Skip to main content
. 2019 Sep 6;19(18):3850. doi: 10.3390/s19183850

Table 4.

The GQDs-based optical sensor for lead ion detection.

Type of GQDs Synthesis Method Starting Materials Optical Method Linear Range LOD 1 (nM) References
GQD-DMA hydrothermal GO-DMA Fluorescent probe 0.01–1 nM 0.009 [69]
GQDs/L-Cys chemical oxidation carbon black ECL 100–1000 nM 70 [70]
rGQDs oxidation/reduction graphite powder Fluorescence “turn ON” 9.9–435 nM 0.6 [71]
S-GQDs hydrothermal pyrene/1,3,6-trinitropyrene Fluorescent probe 0.1–140.0 µM 30 [72]
GQDs and AuNPs purchased - FRET 0.05–4 µM 16.7 [73]
GQDs@GSH pyrolysis citric acid/glutathione FRET 2.4–11.5 nM 2.2 [74]
NPS-GQDs electrochemical oxidation anthracite coal Fluorescent probe 1–20 µM 750 [75]
DDTC-GQDs pyrolysis citric acid/DDTC RLS 4.83–48.3 nM 3.86 [76]

1 where LOD is limit of detection. AuNPs: Au nanoparticles, DDTC: diethyl dithiocarbamate, DMA: 3,9-dithia-6-monoazaundecane, FRET: fluorescence resonance energy transfer, GO: graphene oxide, GSH: glutathione, L-Cys: L-cysteine, NPS- nitrogen, phosphorus and sulfur, RLS: resonance light scattering, S: sulfur.