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ABSTRACT
Background: While the gut microbiota is relatively stable through
adulthood, its composition is influenced by various host and
environmental factors, including changes in health, gastrointestinal
processes (e.g., transit time, gastric acidity), medication use, and diet.
The association of habitual diet, in the form of a posteriori–derived
dietary patterns, and microbiota composition has not been adequately
studied, particularly in older men.
Objective: The objective was to investigate the association of dietary
patterns with the composition and diversity of the gut bacterial
microbiota in community-dwelling, older men.
Methods: This cross-sectional study included 517 men who were
participants in the Osteoporotic Fractures in Men (MrOS) Study
(≥65 y of age at baseline in 2000–2002) and who provided a stool
sample and completed an FFQ at MrOS Visit 4 in 2014–2016.
Dietary patterns were derived by factor analysis. 16S ribosomal RNA
target gene sequencing was performed and taxonomy assignments
were derived using the Greengenes database. Linear regression and
permutational multivariate analysis of variance (PERMANOVA)
considered variations in alpha and beta diversity by dietary pattern,
and a model that implements a 0-inflated Gaussian distribution of
mean group abundance for each taxa (metagenomeSeq) assessed
taxonomic variations by dietary pattern.
Results: In multivariable-adjusted models, greater adherence to the
Western pattern was positively associated with families Mogibac-
teriaceae and Veillonellaceae and genera Alistipes, Anaerotrun-
cus, CC-115, Collinsella, Coprobacillus, Desulfovibrio, Dorea,
Eubacterium, and Ruminococcus, while greater adherence to the
prudent pattern was positively associated with order Streptophyta,
family Victivallaceae, and genera Cetobacterium, Clostridium,
Faecalibacterium, Lachnospira, Paraprevotella, and Veillonella. The
relative abundance of the dominant gut bacterial phyla, Bacteroidetes
and Firmicutes, did not differ between participants with greater
adherence to the Western pattern, compared with those with greater
adherence to the prudent pattern. Dietary patterns were not associated
with measures of alpha diversity, but beta diversity measures

were significantly associated with both Western and prudent
patterns.
Conclusions: We observed significant associations between dietary
patterns and measures of gut microbial composition in this
sample of community-dwelling, older men. Am J Clin Nutr
2019;110:1003–1014.

Keywords: 16S rRNA gene sequencing, alpha diversity, beta di-
versity, dietary patterns, food-frequency questionnaire, Greengenes
database, microbiota, older adults, Osteoporotic Fractures in Men
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Introduction
The human microbiome is the collection of micro-organisms

(i.e., microbiota, including bacteria, viruses, fungi, and parasites)
and their genomes and gene products that inhabit the human
body. The number of microbes in a healthy human adult is
substantial, equaling or surpassing the number of human cells
(1). While it has long been known that these microbes are not
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merely inhabitants of their human hosts, but play an active role
in certain body processes, such as metabolism and immunity, the
microbiota appears to have an even broader impact on health
than was previously realized. In particular, the gut microbiome
may influence susceptibility to certain infectious diseases (2), as
well as contribute to disorders such as obesity and diabetes (3),
rheumatoid arthritis (4), chronic illnesses of the gastrointestinal
system (such as Crohn’s disease and irritable bowel syndrome)
(5), and possibly certain cancers (6). In older adults, there is
evidence that the gut microbiome may be related to bone density,
structure, and loss (7, 8); body composition, sarcopenia, and
frailty (9, 10); cognition (11); and aging, mortality, and longevity
(12–14).

While the gut microbiota is relatively stable through adult-
hood, the composition of the gut microbiota is influenced by
various host and environmental factors, including changes in
health, gastrointestinal processes (e.g., intestinal transit time),
medication use, and diet, as the microbiota plays a functional
role in the digestive tract (12, 15–17). Long-term, habitual
diet, as assessed by an FFQ, has been associated with the
composition of the gut microbiota. Claesson and colleagues
(12) used a 147-item FFQ to assess diets in 178 older men
and women in Ireland (including those residing both in the
community and in long-term residential care facilities), and
found that diet diversity was positively associated with diversity
of the gut microbiota, a characteristic associated with better
health. In a cross-sectional study of more than 10,000 citizen
scientists, the number of unique plant species consumed was
positively associated with gut microbial diversity (18). Wu and
colleagues (19) reported that long-term dietary intake reported
by FFQ, but not by a short-term recall questionnaire, was
associated with enterotype compositions in healthy adults. For
example, the Bacteroides enterotype was highly associated
with the intake of animal protein, a variety of amino acids,
and saturated fats, suggesting that meat consumption, as in a
Western-type diet, characterized this enterotype. Subjects with
intakes more characteristic of a vegetarian-type diet showed
enrichment in the Prevotella enterotype, as was the case for
carbohydrate-based diets. Greater adherence to a Mediterranean-
type diet (as assessed with 7-day food records) was associ-
ated with beneficial microbiota-related metabolomic profiles in
153 young and middle-aged adults with self-selected habitual
diets (20).

While individual foods and nutrients have been studied
extensively in relation to chronic disease risk, the relationship
between overall diet and disease risk may be more informative
because foods typically are eaten in combination, not in isolation
(21). Empirically deriving dietary patterns a posteriori has
facilitated investigations into the role an overall diet may play
in the etiology of chronic diseases (22, 23). Factor analysis,
a data-driven exploratory method, assesses dietary patterns in
specified groups without preconceived judgments about which
foods commonly are consumed together.

Further study of the effect of a habitual diet on the microbiome,
including the association of dietary patterns with microbiome
composition, is needed across the lifespan. This is especially true
for older adults, who experience physiological changes within
the gastrointestinal tract (e.g., changes in transit time, gastric
acidity, and immune system function) that may influence the
gut microbiota. The aim of this study was to investigate the

association of dietary patterns with the composition and diversity
of the gut bacterial microbiota in community-dwelling older men,
including investigating potential differences by race, geographic
location, and BMI.

Methods

Participants

Participants were community-dwelling men enrolled in the
Osteoporotic Fractures in Men (MrOS) Study (http://mrosdata.s
fcc-cpmc.net), the objective of which is to identify risk factors
for osteoporosis and fractures in older men. Detailed descriptions
of the study design and recruitment for MrOS have been
published previously (24, 25). Briefly, MrOS participants were
recruited at 6 US clinical centers: Birmingham, AL; Minneapolis,
MN; Monongahela Valley, near Pittsburgh, PA; Palo Alto, CA;
Portland, OR; and San Diego, CA. Eligibility criteria included
men age 65 years or older; the ability to walk without assistance
from another person or aid; and no history of bilateral hip
replacements. A total of 5994 men were enrolled, and baseline
examinations were completed between March 2000 and April
2002. Institutional Review Boards at each participating center
approved the study, and all subjects provided written informed
consent.

All active MrOS participants were invited to study Visit 4,
which took place May 2014 to May 2016. The 1328 participants
attending Visit 4 after the initiation of the MrOS microbiota
ancillary study also were invited to participate in the microbiota
study. Beginning in March 2015, and accounting for 346 men
who declined participation, 982 participants from all 6 MrOS
clinical centers provided a stool sample for the microbiota study,
of which a random sample of 599 participants had microbiota
analyses.

Microbiota analysis

Details of the stool sample collection have been described
previously (26). Briefly, stool specimens for microbiota analyses
were collected by participants at home, following Visit 4, using
the OMNIgene•GUT stool/feces collection kit, designed for
the self-collection of a consistent volume of stool and the
preservation of microbial DNA (OMR-200, DNA Genotek).
Participants mailed the stool samples to the MrOS Administrative
Center at Oregon Health and Science University (Portland, OR)
for initial processing. Upon arrival, samples were immediately
checked for adequacy and to ensure that the date and time of
collection had been recorded, and then were stored at −80◦C.
A random subsample of specimens (n = 599) was forwarded to
the Alkek Center for Metagenomics and Microbiome Research at
Baylor College of Medicine (Houston, TX) for characterization
of the gut microbiota (taxonomic profiles) by 16S ribosomal
RNA (rRNA) gene sequencing. A total of 589 of these samples
(98.3%) were collected within 30 days of Visit 4 (mean ± SD
days between stool sample collection and Visit 4 was 3.3 ± 7.8).

Genomic bacterial DNA was extracted from fecal samples
using the PowerSoil DNA Isolation Kit (MO BIO Laboratories,
Inc.). Extracted DNA was subjected to 16S (v4) rDNA am-
plification using primers 515F and 806R (26). The 16S rDNA
hypervariable region was amplified by polymerase chain reaction

http://mrosdata.sfcc-cpmc.net
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and sequenced on the MiSeq platform using the 2 × 250 base
pair paired-end protocol (Illumina, Inc.). The read pairs were
demultiplexed based on their unique molecular barcodes, and
overlapping reads were merged using USEARCH v9.0.2132
(i86linux64).

The 599 samples for this analysis were processed and profiled
using the bioBakery 16S workflow with the USEARCH method
at 97% clustering and a minimum cluster size of 2 to create
operational taxonomic units (OTUs). Reads were truncated to
a maximum length of 200 bases and filtered for quality control
using a maxEE score of 1, resulting in a total of 27,791,779
reads. Filtered reads were used to generate the OTUs with
the UPARSE algorithm. All reads, including those that did
not pass filtering, were used when assigning reads to OTUs
with USEARCH’s global alignment (27). The Greengenes 16S
rRNA Gene Database, version 13.8 (28), was used for taxonomy
prediction down to the lowest level possible, so that the unfiltered
data included 1913 OTUs, of which 163 were classified down
to the genus level. The dataset then was filtered to include only
OTUs with a minimum of 3 reads in at least 3 samples. The
filtered OTU data consisted of 1434 OTUs, classified to 13 phyla,
24 classes, 37 orders, 61 families, and 114 genera. Finally, the
OTU data were resampled to have minimum sample depths of
12,783 reads and then filtered to include OTUs with a minimum
of 3 reads in at least 3 samples. The rarefied filtered data consisted
of 1196 OTUs, of which 95 were classified down to the genus
level.

Dietary assessment

The Block 98.2 MrOS FFQ (NutritionQuest), the same brief
FFQ that was administered at baseline in MrOS (29, 30), was
completed by participants at home within days of Visit 4, within
a mean ± SD of 4.6 ± 11.7 days of the stool sample collection.
The questionnaire inquired about the intake of 69 individual food
items over the previous year and included 13 additional questions
about food preparation and low-fat foods that were used to refine
nutrient calculations. The FFQ included 9 categories of frequency
responses for foods and beverages and 4 categories of portion size
responses. A graphic representation of standard portion sizes was
included with the questionnaire. In addition, a 1-page supplement
to the FFQ was included that inquired about the frequency of
consumption and portion sizes (using the same categories) for
9 of the most commonly consumed probiotic foods (e.g., yogurt
and probiotic drinks).

Completed FFQs were returned by mail to the home clinical
center. FFQs were forwarded in batches to the MrOS Admin-
istrative Center, and then to NutritionQuest for analysis using
the Block Brief 2000 FFQ nutrient database. The Block group
determined the nutrient composition of each reported FFQ using
the USDA Database for Standard Reference for Version 12 and
the 1994–1996 Continuing Survey of Food Intakes by Individuals
database.

Dietary pattern derivation

The derivation of dietary patterns in MrOS participants has
been described previously (31). Briefly, using dietary data from
the FFQ administered at Visit 4, food groups were constructed
using individual food variables, based on nutrient similarities,

culinary use, and previous studies. Using factor analysis, a 2-
factor solution was retained based on the eigenvalue (scree plot).
Final factor loadings were calculated through varimax rotation
of the 2 factors on the full sample. All food groups were used
in calculating the final factor scores, regardless of loading. We
named patterns based on the factor loadings that contributed most
highly to each pattern. Factor 1 loaded heavily on processed
meats, refined grains, potatoes, eggs, sweets, and salty snacks,
and was designated the “Western” pattern. Factor 2 had high
factor loadings for fruits, vegetables, nuts, fish, and chicken and
turkey without skin and was designated the “prudent” pattern.
Adherence to the dietary patterns was divided into quartiles,
with Quartile 1 representing the lowest adherence and Quartile
4 representing the highest adherence to the pattern.

Other measurements

Demographic characteristics, along with current smoking
status and alcohol use, were obtained through self-administered
questionnaires. Current physical activity was assessed with the
Physical Activity Scale for the Elderly (PASE) questionnaire
(32). Perceived health status was self-reported as “excellent,”
“good,” “fair,” “poor,” or “very poor” in response to the question
“compared to other people your own age, how would you
rate your overall health?” A history of multimorbidity was
defined as having at least 2 of the following self-reported
health conditions: myocardial infarction, heart failure, stroke,
diabetes, chronic obstructive pulmonary disease, cancer, hip frac-
ture, osteoarthritis, rheumatoid arthritis, depression, cognitive
impairment, Parkinson’s disease, visual impairment, and fall
history. Height was measured with Harpenden stadiometers and
weight was measured with balance beam or digital scales. BMI
was calculated in kg/m2. Antibiotics reported by participants
during the visit were entered into an electronic medications
inventory (San Francisco Coordinating Center, San Francisco,
CA). Each medication was matched to its ingredient(s) based on
the Iowa Drug Information Service Drug Vocabulary (College of
Pharmacy, University of Iowa, Iowa City, IA) (33).

Statistical analysis

The analytic sample for the present analysis included those
with a stool sample, 16S rRNA gene sequencing, and a completed
and usable FFQ at Visit 4. A total of 82 participants of the 599 for
whom stool samples were collected and 16S rRNA sequencing
was completed were excluded for the following reasons: 36
reported antibiotic use within the previous 30 days, 21 reported
any consumption of probiotics on the FFQ supplemental page
(because of the potential influence of probiotics on the gut
microbiota, and the inability to adjust for this in multivariable
analyses due to the small number), 5 reported antibiotic and
probiotic use, 14 had missing dietary data, and 6 had implausible
energy intakes (<400 kcal/d). After exclusions, the final analytic
sample was 517 participants (Figure 1).

In this analysis, the primary outcome variable of interest was
the composition of the gut microbiota, while secondary outcomes
were alpha and beta diversity of the gut microbiota. Diversity
measures for the gut microbial community were estimated based
on identified OTUs in the unfiltered data. Alpha (within-person)
diversity was assessed by both the Shannon index and inverse
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FIGURE 1 Analytic sample flow diagram. MrOS, Osteoporotic Frac-
tures in Men Study.

Simpson index. The Shannon index is a measure of species
diversity, which accounts for both abundance and evenness of the
species present, but is sample-size dependent, whereas the inverse
Simpson index measures the relative abundance of species, giving
more weight to common or dominant species. The association
between bacterial alpha diversity and subject phenotypes was
assessed with linear regression models (with microbial measures
as the dependent variables), adjusted for age, race, clinical center,
energy intake, BMI, and library size. Unweighted and weighted
UniFrac were used as distance measures on the rarefied and
log-transformed data (34), and the resulting distance matrix
was reduced using a principal coordinates analysis, following
standard conventions in microbiome analyses (35). Unweighted
and weighted UniFrac distances characterize phylogenetic differ-
ences between organisms using either OTU presence/absence or
OTU count information, respectively. Permutational multivariate
analysis of variance (PERMANOVA) provided statistical testing

for associations of beta diversity and diet phenotypes. It applies
dimensionality reduction and iteratively tests associations be-
tween blocks of related features (36). To examine the associations
between dietary patterns and specific taxa, we first aggregated
OTUs by genus level. The taxa were included as outcomes if they
had a prevalence greater than 10% and a mean relative abundance
of 0.01%. To determine the relationship between the dietary
patterns and relative abundance, we used a model that implements
a 0-inflated Gaussian distribution of mean group abundance
for each taxa (metagenomeSeq) (37). This approach addresses
the diverse distributional features across OTUs, including the
larger number of 0s for some entities. Multivariable models
were additionally adjusted for age, race, clinical center, energy
intake, BMI, and library size. False discovery due to multiple
comparisons was minimized by using the Benjamini-Hochberg
false discovery method. In particular, the correction was done for
the metagenomeSeq models, since there was 1 model for each
genus-agglomerated OTU. Analyses were done using R version
3.4.4 and the phyloseq (38), vegan (39), and metagenomeSeq (37)
packages.

Results
There were 517 men (87.8% non-Hispanic White) in the

analytic sample, with a mean ± SD age of 84.3 ± 4.1 years
(Tables 1 and 2). A majority of men (59.0%) were at least college
graduates, and approximately 42% came from 2 clinical centers:
Portland and San Diego. Of the 517 men, 55.9% had a history
of smoking, although less than 2% were current smokers. Nearly
half of the participants (48.6%) reported regular alcohol intake
(defined as ≥1 drink/week), but only 5% reported high alcohol
intake (≥2 drinks/day). The mean ± SD BMI was 26.9 ± 3.7
kg/m2. The mean ± SD Shannon index was 3.39 ± 0.61, and the
mean ± SD inverse Simpson index was 15.9 ± 9.8.

There were statistically significant differences in the pro-
portions of the various clinical centers represented in each
quartile of adherence to the Western dietary pattern (Table
1). Participants with the highest adherence to the Western
pattern had significantly higher BMIs than men with the lowest
adherence to this dietary pattern. Age, race, education, smoking,
alcohol use, physical activity (PASE score), self-rated health,
history of multimorbidity, and alpha diversity (Shannon and
inverse Simpson indices) were not associated with adherence
to the Western pattern. Men with the highest adherence to
the prudent dietary pattern had a significantly lower mean
BMI, compared with men with the lowest adherence to this
pattern (Table 2). Age, race, education, clinical center, smoking,
alcohol use, physical activity, self-rated health, history of mul-
timorbidity, and alpha diversity (Shannon and inverse Simpson
indices) were not associated with adherence to the prudent
pattern.

Across all 517 participants, the dominant phyla were Bac-
teroidetes (46.9%) and Firmicutes (41.7%), with lower contribu-
tions from Proteobacteria (6.5%) and Verrucomicrobia (3.3%).
The relative abundance of these 4 dominant phyla did not
differ significantly between the 2 dietary patterns. The dominant
OTUs (with a mean relative abundance of at least 1%) were
genus Bacteroides (33.5%), genus Faecalibacterium (8.1%),
order Clostridiales (7.9%), family Ruminococcaceae (6.9%),
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TABLE 1 Characteristics of participants by quartile of adherence to the Western dietary pattern1

Quartile of factor score: Western dietary pattern

Characteristic
Overall

(n = 517)
1, lowest

(n = 130) 2 (n = 129) 3 (n = 129)
4, highest
(n = 129) P value2

Age, y 84.3 ± 4.1 83.9 ± 3.9 84.7 ± 4.3 84.2 ± 4.1 84.3 ± 4.1 0.47
Race 0.15

White 454 (87.8) 110 (84.6) 110 (85.3) 114 (88.4) 120 (93.0)
Other 63 (12.2) 20 (15.4) 19 (14.7) 15 (11.6) 9 (7.0)

Education 0.17
<High school 17 (3.3) 2 (1.5) 5 (3.9) 4 (3.1) 6 (4.6)
High school graduate 85 (16.4) 15 (11.5) 20 (15.5) 22 (17.1) 28 (21.7)
Some college 110 (21.3) 26 (20.0) 27 (20.9) 26 (20.2) 31 (24.0)
College graduate 78 (15.1) 16 (12.3) 17 (13.2) 28 (21.7) 17 (13.2)
Some graduate school 65 (12.6) 22 (16.9) 19 (14.7) 10 (7.7) 14 (10.8)
Graduate degree 162 (31.3) 49 (37.7) 41 (31.8) 39 (30.2) 33 (25.6)

Clinical center 0.007
Birmingham 67 (13.0) 14 (10.8) 12 (9.3) 21 (16.3) 20 (15.5)
Minneapolis 80 (15.5) 18 (13.8) 24 (18.6) 18 (13.9) 20 (15.5)
Palo Alto 69 (13.4) 23 (17.7) 21 (16.3) 18 (13.9) 7 (5.4)
Pittsburgh 82 (15.9) 14 (10.7) 15 (11.6) 17 (13.2) 36 (27.9)
Portland 113 (21.9) 32 (24.6) 29 (22.5) 29 (22.5) 23 (17.8)
San Diego 106 (20.5) 29 (22.3) 28 (21.7) 26 (20.2) 23 (17.8)

Smoking 0.41
Ever 289 (55.9) 71 (54.6) 77 (59.7) 65 (50.4) 76 (58.9)
Never 228 (44.1) 59 (45.4) 52 (40.3) 64 (49.6) 53 (41.1)

Alcohol, current 0.46
Yes 251 (48.6) 65 (50.0) 69 (53.5) 60 (46.5) 57 (44.2)
No 266 (51.4) 65 (50.0) 60 (46.5) 69 (53.5) 72 (55.9)

PASE score 124 ± 68 122 ± 72 126 ± 66 122 ± 62 129 ± 71 0.82
BMI, kg/m2 26.9 ± 3.7 26.0 ± 3.4 26.5 ± 3.6 27.4 ± 4.0 27.9 ± 3.6 0.0001
Self-rated health 0.10

Excellent/good 464 (89.7) 120 (92.3) 115 (89.2) 120 (93.0) 109 (84.5)
Fair/poor/very poor 53 (10.3) 10 (7.7) 14 (10.8) 9 (7.0) 20 (15.5)

History of multimorbidity3 0.74
Yes 322 (62.3) 77 (59.2) 80 (62.0) 80 (62.0) 85 (65.9)
No 195 (37.7) 53 (40.8) 49 (38.0) 49 (38.0) 44 (34.1)

Microbial diversity
Shannon 3.39 ± 0.61 3.42 ± 0.66 3.43 ± 0.62 3.38 ± 0.60 3.32 ± 0.57 0.48
Inverse Simpson 15.9 ± 9.8 16.9 ± 10.2 16.6 ± 10.8 15.9 ± 9.8 14.3 ± 8.3 0.14

1Values are shown as means ± SD or n (%). PASE, Physical Activity Scale for the Elderly.
2Derived from either an ANOVA (continuous variables) or Chi square test (categorical variables).
3Defined as having ≥2 of the following chronic conditions: myocardial infarction, heart failure, stroke, diabetes, chronic obstructive pulmonary disease,

cancer, hip fracture, osteoarthritis, rheumatoid arthritis, depression, cognitive impairment, Parkinson’s disease, visual impairment, and fall history.

family Lachnospiraceae (5.1%), genus Prevotella (3.9%), genus
Ruminococcus (3.9%), genus Parabacteroides (3.8%), genus
Akkermansia (3.3%), family Rikenellaceae (2.7%), family En-
terobacteriaceae (2.5%), genus Erwinia (1.6%), genus Blautia
(1.4%), genus Lachnospira (1.2%), genus Oscillospira (1.2%),
and genus Sutterella (1.1%).

Figure 2 shows alpha diversity measures by race, clinical
center, and BMI. Participants who were non-Hispanic White
had significantly higher alpha diversity indices (both Shannon
and inverse Simpson) than those in other race/ethnic groups.
Participants from the Minneapolis and Portland clinical cen-
ters had significantly higher alpha diversity by both indices,
compared with participants from the other clinical centers.
There were no significant associations between BMI and
either index of alpha diversity. Table 3 shows the crude and
adjusted associations between the 2 dietary patterns—Western
and prudent—and alpha diversity. There were no statistically

significant associations between either index of alpha diversity
(Shannon or inverse Simpson) for either pattern in the adjusted
models.

Figure 3 shows the associations between the dietary patterns
and beta diversity (weighted and unweighted UniFrac, as
assessed by PERMANOVA). In multivariable analyses, both
the Western and prudent patterns were significantly associated
with both weighted and unweighted UniFrac measures of beta
diversity. Men with greater adherence to the Western pattern had
slightly lower levels of the second principal component factor,
while men with greater adherence to the prudent pattern had
slightly higher levels of the second principal component factor,
assessed by unweighted UniFrac.

In multiple comparisons–adjusted analyses of specific OTUs,
the relative abundances of the families Mogibacteriaceae and
Veillonellaceae and genera Alistipes, Anaerotruncus, CC-115,
Collinsella, Coprobacillus, Desulfovibrio, Dorea, Eubacterium,
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TABLE 2 Characteristics of participants by quartile of adherence to the prudent dietary pattern1

Quartile of factor score: prudent dietary pattern

Characteristic
Overall,

(n = 517)
1, lowest

(n = 130) 2 (n = 129) 3 (n = 129)
4, highest
(n = 129) P value2

Age, y 84.3 ± 4.1 84.1 ± 4.2 84.4 ± 3.9 84.4 ± 3.9 84.2 ± 4.3 0.91
Race 0.26

White 454 (87.8) 117 (90.0) 116 (89.9) 114 (88.4) 107 (82.9)
Other 63 (12.2) 13 (10.0) 13 (10.1) 15 (11.6) 22 (17.1)

Education 0.64
<High school 17 (3.3) 6 (4.6) 2 (1.6) 5 (3.9) 4 (3.1)
High school graduate 85 (16.4) 28 (21.5) 24 (18.6) 15 (11.6) 18 (13.9)
Some college 110 (21.3) 28 (21.5) 29 (22.5) 26 (20.2) 27 (20.9)
College graduate 78 (15.1) 18 (13.8) 19 (14.7) 22 (17.1) 19 (15.3)
Some graduate school 65 (12.6) 9 (6.9) 19 (14.7) 19 (14.7) 18 (3.9)
Graduate degree 162 (31.3) 41 (31.5) 36 (27.9) 42 (32.6) 43 (33.3)

Clinical center 0.10
Birmingham 69 (13.2) 16 (12.3) 21 (16.3) 13 (10.1) 17 (13.2)
Minneapolis 80 (15.3) 29 (22.3) 17 (13.2) 19 (14.7) 15 (11.6)
Palo Alto 69 (13.2) 16 (12.3) 13 (10.1) 14 (10.8) 26 (20.2)
Pittsburgh 84 (16.1) 25 (19.2) 17 (13.2) 21 (16.3) 19 (14.7)
Portland 115 (22.0) 23 (17.7) 35 (27.1) 33 (25.6) 22 (17.1)
San Diego 106 (20.3) 21 (16.2) 26 (20.2) 29 (22.5) 30 (23.3)

Smoking 0.29
Ever 291 (55.6) 76 (58.5) 79 (61.2) 65 (50.4) 69 (53.5)
Never 232 (44.4) 54 (41.5) 50 (38.8) 64 (49.6) 61 (46.5)

Alcohol, current 0.23
Yes 253 (48.4) 58 (44.6) 68 (52.7) 56 (43.4) 69 (53.5)
No 270 (51.6) 72 (55.4) 61 (47.3) 73 (56.6) 60 (46.5)

PASE score 124 ± 68 120 ± 64 125 ± 69 126 ± 69 127 ± 70 0.87
BMI, kg/m2 26.9 ± 3.7 27.3 ± 3.5 27.3 ± 3.6 27.1 ± 4.0 26.0 ± 3.7 0.02
Self-rated health 0.31

Excellent/good 467 (89.3) 114 (87.7) 121 (93.8) 116 (89.9) 113 (87.6)
Fair/poor/very poor 56 (10.7) 16 (12.3) 8 (6.2) 13 (10.1) 16 (12.4)

History of multimorbidity3 0.03
Yes 322 (62.3) 81 (62.3) 92 (71.3) 69 (53.5) 80 (62.0)
No 195 (37.7) 49 (37.7) 37 (28.7) 60 (46.5) 49 (38.0)

Microbial diversity
Shannon 3.39 ± 0.61 3.38 ± 0.63 3.44 ± 0.59 3.36 ± 0.61 3.38 ± 0.62 0.40
Inverse Simpson 15.9 ± 9.8 15.9 ± 9.8 16.8 ± 10.3 15.4 ± 10.0 15.6 ± 9.4 0.65

1Values are shown as means ± SD or n (%). PASE, Physical Activity Scale for the Elderly.
2Derived from either an ANOVA (continuous variables) or chi-square test (categorical variables).
3Defined as having ≥2 of the following chronic conditions: myocardial infarction, heart failure, stroke, diabetes, chronic obstructive pulmonary disease,

cancer, hip fracture, osteoarthritis, rheumatoid arthritis, depression, cognitive impairment, Parkinson’s disease, visual impairment, and fall history.

and Ruminococcus were significantly positively associated with
adherence to the Western pattern after adjustment for age, race,
clinical center, energy intake, BMI, and library size, while the
relative abundances of orders Clostridiales and Streptophyta,
family Anaeroplasmataceae, and genera Coprococcus,
Faecalibacterium, Haemophilus, Lachnospira, Paraprevotella,
and Prevotella were significantly inversely associated
with adherence to the Western dietary pattern
(Table 4).

In multiple comparisons–adjusted analyses of specific OTUs,
the relative abundances of order Streptophyta, family Victi-
vallaceae, and genera Cetobacterium, Clostridium, Faecalibac-
terium, Lachnospira, Paraprevotella, and Veillonella were signif-
icantly positively associated with adherence to the prudent pattern
after adjustment for age, race, clinical center, energy intake,

BMI, and library size, while the relative abundances of family
Rikenellaceae and genera CC-115, Cloacibacillus, Collinsella,
Coprobacillus, Desulfovibrio, Dorea, and Ruminococcus were
significantly inversely associated with adherence to the pru-
dent dietary pattern (Table 5). Several taxa were signifi-
cantly associated with both dietary patterns, in opposing
directions.

Discussion
In this study of older, community-dwelling men, several

measures of gut microbial composition differed according to the
degree of adherence to Western and prudent dietary patterns. In
multivariable-adjusted models, greater adherence to the Western
pattern was positively associated with families Mogibacteriaceae
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FIGURE 2 Distributions and predictors of alpha diversity measures (n = 517). (A) Distribution of Shannon index: box plots with medians and IQRs are
shown by race (P < 0.001), clinical center (P = 0.005), and BMI (P = 0.29). (B) Distribution of inverse Simpson index: box plots with medians and IQRs are
shown by race (P = 0.001), clinical center (P = 0.005), and BMI (P = 0.11). P values were derived from an ANOVA. BI, Birmingham; MN, Minneapolis; PA,
Palo Alto; PI, Pittsburgh; PO, Portland; SD, San Diego.

and Veillonellaceae and genera Alistipes, Anaerotruncus, CC-
115, Collinsella, Coprobacillus, Desulfovibrio, Dorea, Eubac-
terium, and Ruminococcus, while greater adherence to the pru-
dent pattern was positively associated with order Streptophyta,
family Victivallaceae, and genera Cetobacterium, Clostridium,
Faecalibacterium, Lachnospira, Paraprevotella, and Veillonella.
The relative abundance of the dominant gut bacterial phyla—
Bacteroidetes and Firmicutes—did not differ between partici-
pants with greater adherence to the Western pattern, compared

with those with greater adherence to the prudent pattern. Dietary
patterns were not associated with measures of alpha diversity,
but beta diversity measures were significantly associated with
both Western and prudent patterns in multivariable-adjusted
analyses.

This study addresses several gaps in the microbiome literature.
There is a paucity of studies of the gut microbiota in generally
healthy, community-dwelling, older adults, and we know of no
published data on diet and the gut microbiota in a similar cohort of
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TABLE 3 Associations between dietary patterns and measures of alpha diversity1

Western dietary pattern Prudent dietary pattern

Alpha diversity measure β coefficient 95% CI P value2 β coefficient 95% CI P value

Shannon
Univariable −0.037 −0.090, 0.015 0.16 −0.029 −0.080, 0.022 0.27
Multivariable3 −0.023 −0.099, 0.054 0.56 −0.014 −0.073, 0.045 0.64

Inverse Simpson
Univariable −0.85 −1.70, −0.01 0.05 −0.62 −1.44, 0.19 0.13
Multivariable −0.62 −1.85, 0.61 0.32 −0.45 −1.40, 0.49 0.35

1n = 517.
2Derived from a multiple linear regression.
3Multivariable model adjusted for age, race, clinical center, energy intake, BMI, and library size.

older men. Physiological changes in the gastrointestinal tract that
occur with aging make studying diet and gut microbiota in older
persons important relative to other age cohorts. For example,
increased gut transit time, a higher prevalence of atrophic gastritis
leading to decreased acid production, and compromised intestinal
mucosal immune system function with aging all can potentially
influence gut microbiota composition and diversity in older adults
(40). In a study of 83 older, community-dwelling men and
women in Ireland as part of the ELDERMET consortium, the
most common gut genera were Coprococcus and Roseburia (12),
while the most common gut genera in MrOS participants were
Bacteroides, Faecalibacterium, and Clostridiales.

The Human Microbiome Project was designed to generate
population-representative data, but its 300 participants were aged
18–40 years (41). Several large European studies have included
a broad age range (17, 42). The gut microbiota appears to
remain relatively stable through adulthood, but may meaningfully
change in older age (e.g., decreased microbial diversity), perhaps
reflecting changes in diet, physiology, and medication use (12,
15–17), which motivates the focused study of older adults.
Intervention studies have shown that short-term changes in
diet can alter the gut microbiota (15), and several short-term,
randomized, controlled feeding studies in humans have shown
that increasing the amounts of specific foods in the diet (e.g.,

FIGURE 3 Associations between quartiles of adherence to the Western and prudent dietary patterns and beta diversity PCoA (n = 517). Statistical
significances for models: (A) P = 0.029; (B) P = 0.001; (C) P = 0.011; and (D) P = 0.002. Statistical significances for models, adjusted for age, race, clinical
center, energy intake, BMI, and library size: (A) P = 0.005; (B) P = 0.001; (C) P = 0.039; and (D) P = 0.004. P values were derived from permutational
multivariate analysis of variance (PERMANOVA). PCoA, principal coordinate analysis.
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TABLE 4 Associations between the Western dietary pattern and abundance of specific taxa at the level of genera/operational taxonomic unit1

Relative abundance among participants with taxon
present, %

Taxon
Reference

no.
Prevalence,

% Median IQR
β

coefficient2
False discovery rate–adjusted

P value3

g. Paraprevotella4 165118 81.8 0.006 0.003 0.656 − 0.81 0.006
f. Anaeroplasmataceae 185593 12.6 0.002 0.002 0.004 − 0.78 <0.001
g. Prevotella 423264 26.9 0.002 0.002 0.004 − 0.48 0.020
g. Lachnospira4 843553 99.6 0.83 0.30 1.60 − 0.47 0.004
g. Faecalibacterium4 368219 100.0 7.0 3.0 11.7 − 0.44 0.015
g. Haemophilus 865469 77.8 0.021 0.006 0.083 − 0.44 0.027
o. Streptophyta4 262379 42.6 0.006 0.003 0.015 − 0.40 <0.001
g. Coprococcus 359993 99.2 0.149 0.067 0.365 − 0.38 0.004
o. Clostridiales 345354 100.0 6.6 3.5 11.1 − 0.20 0.017
g. Dorea4 523542 99.6 0.146 0.078 0.270 0.25 0.023
g. Coprobacillus4 587933 60.7 0.009 0.004 0.020 0.31 0.015
f. Mogibacteriaceae 1108745 89.6 0.030 0.013 0.067 0.37 0.004
g. Anaerotruncus 315223 88.6 0.021 0.009 0.067 0.39 0.006
g. Collinsella4 147071 79.9 0.050 0.022 0.096 0.41 0.002
g. Alistipes 107044 65.6 0.027 0.009 0.081 0.47 0.006
g. Eubacterium 514773 79.9 0.021 0.007 0.092 0.47 0.018
f. Veillonellaceae 225954 51.8 0.012 0.002 0.183 0.50 0.034
g. CC-1154 807548 36.4 0.013 0.005 0.042 0.67 <0.001
g. Ruminococcus4 583398 97.9 0.099 0.029 0.283 0.67 <0.001
g. Desulfovibrio4 4453773 72.5 0.093 0.006 0.322 0.71 <0.001

1n = 517. f., family; g., genus; o., order.
2β Coefficient is log2 fold change estimated with metagenomeSeq. The multivariable model was adjusted for age, race, clinical center, energy intake,

BMI, and library size.
3Derived from a modified t test.
4Associated with the prudent dietary pattern, in the opposite direction.

broccoli and other cruciferous vegetables, whole grains, walnuts,
almonds, and pistachios) resulted in significant and potentially
beneficial changes in the composition of the gut microbiota
(43–48). There have been relatively few observational studies
of longer-term diets. Cross-population studies have documented
appreciable variation in the gut microbial community structure,
which may reflect differences in diet, along with numerous
other environmental or cultural differences between studied
populations (14, 49–51).

Our findings are consistent with previous studies showing
associations between diet and gut microbial community com-
position. In a cross-sectional analysis of 98 healthy volunteers
in the United States, Wu et al. (19) assessed diet with both
an FFQ, a measure of usual diet, and a 24-hour diet recall
and examined differences across 2 dominant microbial clusters
(enterotypes), characterized by a relatively higher abundance
of either Prevotella or Bacteroides. The authors examined a
large number of specific dietary components, and we cannot
directly compare our dietary patterns results with their results.
However, in Wu et al. (19), the Prevotella enterotype was
positively associated with the dietary intake of carbohydrates,
which is in line with our finding that the genus Prevotella was
positively associated with the prudent dietary pattern, a higher-
carbohydrate pattern. However, while in Wu et al. (19) the
Bacteroides enterotype was positively associated with animal fat
and protein, characteristic of a Western diet, Bacteroides was not
associated with the Western dietary pattern in our study.

In contrast, David et al. (15) observed taxa-specific changes in
a short-term dietary intervention. Specifically, they demonstrated
that a 5-day dietary intervention with plant-based or animal-based
diets rapidly and reproducibly altered the composition of the gut
microbiota in 10 subjects who were 21–33 years of age (15).
The intervention diets were designed for large macronutrient
composition differences, with 22% fat, 10% protein, and 68%
carbohydrate in the plant-based diet and 70% fat, 30% protein,
and 0.6% carbohydrates in the animal-based diet. Differences
across the MrOS dietary patterns were much less pronounced.
In the Western (prudent) dietary patterns, the percentages of
energy from each macronutrient in the lowest and highest
quartiles, respectively, were: fat: 29% and 42% (40% and 33%);
protein: 17% and 15% (15% and 17%); and carbohydrates:
57% and 45% (47% and 53%) (31). Still, despite the more
modest dietary differences in our observational study, several
taxa-specific associations were consistent with results from
the intervention study. For example, in David et al. (15), the
meat-based diet induced increases in several taxonomic groups,
including Alistipes and Ruminococcus, both of which were
positively associated with the Western dietary pattern in MrOS.
Faecalibacterium, which decreased when participants consumed
the meat-based diet in David et al. (15), was negatively associated
with the Western pattern and positively associated with the
prudent pattern in MrOS. In David et al. (15), unspecified genera
within Lachnospiraceae were both increased and decreased on
the meat-based diet. In MrOS, members of Lachnospiraceae
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TABLE 5 Associations between the prudent dietary pattern and presence/abundance of specific taxa at the level of genera/operational taxonomic unit1

Relative abundance among participants with taxon
present, %

Taxon
Reference

no.
Prevalence,

% Median IQR
β

coefficient2
False discovery rate–adjusted

P value3

g. CC-1154 807548 36.4 0.013 0.005 0.042 − 0.53 <0.001
g. Ruminococcus4 583398 97.9 0.099 0.029 0.283 − 0.46 <0.001
g. Desulfovibrio4 4453773 72.5 0.093 0.006 0.322 − 0.39 0.025
g. Coprobacillus4 587933 60.7 0.009 0.004 0.020 − 0.32 0.002
f. Rikenellaceae 357046 100.0 1.55 0.75 3.10 − 0.31 0.025
g. Cloacibacillus 3121406 22.6 0.010 0.004 0.040 − 0.27 0.038
g. Collinsella4 147071 79.9 0.050 0.022 0.096 − 0.26 0.024
g. Dorea4 523542 99.6 0.146 0.078 0.270 − 0.19 0.038
g. Cetobacterium 828162 13.7 0.002 0.002 0.003 0.20 0.024
g. Clostridium 558420 99.4 0.216 0.068 0.656 0.28 0.038
o. Streptophyta4 262379 42.6 0.006 0.003 0.015 0.30 0.004
g. Lachnospira4 843553 99.6 0.828 0.302 1.603 0.30 0.025
f. Victivallaceae 158404 30.0 0.034 0.009 0.109 0.31 0.038
g. Veillonella 342427 79.5 0.020 0.006 0.074 0.32 0.025
g. Faecalibacterium4 368219 100.0 7.0 3.0 11.7 0.36 0.024
g. Paraprevotella4 165118 81.8 0.006 0.003 0.656 0.57 0.024

1n = 517. f., family; g., genus; o., order.
2β Coefficient is log2 fold change, estimated with metagenomeSeq. The multivariable model included age, race, clinical center, energy intake, BMI, and

library size.
3Derived from a modified t test.
4Associated with the Western dietary pattern, in the opposite direction.

were similarly differently associated with Western and prudent
patterns, with Dorea positively associated with the Western
pattern and inversely associated with the prudent pattern, and
Lachnospira inversely associated with the Western pattern and
positively with the prudent pattern.

Taxa-specific results were consistent with biologic expec-
tations, with respect to current knowledge of the bacterial
metabolisms of dietary components. For example, Faecal-
ibacterium is a known butyrate producer from nondigestible
polysaccharides in the diet (52). A higher presence of Alistipes,
resistant to bile, is consistent with a greater presence in higher-
fat diets (53). Desulfovibrio is a proteobacteria involved in the
fermentation of sulfate-containing amino acids, consistent with
our findings of a positive association with the Western dietary
pattern and an inverse association with the prudent dietary pattern
(54). Prevotella utilizes fiber and was inversely associated with
the Western dietary pattern (55).

We observed significant differences in alpha diversity by
MrOS clinical center. Geographical differences in gut microbiota
composition and diversity is an understudied area, but differences
in the gut microbiota were detected in 4 geographically distinct
districts in Japan by Andoh and colleagues (56). In a recent
review of potential influences on the human microbiome, Gupta
et al. (57) noted that geography might influence gut microbiota
composition and diversity through such factors as differences
in the food supply, adaptive immunity, and local environmental
exposures.

This study included several notable strengths, including a large
sample of community-dwelling older men. To the best of our
knowledge, this is the first investigation into the association of
dietary patterns and the gut microbiota focusing on older men,
who have not been well represented in previous studies of the

microbiome and diet. Study participants were comprehensively
characterized, including a previously completed collection of
stool specimens, comprehensive assessment of habitual dietary
intake, and rigorous derivation of dietary patterns from reported
intake on FFQs through a factor analysis. We were able to
control for multiple potential confounders. There were, however,
limitations of the study that should be noted. While the present
study is larger than many of the previous studies relating diet
with the microbiota, there are still issues concerning sample size,
potentially limiting power to detect meaningful effects. Other
limitations include the cross-sectional observational design,
precluding the determination of causality. Although it may
seem logical that diet would affect the gut microbiota, it is
conceivable that gut microbiota might have influenced dietary
intake. Medications other than antibiotics were not accounted
for, and the possibility of selection bias and residual confounding
cannot be eliminated. The generalizability of our results is limited
to community-dwelling, generally healthy, older men. Also, the
cohort was mostly non-Hispanic White men with significant
differences in alpha diversity noted by race/ethnicity, thus leaving
open the potential for effect modification by race/ethnicity.
Thus, future investigations are needed to determine associations
between dietary patterns and microbiome parameters, with larger
samples and/or more variation in phenotype. We did not have
data on the times of day meals were consumed in relation to
the collection of stool samples, which may influence bacterial
abundances (58). The present study was limited to 16S profiling,
thus limiting the interpretation, with further study necessary to
identify taxa down to genus and species and the assessment of
function through whole-metagenomic sequencing and metabolite
measures. The use of medications that potentially can influence
the composition and diversity of the gut microbiota, including
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metformin, proton pump inhibitors, and statins (59, 60), was not
assessed in this analysis. Finally, measurement error in dietary
assessment, a known issue with FFQs, may have limited our
ability to detect associations, as such error is likely to be non-
differential with respect to alpha and beta diversity; thus, effect
estimates would be biased toward the null. The brief FFQ used in
MrOS may well underestimate energy intake, and thus would be
inappropriate for assessing absolute intakes of specific nutrients
(including energy), but would be sufficient for assessing dietary
patterns.

In conclusion, we observed significant associations between
measures of gut microbial composition and dietary patterns.
Our data advance current lines of research by providing results
on usual diets in a sample of community-dwelling older men.
Future research examining how the gut microbiota might possibly
serve as an intermediate linking diet to clinical outcomes,
such as fractures, bone mineral density, and falls, will be
important. Several of our results replicate findings from previous
publications relating the gut microbiota and diet, and are
consistent with expectations based on the microbial metabolism
of dietary carbohydrates and amino acids. These data support the
relevance of diet to the gut microbiota in community-dwelling,
older men.
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