Ang II upregulated the
protein expression of these two proteins and this effect was
attenuated by pretreatment with DR-Ab in both H9c2 and
neonatal mouse cardiomyocytes (Figures 2(d) and S1). Our
data suggest that DR-Ab may inhibit NADPH oxidase activ-
ity in pathological situations.

3.3. DR-Ab Prevents Ang II-Induced Mitochondrial ROS and
Energy Metabolic Dysfunction.We further studied mitochon-
drial ROS generation with MitoSOX™ Red staining. As
shown in Figures 3(a) and 3(b), Ang II significantly increased
mitochondrial ROS generation in the mitochondria, and this
effect was reversed by pretreatment with DR-Ab. The mito-
chondrial permeability transition, an important step in the
induction of cellular apoptosis, was also determined using
the unique fluorescent cationic dye, JC-1. It was found that
Ang II induced loss of red JC-1aggregate fluorescence, and
only green monomer fluorescence was detected in the cyto-
plasm of these cells (Figure 3(c)). This effect was also reversed
by DR-Ab treatment.

We continued to study the mRNA levels of mitochon-
drial DNA-encoded genes including ND-1, cyt-b, and mt-
co1. Real-time PCR analysis showed that pretreatment
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Figure 2: Effects of DR-Ab on Ang II-induced intracellular ROS generation in H9c2 cells. DR-Ab (2 μM) was given 30min before treatment
with Ang II (100 nM) for 48 h. (a–c) Representative immunofluorescence image (a) and group data (b, c) showing that DR-Ab decreased ROS
generation caused by Ang II. Red: DHE staining (a, upper). Scale bar, 100 μm. Green: DCFH-DA staining (a, lower). Scale bar, 50 μm. n = 6.
(d) Effect of DR-Ab on the protein level of two subunits of NADPH oxidase: p22phox and p47phox. n = 4‐6. ∗p < 0 05 versus control group,
†p < 0 05 versus Ang II alone group.
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Figure 3: Effect of DR-Ab on Ang II-induced mitochondrial ROS (mit-ROS) generation and energy metabolic dysfunction. (a, b)
Representative image (a) and group data (b) showing that DR-Ab decreased Ang II-induced mit-ROS generation. Red: Mit-ROS. Scale
bar, 50 μm. n = 4‐6. (c) Representative JC-1 staining showing that DR-Ab reversed mitochondrial membrane potential loss caused by Ang
II. Red: aggregate. Green: monomer. Scale bar, 50μm. (d) qRT-PCR analysis showing that DR-Ab increased the mRNA expression of
mitochondrial encoded genes (ND-1, Cyt-b, and mt-co1) in Ang II-treated cells. n = 4. (e) qRT-PCR analysis showing the effect of DR-Ab
on the mRNA expression of fatty acid oxidation related genes (CPT-1β, CPT-2, LCAD, and MCAD). n = 4. ∗p < 0 05 versus control
group, †p < 0 05 versus Ang II alone group.
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with DR-Ab significantly attenuated Ang II-suppressed
expression of these genes (Figure 3(d)). Our data imply
that DR-Ab recovered impaired mitochondrial function
induced by Ang-II.

Fatty acid oxidation (FAO) is one of the pivotal mecha-
nisms involved in the development of cardiomyopathy [25].
We also studied whether DR-Ab can affect fatty acid metab-
olism in Ang-II-induced H9C2 cardiomyocyte damage. As
shown in Figure 3(e), Ang II-significantly reduced the
mRNA expression of FAO-related genes including CPT-1β,
CPT-2, long-chain acyl-CoA dehydrogenase (LCAD), and
medium-chain acyl-CoA dehydrogenase (MCAD), and these
effects were reversed by pretreatment with DR-Ab. These
data suggest that DR-Ab may improve Ang II-induced
impaired fatty acid oxidation.

3.4. DR-Ab Protects H9c2 Cardiomyocytes against Ang
II-Induced Hypertrophy via Activation of AMPK/Sirt-
3/PPARγ Signaling Pathway. It is well known that the
AMPK/Sirt-3/PPARγ signaling pathway participates in Ang
II-induced cardiomyocyte hypertrophy [26–34]. In this study,

we also tested the involvement of this pathway in the
effect of DR-Ab. We first repeated the effects of DR-Ab
on cell morphology (Figures 4(a) and 4(b)), intracellular
(Figures 4(c)–4(f)) and mitochondrial ROS (Figures 5(a)
and 5(b)) generation, mitochondrial membrane potential
loss (Figure 5(c)), and mitochondrial function-related gene
level (Figures 5(d)–5(h)) in the presence and absence of
compound C, an AMPK inhibitor, 3-TYP, a selective Sirt3
inhibitor, and GW9662, a PPARγ antagonist. As shown in
Figures 4 and 5, all these inhibitors abolished the protective
effects of DR-Ab. Our data suggest that the AMPK/Sirt-
3/PPARγ signaling pathway mediates the cardioprotective
effects of DR-Ab.

To further confirm the involvement of this signaling
pathway, we observed the effect of DR-Ab on AMPK phos-
phorylation (P-AMPK). A time-course study showed that
DR-Ab obviously increased P-AMPK level and the strongest
effect was observed when cells were treated with DR-Ab for
30min (Figure 6(a)). For this reason, DR-Ab reversed Ang
II-suppressed P-AMPK (Figure 6(b)). To study the signaling
cascade, compound C, an AMPK inhibitor, was used. As
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Figure 4: Effect of DR-Ab on myocyte hypertrophy and intracellular ROS generation in Ang II-treated H9c2 in the presence and absence of
compound C (40 μM, a selective AMPK inhibitor), 3-TYP (50 μM, a selective Sirt3 inhibitor), or GW9662 (10 μM, a PPARγ antagonist). Cells
were treated with these inhibitors for 30min before DR-Ab (2 μM, 30min) and Ang II (100 nM, 48 h). (a, b) Representative
immunofluorescence staining (a) and group data (b) showing that blockade of AMPK, Sirt3, or PPARγ abolished the effect of DR-Ab on
cell size. Red: α-actinin. Blue: DAPI. Scale bar, 25μm. n = 4‐6. (c–f) Representative image (c, e) and group data (d, f) showing that
blockade of AMPK, Sirt3, or PPARγ promoted the intracellular ROS which were decreased by DR-Ab in Ang II-induced cells. (c) Red:
DHE relative fluorescence density. Scale bar, 100μm. (e) Green: DCFH-DA staining. Scale bar, 50μm. n = 4‐6. ∗p < 0 05 versus control,
†p < 0 05 versus Ang II alone group, ‡p < 0 05 versus Ang II+DR-Ab group.
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shown in Figures 6(f) and 6(g), compound C abolished the
effect of DR-Ab on both Sirt-3 and PPARγ. Moreover, Ang
II treatment significantly reduced the protein levels of
PPARγ and Sirt-3 (Figures 6(c) and 6(d)). These effects were
significantly attenuated by incubation with DR-Ab. Interest-
ingly, treatment with 3-TYP, a selective Sirt3 inhibitor,
reversed the effect of DR-Ab on PPARγ protein expression
(Figure 6(e)). Taken together, DR-Ab protects H9c2 cardio-
myocytes against Ang II-induced hypertrophy may via
activate the AMPK/Sirt-3/PPARγ signaling pathway.

4. Discussion

Ang II, a key component of renin-angiotensin system (RAS),
is crucial in cardiovascular physiology and pathology [35].
The increased circulating Ang II level and activated RAS
are closely associated with cardiovascular diseases such as
cardiac hypertrophy [36] and heart failure [37]. Therefore,
Ang II is widely used to mimic the pathology of clinical
cardiac hypertrophy. An important function of NKA is to
regulate cell volume [38, 39]. Recently, NKA expression
and activity were also found to be closely regulated by
Ang II [14, 40–42]. For instance, Ang II can inhibit NKA
activity via induction of NADPH oxidase-derived O2

∗-15.
Molkentin’s group also reported that overexpression of

NKA successfully protects the heart against pathological
cardiac hypertrophy and remodeling [43]. We previously
reported that DR-Ab protects the heart against oxidative
and ischemic injury [10, 12]. In this study, we demonstrated
for the first time that DR-Ab prevented Ang II-induced
myocyte hypertrophy through observing myocyte size, cell
morphology, ROS generation, and mitochondrial functions.

We first investigated whether Ang II can regulate NKA
expression and function in this study. It was found that
Ang II treatment significantly reduced both plasma expres-
sion and activity of NKA. To study whether Ang II-induced
pathology is caused by impairment of NKA, we pretreated
the cells with DR-Ab which stimulates NKA activity. As
expected, DR-Ab improved cardiomyocytes hypertrophy
induced by Ang II. The enlarged cell size induced by Ang II
was recovered to nearly normal cell after treatment with
DR-Ab. Our results suggest that DR-Ab protect cells against
Ang II-induced cells injury through preservation of mem-
brane NKA activity, which helps to maintain resting poten-
tial, ion transport, and regulates cellular volume.

Oxidative stress plays an important role in Ang
II-induced cardiomyopathy [44]. Recent studies have
revealed that NKA is one of the target proteins of ROS
[45, 46]. Moreover, it was found that NADPH oxidase is
crucial for the inhibited NKA activity in cardiac myocytes
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Figure 5: Effects of DR-Ab on mit-ROS production and energy metabolic dysfunction in Ang II-treated cells in the presence and absence of
inhibitors of AMPK, Sirt3, or PPARγ. (a, b) Representative image (a) and statistic data (b) showing that blockade of AMPK, Sirt3, or PPARγ
with their inhibitors abolished the protective effect of DR-Ab on mit-ROS production. Red: mit-ROS. Scale bar, 50μm. n = 4‐6. (c) JC-1
staining showing that blockade of AMPK, Sirt3, or PPARγ reversed the effect of DR-Ab on mitochondrial membrane potential. Red:
aggregate. Green: monomer. Scale bar, 50μm. (d–h) qRT-PCR analysis showing that blockade of AMPK, Sirt3, or PPARγ abolished the
effects of DR-Ab on the mRNA expression of ND-1, Cyt-b, CPT-2, LCAD, and MCAD. n = 4‐6. ∗p < 0 05 versus control, †p < 0 05 versus
Ang II alone group, ‡p < 0 05 versus Ang II+DR-Ab group.
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treated with Ang II [13]. For the above reasons, we first exam-
ined whether DR-Ab can protect cardiomyocytes through
inhibition of NADPH oxidase. We found that DR-Ab
markedly attenuated Ang II-induced intracellular ROS
generation through inhibition of NADPH oxidase. This effect
was achieved by inhibition of the upregulated protein expres-
sion of p22phox and p47phox caused by Ang II.

Mitochondrial dysfunction also produces high levels of
ROS. Multiple experiments were therefore performed to
test the mitochondrial functions. We found that Ang II
treatment largely increased mitochondrial ROS production
and decreased mitochondrial membrane potential. This is
consistent with previous studies [47]. We further studied its
effects on mitochondrial DNAs, which encode proteins for
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Figure 6: Western blotting analysis showing that DR-Ab stimulated AMPK/Sirt-3/PPARγ signaling pathway. (a) Time-course study showing
the effect of DR-Ab on AMPK phosphorylation. (b–d) DR-Ab reversed the effect of Ang II on p-AMPK (b), PPARγ (c), & Sirt-3 (d). n = 4‐6.
(e) 3-TYP eliminated DR-Ab effect on the PPARγ level in Ang II-treated cells. n = 4. (f, g) Compound C abolished the effect of DR-Ab on the
protein expression of PPARγ (f) and Sirt-3 (g) in Ang II-treated cells. n = 4‐6. ∗p < 0 05 versus control group, †p < 0 05 versus Ang II alone
group, ‡p < 0 05 versus Ang II+ DR-Ab.
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Figure 7: Schematic illustration showing the mechanisms for the protective effects of DR-Ab. DR-Ab protects against Ang II-induced cell
injury by stabilization of membrane NKA and stimulation of its activity. This helps to maintain the normal intracellular ion homeostasis,
thus reserves the cell size. DR-Ab inhibits NADPH oxidase activity by downregulation of p22phox and p47phox expression. Meanwhile,
DR-Ab inhibits mitochondrial ROS generation and preserves mitochondrial function through stimulation of the AMPK/Sirt-3/PPARγ
signaling pathway.
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the electron transport chain and then produce the majority of
cellular energy [48, 49]. Our results showed that Ang II nota-
bly decreased the mRNA levels of ND-1, cyt-b, and mt-co1.
Metabolic derangement is a signature in pathological cardiac
hypertrophy [50]. Ang II also significantly inhibited the
mRNA levels of CPT-1β, CPT-2, LCAD, and MCAD, all of
which are important in mitochondrial oxidative phosphory-
lation and fatty acid metabolism. Interestingly, all the above
effects caused by Ang II were significantly reversed by the
pretreatment with DR-Ab.

DR-Ab is an antibody targeted at the 4th extracellular
domain of α-subunit of NKA. It remains unclear why
and how DR-Ab protects mitochondrial functions by bind-
ing to NKA. As NKA also serve as a signaling protein
[28], we studied the signaling mechanisms underlying the
protective effect of DR-Ab. Previous studies revealed that
Ang II-induced cardiac hypertrophy is mediated by
AMPK- [29–31, 51, 52], Sirt3- [32–34], and PPARγ-
[26–28] dependent mechanisms. Therefore, there is a close
relationship between NKA and AMPK [53–56]. On the
one hand, activation of AMPK has been reported to regu-
late the activity and cell surface abundance of NKA [57].
On the other hand, ouabain blocks the carbachol-induced
phosphorylation and activation of AMPK [58]; thus,
activation of NKA also stimulates AMPK activity [59].
For this reason, we studied the effect of DR-Ab on AMPK
activity and found that DR-Ab promoted AMPK phos-
phorylation. Activation of AMPK has been shown to
stimulate Sirt-3 [60–62], and then activated Sirt-3 affects
PPARγ [32] which has been proved in participating in
Ang II-induced myocyte hypertrophy [26–28]. In our
study, we confirmed the involvement of the Sirt-3/PPARγ
pathway with pharmacological manipulation. Western
botting analysis also confirmed that activation of Sirt-
3/PPARγ is secondary to that of AMPK. Our data suggest
that the AMPK/Sirt-3/PPARγ signaling pathway mediates
the protective effects of DR-Ab against Ang II-induced
H9c2 cardiomyocyte damage.

In summary, as shown in Figure 7, we found for the
first time that DR-Ab prevents Ang II-induced H9c2 car-
diomyocyte hypertrophy. This protective effect is mediated
by activation of the AMPK/Sirt-3/PPARγ signaling path-
way and stabilization of membrane NKA expression. Our
results suggest a novel mechanism and therapeutic strategy
in the treatment of cardiac hypertrophy and associated
oxidative injury.
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Figure S1: Effects of DR-Ab on Ang II-induced hypertrophy
in the neonatal mouse cardiomyocytes. DR-Ab (2 μM) was
given 30min before treatment with Ang II (100 nM) for
48 h. (A-B) Representative immunofluorescence staining
(A) and group data (B) showing that DR-Ab reversed
enlarged cell size caused by Ang II. Green: NKA α1. Blue:
DAPI. Scale bar, 30μm. n = 6. (C-E) qRT-PCR analysis
showing the mRNA levels of ANP, BNP, and β-MHC. n = 4.
(F-G) DR-Ab reversed Ang II-induced loss of plasma mem-
brane NKA α1 (A&F) and increase of endosome NKA
α1 (G). n = 4‐6. (H-I) Effect of DR-Ab on the protein level
of two subunits of NADPH oxidase: p22phox and p47phox.
n = 4‐6. ∗p < 0 05 versus control group, †p < 0 05 versus
Ang II alone group. (Supplementary Materials)
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