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ABSTRACT
Background: Low–glycemic load dietary patterns, characterized by
consumption of whole grains, legumes, fruits, and vegetables, are
associated with reduced risk of several chronic diseases.
Methods: Using samples from a randomized, controlled, crossover
feeding trial, we evaluated the effects on metabolic profiles of a
low-glycemic whole-grain dietary pattern (WG) compared with a
dietary pattern high in refined grains and added sugars (RG) for
28 d. LC-MS-based targeted metabolomics analysis was performed
on fasting plasma samples from 80 healthy participants (n = 40
men, n = 40 women) aged 18–45 y. Linear mixed models were
used to evaluate differences in response between diets for individual
metabolites. Kyoto Encyclopedia of Genes and Genomes (KEGG)–
defined pathways and 2 novel data-driven analyses were conducted
to consider differences at the pathway level.
Results: There were 121 metabolites with detectable signal in
>98% of all plasma samples. Eighteen metabolites were sig-
nificantly different between diets at day 28 [false discovery
rate (FDR) < 0.05]. Inositol, hydroxyphenylpyruvate, citrulline,
ornithine, 13-hydroxyoctadecadienoic acid, glutamine, and ox-
aloacetate were higher after the WG diet than after the RG
diet, whereas melatonin, betaine, creatine, acetylcholine, aspartate,
hydroxyproline, methylhistidine, tryptophan, cystamine, carnitine,
and trimethylamine were lower. Analyses using KEGG-defined
pathways revealed statistically significant differences in tryptophan
metabolism between diets, with kynurenine and melatonin positively
associated with serum C-reactive protein concentrations. Novel
data-driven methods at the metabolite and network levels found
correlations among metabolites involved in branched-chain amino
acid (BCAA) degradation, trimethylamine-N-oxide production, and
β oxidation of fatty acids (FDR < 0.1) that differed between diets,
with more favorable metabolic profiles detected after the WG diet.
Higher BCAAs and trimethylamine were positively associated with
homeostasis model assessment-insulin resistance.
Conclusions: These exploratory metabolomics results support bene-
ficial effects of a low–glycemic load dietary pattern characterized by

whole grains, legumes, fruits, and vegetables, compared with a diet
high in refined grains and added sugars on inflammation and energy
metabolism pathways. This trial was registered at clinicaltrials.gov
as NCT00622661. Am J Clin Nutr 2019;110:984–992.

Keywords: metabolomics, dietary patterns, whole grains, glycemic
load, dietary intervention, crossover, inflammation, insulin resistance

Introduction
Dietary patterns characterized by low-glycemic, minimally

processed plant foods, i.e., whole grains, legumes, fruits,
vegetables, nuts, and seeds, are associated with reduced risk of
several chronic diseases, including many cancers, cardiovascular
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disease, obesity, and related metabolic diseases (1–4). Con-
versely, diets high in glycemic load, i.e., refined grains and added
sugars, are associated with increased postprandial hyperglycemia
and oxidative stress leading to metabolic dysregulation and
increased risk of several chronic diseases (5, 6). Although many
mechanisms for the protective effects of a low-glycemic, whole-
foods dietary pattern have been proposed (7), properties related
to higher fiber content are thought to play a leading role. In
addition to being rich sources of fiber and providing many
essential nutrients, intact plant foods also contain a multitude of
phytochemicals, e.g., polyphenols, glucosinolates, omega-3 fatty
acids, etc., which may act synergistically (8). These bioactive
constituents may exert beneficial effects through modulation of
signaling pathways related to inflammation, oxidative stress, cell
growth and proliferation, and metabolism (9). Diets higher in
fiber have also been shown to favorably alter the composition and
functional potential of the gut microbiome (10).

We found previously that among overweight adults controlled
feeding of a low-glycemic whole-grain diet resulted in lower
serum C-reactive protein (CRP) and higher adiponectin con-
centrations than a diet high in refined grains and added sugars
(11). We also reported that the low-glycemic whole-grain diet
was associated with beneficial differences in circulating incretins
(12), reduced postprandial glycemic response (13), and improved
subjective mood and energy levels (14). While important, these
outcomes are based on a limited number of biomarkers known
to be altered with diet and metabolic-related diseases. There may
be other changes in metabolic pathways that have consequences
affecting human physiology and subsequent disease risk that are
not detected with a few select measures. With the advent of high-
throughput technologies, we can advance our understanding of
metabolic response to diet by measuring hundreds of metabolites
and characterizing their co-ordinated interactions within and
between metabolic pathways. While many studies have used
metabolomics to discover biomarkers of dietary intake, few have
evaluated metabolic profiles in response to dietary patterns in
a controlled feeding study in healthy humans. Using archived
plasma samples from this controlled, crossover feeding study
(11), our aim in the present analysis was to compare the effects
on the targeted plasma metabolome of a low–glycemic load
dietary pattern, characterized by whole grains, fruits, vegetables,
legumes, and nuts and seeds, with the effects of a diet high in
refined grains and added sugars.

Methods

Study design

Data and biologic samples for the present analysis were
derived from the Carbohydrates And Related Biomarkers
(CARB) study, conducted between June 2006 and July 2009
at the Fred Hutchinson Cancer Research Center (Fred Hutch).
The CARB study was a randomized, controlled, crossover
feeding study, the primary aims of which were to evaluate
the effects of glycemic load on chronic disease susceptibility
biomarkers, e.g., markers of systemic inflammation, insulin
resistance, and adipokines (11–13). Participants were assigned
to blocks based on body mass index and sex to receive 2
eucalorically similar controlled diets in a computer-generated,
randomly assigned order, with a 28-d washout period in between

diets where participants could eat as desired. The study was
double blinded, for both participants and outcome assessors.
While participants knew they were consuming 2 different diets,
they were unaware of what the specific differences were, i.e., that
the diets differed in carbohydrate source and type. To maintain
blinding during analyses, laboratory personnel and statisticians
were only provided with binary class labels (0,1). The study
protocol, including the present ancillary study, was conducted
in accordance with the ethical standards of the Declaration of
Helsinki and approved by the Fred Hutch Institutional Review
Board. All participants gave written informed consent. Based on
a fixed sample size of 80 participants in this ancillary study and
metabolomics pilot data from this cohort, we estimated that we
would have 80% power to detect mean differences in effect sizes
of 0.2 for at least 25 metabolites. This trial was registered at
clinicaltrials.gov as NCT00622661.

Participants

Details on recruitment and study design have been published
previously (11, 15). Briefly, healthy, nonsmoking individuals
between the ages of 18 and 45 y were recruited from the Greater
Seattle area. Exclusion criteria comprised impaired fasting
glucose measured at a study clinic visit (fasting blood glucose
≥5.6 mmol/L), any physician-diagnosed condition requiring a
restricted diet, food allergies, regular use of hormones or anti-
inflammatory medication, pregnancy or lactation, or heavy use of
alcohol (>2 drinks/d). Of the 84 randomly assigned participants,
80 completed all study activities and had complete biospecimen
data (Supplemental Figure 1). At baseline, anthropometric
data were collected, including height and weight, and body
composition using a whole-body DXA scan (GE Lunar DPX-
Pro, GE Healthcare), and self-administered questionnaires on
demographic characteristics, usual physical activity, and medical
history were completed.

Study diets

Participants received 2 controlled diets, a low–glycemic load
diet characterized by whole grains, legumes, fruits, vegetables,
nuts, and seeds (WG) or a high–glycemic load diet, high in refined
grains and added sugars (RG). All food was provided by the Fred
Hutch Human Nutrition Laboratory during each intervention
period, with weekday dinners consumed under supervision at the
study center and the next day’s breakfast and lunch taken home
for consumption. On Fridays, participants received all weekend
meals. Any leftover foods were returned to the study center,
weighed, and recorded. Participants were instructed to consume
only the foods and beverages provided during both study periods
and completed a daily checklist confirming consumption of study
foods, with space to record consumption of any nonstudy foods.
Adherence to the study diets was ∼98% (13).

Within each intervention diet, a 7-d menu rotation was
created using ProNutra (version 3.2, Viocare), with a 2400-kcal
reference menu for each day. As part of baseline data collection,
participants completed 3-d food records to estimate their habitual
energy intake based on their height, weight, sex, and usual
activity level. The intake data were used to determine energy
needs and food proportions from the reference menu for each
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participant. The 2 diets were designed to be identical in energy
and macronutrient composition (15% energy from protein, 30%
energy from fat, and 55% energy from carbohydrate) but to differ
in glycemic load (125 compared with 250), and thus, fiber (55
and 28 g/d) for the WG and RG diets, respectively.

Nutrient and phytochemical differences between diets

Although the 2 intervention diets were similar in macronutrient
composition, substitutions of more processed foods, i.e., refined
grains for whole grains, fruit juices for fruits, etc., resulted
in differences in many micronutrients and phytochemicals. To
characterize these differences, overall content of accurately
captured macro- and micronutrients and other bioactives in each
of the diets (over the final 7-d menu rotation, days 21–28)
was calculated [Nutrition Data System for Research (NDSR)
software v.2016, developed by the Nutrition Coordinating Center;
Supplemental Table 1]. Lignans were calculated using the
Phenol Explorer database (16).

Specimen collection and metabolomics analysis

Blood was collected at baseline and after each 28-d diet
period in the morning after a minimum of 12-h overnight fast
and processed and stored at −80◦C using a standard protocol.
Plasma was collected using two 10-mL EDTA tubes then
immediately mixed by inversion to ensure complete mixing with
anticoagulant. This was followed by centrifugation at 4◦C for
10 min and subsequent aliquoting into 0.1-mL cryovials with
O-rings. Samples were stored for a duration of 7–10 y prior
to analysis. Serum concentrations of overnight fasting high-
sensitivity CRP (11), glucose, and insulin (13) were assayed
previously as described. The HOMA-IR was calculated by taking
the product of the fasting insulin in microunits per milliliter and
glucose in milligrams per deciliter and dividing the result by 405
(13). These outcomes were used in post hoc analyses.

Stored plasma samples were used for metabolite profiling,
which was completed at the University of Washington’s North-
west Metabolomics Research Center. Targeted metabolomics
analysis was carried out using an LC-MS/MS platform in both
positive and negative ion modes against 203 standard metabolites
(Supplemental Table 2) from more than 25 Kyoto Encyclopedia
of Genes and Genomes (KEGG)–defined metabolic pathways
(17) (e.g., glycolysis, tricyclic acid cycle, amino acid metabolism,
glutathione, etc.) of potential significance to monitor diet effects,
along with 24 stable-isotope labeled internal standards for
concentration determinations (18). Samples were prepared and
analyzed as previously described (15, 19). Briefly, a standard
protocol was used, where 25 μL plasma and 150 μL HPLC-
grade methanol were combined in an Eppendorf vial and vortexed
for 2 min. After 20-min storage at −20◦C, the samples were
centrifuged at 4ºC for 10 mins at 18,000 × g, and then 250
μL was collected and dried at 30◦C in a Speed-Vac for 3 h.
Samples were reconstituted with 100 μL 5 mM ammonium
acetate in 95% water/5% acetonitrile plus 0.5% acetic acid,
and filtered through 0.45-μm polyvinylidene difluoride filters
(Phenomenex) prior to analysis. LC-MS/MS experiments were
performed on a Waters Acquity I-Class UPLC TQS-micro MS
system. Each sample was injected twice, 2 μL and 10 μL,

for analysis using positive and negative ionization modes,
respectively. Both chromatographic separations were performed
in hydrophilic interaction chromatography mode on an AB Sciex
5500 QTrap LC-MS/MS system. The flow rate was 0.3 mL
min−1, autosampler temperature was kept at 4◦C, and the column
compartment was set at 40◦C. The mobile phase was composed
of solvents A (5 mM ammonium acetate in H2O + 0.5% acetic
acid + 0.5% acetonitrile) and B (acetonitrile + 0.5% acetic
acid + 0.5% water). The LC gradient conditions were the same
for both positive and negative ionization modes. After an initial
1.5-min isocratic elution of 10% A, the percentage of solvent
A was increased linearly to 65% at time (t) = 9 min, then
remained the same for 5 min (t = 14 min), and then reduced
to 10% at t = 15 min to prepare for the next injection. After
chromatographic separation, MS ionization and data acquisition
was performed using an electrospray ionization source and Sciex
Analyst 1.6 software. A pooled study sample was used as the
quality control (QC) and run once for every 10 study samples.
The intra-assay average CV based on this QC sample was 7.8%
across all samples.

Statistical analyses

In total, 121 metabolites were reliably identified and quan-
titated in >98% of all samples and retained for analysis. Six
metabolites had values below the limit of detection for 2%
of samples (4 participants at a single time-point). For these 6
metabolites, both time points for an individual were entered
as missing in the univariate analyses. Most metabolites tended
to be skewed toward higher values and were natural log-
transformed to better approximate a normal distribution. Linear
mixed models adjusting for batch, diet sequence, period, sex,
age, body fat mass, and baseline metabolite concentrations
were used to evaluate differences in response between diets
for individual metabolites. Potential carryover effects between
diet periods were evaluated by adding an interaction term for
treatment ∗period; no evidence of carryover was found. The
same models were used for subgroup analyses, i.e., sex, and
adiposity group, and to assess post hoc associations between
metabolites and CRP and HOMA-IR. Subgroup analyses based
on sex and adiposity status were planned a priori. Although we
recruited on the basis of BMI, this measure tends to be a poor
indicator of body fat (20). Thus, analyses were conducted based
on the following adiposity classifications as determined by DXA:
high–body fat mass for females >32.0% and males >25.0%
(21). This resulted in recategorization of some participants, with
n = 29 comprising the normal/low–fat mass group and n = 51
comprising the overweight/high–fat mass group. The Benjamini-
Hochberg algorithm was used to control the false discovery rate
(FDR < 0.05 for univariate analyses). Univariate analyses were
conducted in Stata (v15.1, StataCorp).

To reduce the complexity and consider metabolites that act co-
ordinately, pathway analysis was conducted using correlation-
adjusted mean rank gene set analysis (CAMERA) (22). Un-
like permutation-based methods, such as gene-set enrichment
analysis (GSEA), this method directly estimates the correlation
among metabolites when assessing pathway enrichment. We
initially considered pathways in the KEGG database of metabolic
pathways (17). Because a targeted panel of 121 metabolites does
not provide full coverage of all pathways, we also employed 2
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TABLE 1 Characteristics of participants in the CARB study1

Characteristics
All participants

(n = 80)
Low adiposity2

(n = 29)
High adiposity2

(n = 51) P value3

Age, y 29.6 ± 8.1 26.4 ± 6.4 31.5 ± 8.5 <0.01
Male sex 40 (50%) 19 (66%) 21 (41%) <0.05
Weight, kg 81.1 ± 21.6 67.2 ± 9.2 89.1 ± 22.8 <0.001
Body fat, % 32.8 ± 11.8 21.2 ± 6.9 39.7 ± 8.3 <0.001
CRP, mg/L 1.5 ± 2.7 1.4 ± 5.5 2.12 ± 2.9 0.19
HOMA-IR 2.6 ± 2.2 1.5 ± 0.1 3.4 ± 0.3 <0.001
Race/ethnicity 0.6

Non-Hispanic white 35 (44%) 10 (34%) 25 (49%)
Hispanic 19 (24%) 8 (28%) 11 (22%)
African American 17 (21%) 7 (24%) 10 (20%)
Other4 9 (11%) 4 (20%) 5 (10%)

1Data presented as means ± SDs or n (%) unless otherwise indicated. CARB, Carbohydrate and Related Biomarkers; CRP, C-reactive protein.
2Adiposity classifications as determined by DXA: females: low fat mass <31.9%, high fat mass >32.0%; males: low fat mass <24.9%, high fat mass

>25.0%.
3Determined by chi-square test or paired t-test.
4Other category includes Asian/Pacific Islander/Native American.

data-driven methods to identify novel pathways. Specifically, we
complemented the 23 KEGG pathways mapped to our targeted
metabolomics panel with 1) 17 pathways identified based on
clusters of correlated metabolites using the weighted gene
coexpression network analysis (WGCNA) method (23); and 2) 12
pathways identified based on highly connected components in an
estimated metabolite network using the network gene-set analysis
(NetGSA) package in R (24–26). Together, these 2 methods
identify data-driven clusters of metabolites either based on
correlations among metabolites (WGCNA) or based on a network
of connectivities informed by metabolic reactions and refined
based on partial correlations among metabolite interactions
(NetGSA), the motivation being that groups of metabolites may
function similarly in a metabolic pathway. Correlations suggest
dependence among the metabolites and the relation may be
positive or inverse, suggesting similar or opposing shifts between
diets. Pathways were inferred based on biologic function of the
metabolites identified in these clusters. These de novo pathways
facilitate new discoveries and better reflect the evidence from
targeted metabolomics assays. In total, 52 pathways with ≥5
metabolites were included in the 3 pathway enrichment analyses
using CAMERA (22). The Benjamini-Hochberg procedure was
applied to control the number of false discoveries (FDR < 0.1),
conservatively, with all 52 pathways (KEGG and 2 data driven)
considered together.

Results
Participant characteristics, overall and stratified by adiposity,

are given in Table 1. In the univariate analysis, 18 of the 121
metabolites were statistically significantly different between the
WG and RG diets at day 28 (FDR < 0.05; Table 2). Geometric
mean ratios of plasma metabolites ranged from 0.61 to 1.18,
with melatonin (lower after the WG diet) and inositol (higher
after the WG diet) having the greatest fold change between diets.
Results were similar when stratified by sex (data not shown) and
adiposity (Table 2) for the most significant metabolites, with 2
additional metabolites differing between diets within strata of
adiposity groups: after the WG diet, xanthurenate was lower

among individuals with a high fat mass, and shikimic acid, a plant
phenolic metabolite, was higher among individuals with a normal
fat mass (FDR < 0.05; Table 2).

Enriched pathways from KEGG and 2 data-driven methods
of identifying metabolic pathways significant at FDR < 0.1
are presented in Figures 1 and 2. A total of 3 pathways were
identified, one from each method. Among KEGG metabolic
pathways, tryptophan metabolism (KEGGhsa00380) differed
between the 2 diets. Of the 6 metabolites measured in our panel,
tryptophan and melatonin were statistically significantly lower
after the WG diet in the univariate analysis, and xanthurenate
was significantly lower after the WG diet among individuals with
higher adiposity. Because higher concentrations of tryptophan
metabolites have been associated with inflammation (27), we also
explored the relation of these six metabolites with CRP. Both
kynurenine and melatonin were positively associated with CRP
(P = 4.5 × 10−6 and 0.007, respectively; Table 3).

Among the pathways identified based on metabolite correla-
tions, a cluster of 13 metabolites was significant at FDR < 0.1
(COR10; Figure 2). These were mainly amino acids involved
in tryptophan metabolism, suggesting good correspondence
between pathway analysis methods, and valine, leucine, and
isoleucine degradation. Given that higher concentrations of
branched-chain amino acids (BCAAs) are associated with insulin
resistance (28), we conducted a post hoc analysis evaluating
the association between BCAAs and HOMA-IR. Valine and
isoleucine were statistically significantly associated with plasma
HOMA-IR (P < 0.004 and 0.0003, respectively; Table 3).
While the direction of the relation between leucine and HOMA-
IR was also positive, this association was not statistically
significant. The remaining metabolites in this pathway did
not fall into overlapping pathways and were primarily amino
acid metabolites of protein-rich foods [cytidine, phenylalanine,
homoserine, 1 (Nτ )-methylhistamine, 3 (Nπ )-methylhistidine,
and 5-aminopentanoic acid] and uric acid, a metabolite of purine
degradation. All were higher after the RG diet.

The last significant pathway at FDR < 0.1 was derived
from network interactions (NET06; Figure 2), and primarily
included metabolites related to trimethylamine-N-oxide (TMAO)
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TABLE 2 Plasma metabolites significantly different at day 28 between a low–glycemic load dietary pattern characterized by whole grains, legumes, fruits,
and vegetables, compared with a diet high in refined grains and added sugars overall, and stratified by adiposity group1

All participants (n = 80) Low adiposity2 (n = 29) High adiposity2 (n = 51)

Plasma metabolite Ratio3 P value4 Ratio3 P value4 Ratio3 P value4

Inositol 1.18 (0.18) 1.46 × 10−23∗ 1.21 (0.19) 1.19 × 10−11∗ 1.17 (0.17) 7.80 × 10−9∗
Melatonin 0.61 (0.28) 3.58 × 10−22∗ 0.62 (0.28) 0.0003∗ 0.61 (0.29) 3.65 × 10−8∗
Hydroxyphenylpyruvate 1.16 (0.23) 3.02 × 10−12∗ 1.15 (0.24) 0.002∗ 1.17 (0.23) 1.54 × 10−5∗
Betaine 0.92 (0.12) 1.75 × 10−10∗ 0.90 (0.11) 0.003∗ 0.93 (0.11) 0.02
Creatine 0.84 (0.25) 1.19 × 10−7∗ 0.79 (0.20) 0.0002∗ 0.87 (0.27) 0.001∗
Acetylcholine 0.92 (0.15) 8.54 × 10−7∗ 0.90 (0.16) 0.001∗ 0.92 (0.14) 0.008
Citrulline 1.06 (0.15) 1.34 × 10−4∗ 1.06 (0.17) 0.06 1.07 (0.14) 0.007
Ornithine 1.08 (0.21) 3.83 × 10−4∗ 1.04 (0.19) 0.27 1.11 (0.23) 0.005
13-Hydroxyoctadecadienoic acid 1.14 (0.37) 4.32 × 10−4∗ 1.25 (0.38) 0.003∗ 1.07 (0.35) 0.11
Aspartic acid 0.91 (0.23) 7.25 × 10−4∗ 0.93 (0.25) 0.14 0.90 (0.22) 0.001∗
Hydroxyproline 0.87 (0.32) 7.77 × 10−4∗ 0.85 (0.41) 0.03 0.88 (0.26) 0.001∗
Methylhistidine 0.77 (0.55) 8.18 × 10−4∗ 0.80 (0.56) 0.08 0.75 (0.54) 0.004∗
Tryptophan 0.94 (0.14) 9.19 × 10−4∗ 0.95 (0.15) 0.10 0.94 (0.14) 0.003∗
Cystamine 0.87 (0.35) 0.002∗ 0.85 (0.33) 0.03 0.88 (0.36) 0.02
Glutamine 1.03 (0.09) 0.003∗ 1.01 (0.07) 0.47 1.04 (0.09) 0.002∗
Carnitine 0.95 (0.14) 0.004∗ 0.92 (0.13) 0.001∗ 0.97 (0.15) 0.19
Trimethylamine 0.95 (0.16) 0.007∗ 0.90 (0.17) 0.004∗ 0.98 (0.15) 0.44
Oxaloacetate 1.04 (0.15) 0.007∗ 1.03 (0.14) 0.26 1.05 (0.15) 0.01
Xanthurenic acid 0.96 (0.15) 0.03 0.99 (0.15) 0.79 0.94 (0.15) 0.005∗
Shikimic acid 1.13 (0.48) 0.06 1.18 (0.37) 0.003∗ 1.10 (0.53) 0.12

1FDR, false discovery rate; RG, refined grain and added sugars dietary pattern; WG, low–glycemic load dietary pattern.
2Adiposity classifications as determined by DXA: females: low fat mass <31.9%, high fat mass >32.0%; males: low fat mass <24.9%, high fat mass

>25.0%.
3Geometric mean ratio (geometric SD) of plasma metabolite concentrations comparing WG diet vs. RG diet at day 28; a ratio >1 means that the

metabolite was higher in the WG diet relative to the RG diet, whereas a ratio <1 means that the metabolite was lower.
4P values derived from linear mixed model adjusting for diet sequence, assay batch, age, sex, body fat percentage, and baseline metabolite

concentrations; stratified analyses excluded body fat percentage as a covariate. ∗Significant with Benjamini-Hochberg FDR <0.05.

production [trimethylamine (TMA), carnitine and betaine] (29),
β oxidation of fatty acids [carnitine, and 3-aminoisobutyric
acid (30)], and insulin resistance [valine and 3-aminoisobutyric
acid (30, 31); Figure 2]. As reported above, plasma valine
concentrations were higher after the RG diet and significantly
positively associated with HOMA-IR. There was no associa-
tion between 3-aminoisobutyric acid and HOMA-IR (data not
shown). As TMAO has also been associated with inflammation
and insulin resistance, we explored the association between
TMAO and its substrates with CRP and HOMA-IR. Only TMA,
which was positively associated with HOMA-IR among lean
individuals, was significant after controlling for multiple testing
(Table 3). The sixth metabolite in the network, benzoic acid, a
common component of plant foods, was higher after the WG
diet.

Discussion
A growing body of epidemiologic literature suggests beneficial

effects of dietary patterns emphasizing minimally processed plant
foods on various health outcomes (4, 32, 33). To gain mechanistic
insight into these protective effects, we evaluated the impact
of a low– versus a high–glycemic load dietary pattern on a
panel of metabolites using plasma from a completed randomized,
controlled feeding study in healthy adults. In addition to highly
significant differences in 18 metabolites between the 2 diets,

we found differences in several metabolic pathways related to
inflammation signaling and energy metabolism.

Of the KEGG-defined metabolic pathways evaluated, the
tryptophan metabolism pathway differed, with the majority of
metabolites lower in plasma after the WG diet. In addition to
its role in protein synthesis, tryptophan is a precursor for many
biologically important metabolites involved in neurotransmis-
sion, redox reactions, and inflammation and immune responses
(34). The majority of dietary tryptophan (∼95%) is converted
to kynurenine through the enzymatic action of indoleamine 2,3-
dioxygenase (35). From there kynurenine branches to form either
kynurenic acid or quinolinic acid, considered anti-inflammatory
and proinflammatory, respectively (36). Kynurenine, and xan-
thurenic acid—an intermediate in the production of quinolinate
in the proinflammatory branch, were both nonsignificantly lower
overall after the WG diet, despite tryptophan intake being
higher. However, xanthurenic acid was significantly lower after
the WG diet among individuals in the high adiposity group,
corresponding with previous findings of lower CRP in this group
(11). Kynurenine, known to be upregulated in response to an
inflammatory stimulus (35), was positively correlated with the
serum inflammatory marker CRP. These data suggest that the
WG dietary pattern may be associated with a shift away from the
proinflammatory branch of the kynurenine pathway, while the RG
dietary pattern is related to proinflammatory metabolism.

A smaller proportion of dietary tryptophan (∼5%) is converted
to serotonin, which can be further metabolized to melatonin.
Melatonin is produced mainly by the pineal gland, and regulates
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FIGURE 1 Metabolic pathway analysis comparing a low-glycemic whole-grain dietary pattern to a diet high in refined grains and added sugars conducted
using CAMERA. The x-axis shows the pathway size and the y-axis shows the negative logarithm (in base 10) of FDR-adjusted P-values from pathway
enrichment analysis. In addition to a KEGG pathway (hsa00380) 2 data-driven metabolic pathways (NET06 and COR10) were enriched at <10% FDR.
Metabolites in enriched pathways are shown in Figure 2. CAMERA, correlation-adjusted mean rank gene set analysis; FDR, false discovery rate; KEGG,
Kyoto Encyclopedia of Genes and Genomes.

circadian rhythms and sleep (37). In addition to human endoge-
nous production, fruits, vegetables, and grain products contain
measurable amounts of serotonin and melatonin, which serve to
defend the plant against environmental stressors (38, 39). Given
that the RG diet was lower in unrefined plant foods, it is unlikely
that dietary intake was a major contributor to the observed
difference in melatonin between diets. Higher melatonin may
be linked to greater postprandial insulin release on the RG diet
(13). Insulin lowers plasma concentrations of large neutral amino
acids, including tryptophan and BCAAs, by increasing their
uptake across the blood–brain barrier (40).

In addition to pathway-specific analyses, we also evaluated
data-driven associations between diets based on empirical corre-
lations among the metabolites and their networks. The BCAAs
leucine, isoleucine, and valine were differentially clustered
between diets in the metabolite correlation analysis. BCAA
dysregulation has been strongly associated with insulin resistance
and other metabolic risk factors, independent of fat mass (41).
Further, plasma valine concentration has been identified as a pre-
dictor of future development of type 2 diabetes (31, 42), possibly

through increased activation of mammalian target of rapamycin
complex 1 (43). In our data, plasma valine concentrations were
positively associated with HOMA-IR. Valine was also identified
in the network correlation analysis, along with 3-aminoisobutyric
acid, a metabolite produced by valine catabolism. This latter
metabolite has also recently been associated with altered energy
metabolism and cardiometabolic risk. A cross-sectional study
of 2000 patients enrolled in the Framingham Heart Study
found inverse associations between plasma 3-aminoisobutyric
acid and fasting glucose, insulin, HOMA-IR, triglycerides,
and total cholesterol (30). In complementary studies in mice,
investigators demonstrated that 3-aminoisobutyric acid secreted
from myocytes increased the expression of brown adipocyte-
specific genes in white adipose tissue, and genes involved in
fatty acid β-oxidation in hepatocytes (31). Two other studies
have reported beneficial modulation of inflammation and energy
metabolism with a dietary pattern higher in minimally processed,
low-glycemic foods. Using an untargeted approach, Acar et al.
(44) characterized the plasma metabolome after a 26-wk dietary
intervention in 146 individuals following either a diet high in
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FIGURE 2 Metabolites in enriched pathways (at 10% FDR). The color of each node corresponds to the test statistic from univariate analysis, as depicted
in the color bar. In total, 4 metabolites are included in more than 1 enriched pathway. FDR, false discovery rate; KEGG, Kyoto Encyclopedia of Genes and
Genomes.

fruit, vegetables, whole grains, and fish or a diet higher in
processed foods. Similar to our findings, metabolites linked to
fatty acid metabolism and glucose utilization exhibited more
favorable profiles after the unrefined diet. Another study assessed
the plasma metabolome and found that both leucine and valine
were lower after a low–glycemic index diet compared to a low-
fat diet, with leucine positively related to higher serum IL-6 (45).

Among the network-based correlations were TMA, carnitine,
and betaine, substrates for endogenously produced TMAO (29).
TMAO contributes to insulin resistance and altered cholesterol
metabolism (46) and in animals promotes vascular inflammation
through interaction with NF-κB (47). In our study, neither TMAO
nor substrates involved in its formation were associated with
CRP or HOMA-IR. Intact TMAO can be found in fish or
can be synthesized by gut bacteria from betaine, carnitine, and
choline to TMA, which can then be oxidized to TMAO by
flavin-dependent mono-oxygenase-3 (FMO-3) in the liver (29).
While TMA was higher after the RG diet, TMAO was non-
significantly higher after the WG diet. In addition to provision
of required substrates, dietary components may alter production
of TMAO in other ways. Differences in amounts and types of
fiber can alter gut microbial composition, altering consortia of
bacteria capable of generating TMA (29). There are also data

to suggest that some bioactive compounds inhibit FMO-3, i.e.,
indoles from cruciferous vegetables and resveratrol, a polyphenol
in the skins of red grapes and berries, modulating the conversion
of TMA to TMAO (48, 49). The extent to which these dietary
components contributed to TMAO production is not known, and
presumably other phytochemicals would also have the potential
to modulate production of TMAO and other metabolites, either
through interaction with signaling pathways or through altering
gut bacterial structure or activity (50, 51).

There are many strengths of this study, including the ran-
domized, controlled intervention with all individuals consuming
the same foods for the 2 dietary patterns being compared.
The crossover study design, with each person serving as their
own comparison, further reduced the influence of nondietary
confounding factors. Although we used a targeted metabolomics
panel with metabolites represented in >25 metabolic pathways,
not all members in the pathways were measured. For this reason,
we employed data-driven analyses evaluating the correlations
between both the metabolites and metabolic networks. While we
found good correspondence with the pathway-based analyses,
it is important to note that these data-driven pathway analyses
are only empirical and the relationships between metabolites are
not certain. However, differences in the same pathways, i.e.,
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TABLE 3 Associations between pathway metabolites and CRP and HOMA-IR1

All participants (n = 80) Low adiposity2(n = 29) High adiposity2 (n = 51)

Metabolite β ± SE3 P value3 β ± SE3 P value3 β ± SE3 P value3

Tryptophan metabolites and CRP
Kynurenine 1.78 ± 0.39 4.5 × 10–6∗ 1.79 ± 0.60 0.003∗ 1.16 ± 0.41 0.004∗
Melatonin 0.51 ± 0.19 0.007∗ 0.54 ± 0.32 0.09 0.40 ± 0.16 0.01
Kynurenic acid − 0.14 ± 0.18 0.43 − 0.43 ± 0.33 0.19 0.13 ± 0.15 0.37
Tryptophan 0.35 ± 0.61 0.56 − 0.42 ± 1.13 0.71 0.29 ± 0.52 0.58
Xanthurenate 0.24 ± 0.64 0.70 0.94 ± 1.33 0.48 − 0.67 ± 0.49 0.17
2-Aminobenzoic acid 0.47 ± 1.13 0.95 1.81 ± 2.12 0.39 − 0.80 ± 0.96 0.40

TMAO substrates and CRP
Betaine 1.63 ± 0.71 0.12 2.94 ± 1.14 0.10 0.82 ± 0.64 0.20
TMA − 0.36 ± 0.54 0.51 − 0.59 ± 0.97 0.54 0.81 ± 0.47 0.09
Carnitine − 0.37 ± 0.59 0.53 − 0.02 ± 1.16 0.99 0.56 ± 0.50 0.26
Choline 0.28 ± 0.59 0.64 2.89 ± 1.17 0.01 − 0.46 ± 0.51 0.37
TMAO 0.07 ± 0.16 0.66 − 0.18 ± 0.26 0.48 0.03 ± 0.15 0.87

BCAAs and HOMA-IR
Isoleucine 0.92 ± 0.26 0.0003∗ 0.72 ± 0.28 0.009∗ 1.10 ± 0.38 0.004∗
Valine 0.84 ± 0.29 0.004∗ 0.41 ± 0.36 0.25 0.98 ± 0.41 0.02
Leucine 0.54 ± 0.34 0.11 0.46 ± 0.38 0.23 0.52 ± 0.50 0.30

TMAO substrates and HOMA-IR
TMA 0.51 ± 0.24 0.03 0.88 ± 0.25 0.0005∗ 0.12 ± 0.36 0.73
Betaine − 0.54 ± 0.32 0.09 0.12 ± 0.37 0.74 − 1.03 ± 0.45 0.02
Choline − 0.37 ± 0.26 0.16 0.30 ± 0.35 0.40 − 0.70 ± 0.35 0.05
Carnitine 0.24 ± 0.26 0.36 0.70 ± 0.33 0.03 − 0.14 ± 0.37 0.70
TMAO 0.06 ± 0.07 0.39 − 0.09 ± 0.07 0.25 0.25 ± 0.11 0.03

1BCAA, branched-chain amino acid; CRP, C-reactive protein; FDR, false discovery rate; TMA, trimethylamine; TMAO, trimethylamine-N-oxide.
2Adiposity classifications as determined by DXA: females: low fat mass <31.9%, high fat mass >32.0%; males: low fat mass <24.9%, high fat mass

>25.0%.
3β coefficient ± SE and P value derived from linear mixed model adjusting for diet, diet sequence, assay batch, age, sex, and body fat percentage;

stratified analyses excluded body fat percentage as a covariate. ∗Indicates statistical significance with Benjamini-Hochberg FDR <0.05.

tryptophan and TMAO, were noted in a small subset of these
participants using the same metabolomics platform previously,
indicating a consistent signal (15). Finally, it is worth noting
that the homogeneous population and specific foods used in our
study reduce the generalizability of our results. Nevertheless,
evaluation of the metabolome in healthy individuals in response
to controlled feeding allows for discovery of novel associations
and understanding of the mechanisms underlying effects of
dietary components in a human system.

In conclusion, in this exploratory analysis using targeted
metabolite profiles, we found that a low–glycemic load dietary
pattern characterized by whole grains and other minimally
processed plant foods compared to a diet high in refined grains
and added sugars resulted in differences in several metabolic
pathways related to inflammation and energy metabolism, which
are likely beneficial. These results illustrate the complexity of
dietary patterns and the need to understand the synergistic effects
among dietary components, rather than individual compounds, on
physiologic and biochemical responses and health outcomes.
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