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Summary

Environmental variation can have profound and direct
effects on fitness, fecundity, and host-symbiont inter-
actions. Replication rates of microbes within arthropod
hosts, for example, are correlated with incubation tem-
perature but less is known about the influence of host—
symbiont dynamics on environmental preference.
Hence, we conducted thermal preference (T,) assays
and tested if infection status and genetic variation in
endosymbiont bacterium Wolbachia affected tempera-
ture choice of Drosophila melanogaster. We demon-
strate that isogenic flies infected with Wolbachia
preferred lower temperatures compared with unin-
fected Drosophila. Moreover, T, varied with respect to
three investigated Wolbachia variants (wMel, wMelCS,
and wMelPop). While uninfected individuals preferred
24.4°C, we found significant shifts of -1.2°C in wMel-
and -4°C in flies infected either with wMelCS or
wMelPop. We, therefore, postulate that Wolbachia-
associated T, variation within a host species might
represent a behavioural accommodation to host—
symbiont interactions and trigger behavioural self-
medication and bacterial titre regulation by the host.

Introduction

Environmental variations through intrinsic (e.g., physiology,
reproduction, metabolism) and extrinsic (e.g., food sources,
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predation risk, immunity) factors impose a strong impact on
the fitness of all organisms (e.g., Levins, 1968; Endler,
1977, 1986; Fox et al., 2001). Temperature is one of the
most important environmental abiotic factors that affect the
physiology and life history traits in many organisms (Huey
and Berrigan, 2001; Hoffmann, 2010; Bozinovic et al.,
2011; Amarasekare and Savage, 2012). Ectotherms, such
as terrestrial insects, depend on ambient conditions to
maintain their body temperature within a thermoregulatory
range (Angilletta et al., 2004). For example, thermal prefer-
ence (T,) in Drosophila melanogaster, a dipteran model
species of world-wide distribution, varies with geography
and elevation, and is thus potentially shaped by selection
(Martin and Huey, 2008; Dillon et al., 2009; Garrity et al.,
2010; Hoffmann and Sgro, 2011; Huey et al., 2012;
Rajpurohit and Schmidt, 2016). In addition, variation in tem-
perature can have fundamental effects on ecological inter-
actions among organisms and their symbiotic microbes.
Titres of endosymbiotic Wolbachia bacteria are highly
temperature-dependent in various arthropod hosts. For
example, some Wolbachia strains have increased replica-
tion rates at warmer temperatures (Clancy and Hoffmann,
1998; Hurst et al., 2000; Mouton et al., 2006; Correa and
Ballard, 2012; Strunov et al., 2013a), while others are highly
sensitive to heat stress (Van Opijnen and Breeuwer, 1999;
Wiwatanaratanabutr and Kittayapong, 2009).
Endosymbionts of the genus Wolbachia are widespread
and found in more than 50% of all investigated terrestrial
and some aquatic insects (Zug and Hammerstein, 2012;
Weinert et al., 2015; Sazama et al., 2017). Wolbachia have
garnered extensive interest due to reproductive manipula-
tions they can inflict on their hosts, i.e., inducing partheno-
genesis, male killing, feminization, and cytoplasmic
incompatibility (Cl). By acting as reproductive parasites
these bacteria boost their own transmission (reviewed by
Werren et al., 2008). However, Wolbachia can also behave
as facultative or obligate mutualists (reviewed by Zug and
Hammerstein, 2015) by enhancing host fecundity and
fitness (Dedeine et al., 2001; Hosokawa et al., 2010; Miller
et al.,, 2010) and by providing protection against RNA
viruses (Hedges et al., 2008; Teixeira et al., 2008; Moreira
et al., 2009; Osbome et al., 2009). Several closely related
genetic variants of Wolbachia have been isolated from nat-
ural and laboratory populations of D. melanogaster. wMel,
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wMelCS, and wMelPop, which represent three of the most
well-studied Wolbachia variants in D. melanogaster
(Riegler et al., 2005), cause very weak, if any, Cl in their
native host (Hoffmann, 1988; Reynolds et al., 2003; Veneti
et al., 2003; Fry et al., 2004; Yamada et al., 2007), but pro-
vide virus protection to varying degrees (Chrostek et al.,
2013; Martinez et al., 2014). Both wMel and wMelCS infect
natural populations of D. melanogaster. Historically,
wMelCS existed globally at higher prevalence, but in the
recent past wMel has almost completely replaced the more
ancestral wMelCS strain in worldwide populations (Riegler
et al., 2005; Nunes et al., 2008; Richardson et al., 2012;
llinsky, 2013; Early and Clark, 2013). In contrast, wMelPop
was isolated from a laboratory stock of D. melanogaster
during a survey of genetic mutations and represents a
pathogenic variant of wMelCS (Min and Benzer, 1997;
Richardson et al., 2012; Chrostek et al., 2013). Depending
on rearing temperature, wMelPop infections can lead to a
strong reduction of host lifespan with respect to uninfected
controls (Min and Benzer, 1997; McGraw et al., 2002;
Reynolds et al., 2003; Chrostek et al., 2013). This detri-
mental effect is caused by over-proliferation in host tissues,
such as the brain, retina, and muscles (Min and Benzer,
1997; Strunov et al., 2013b). Importantly, not only wMel-
Pop but also its natural predecessor wMelCS have signifi-
cantly higher cellular densities and growth rates than wMel
when assayed in the same fly genetic background at 25°C
(Table 1; Chrostek et al., 2013). While high Wolbachia den-
sities result in augmented antiviral protection, they also
have negative effects by reducing their host's lifespan.
Accordingly, it has been proposed that the higher titre —
and hence more costly — wMelCS variant was replaced by
the low-titre wMel variant in natural D. melanogaster popu-
lations (Chrostek et al., 2013). Thereby, flies infected with
the more recent wMel variant have higher fitness due to
lower Wolbachia titres compared with flies infected with
wMelCS. Alternatively, the highly protective wMelCS variant
may have been replaced by wMel independent of the sym-
biont’s capacity for virus resistance but because of better

Table 1. Comparison of strain type titre levels, growth rates and
effects on host’s lifespan at 25°C.

Strain Relative amount of Effects on host’s

type Wolbachia lifespan

wMel Lowest titre level and growth No reduction
rate

wMelCS  Approximately double the titre ~ Some reduction

level compared with wMel

and higher growth rate
Titre level 20 times higher

compared with wMelCS

wMelPop Reduction by

approximately half

Note: Information on titre levels, growth rate, host’s lifespan effects
for wMel and wMelCS from Chrostek and colleagues (2013), infor-
mation on wMelPop’s effects on host’s lifespan from Reynolds and
colleagues (2003).

adaptation to viruses at the host level (Martins et al., 2014).
In line with this hypothesis, a recent study failed to find cor-
relations between RNA virus prevalence and Wolbachia fre-
quency in natural populations of D. melanogaster (Webster
et al., 2015). However, the main causalities explaining the
well-documented global almost complete replacement of
wMelCS by wMel in worldwide populations of
D. melanogaster remains elusive.

Host—symbiont conflicts may arise from disparities
between physiological requirements of Wolbachia and
those of their hosts. For example, some insects induce
behavioural fever (Louis et al., 1986) or behavioural chill
(Fedorka et al., 2016) as an immune strategy to fight bac-
terial pathogen infections. Conversely, some bacterial
symbionts are known to alter their host's thermal toler-
ance range in an adaptive manner (Russell and Moran,
2006; Dunbar et al., 2007; reviewed by Wernegreen,
2012). We, therefore, speculate that additional ecological
and behavioural factors, such as host temperature prefer-
ence, may play a pivotal role in determining Wolbachia
prevalence and the dynamics of their strain replacement
in natural D. melanogaster populations.

To test our hypothesis, we conducted laboratory-
based temperature preference assays using isogenic
D. melanogaster w’""8 strains that are either uninfected
(w-) or infected with one of the three common Wolba-
chia strains wMel, wMelCS_b, and wMelPop (Teixeira
et al., 2008; Chrostek et al., 2013) and determined if
Wolbachia affects the temperature preference of its
native host D. melanogaster. To this end, we built a cus-
tom thermal gradient apparatus and determined the tem-
perature preference of replicated fly populations with
varying Wolbachia infection statuses along the thermal
gradient ranging from 17°C to 32°C. Our experiments
demonstrate that the temperature preference of
D. melanogaster is neither sex- nor age-dependent but
is highly dependent on the Wolbachia infection status
and on the symbiont genotype. Our results provide com-
pelling evidence that Wolbachia infections can affect
host thermal preference behaviour, at least under strict
laboratory conditions in D. melanogaster strains.

Results

To determine whether T, of adult D. melanogaster varies
with Wolbachia infection status and Wolbachia genotype,
we conducted lab-based experiments using a custom-
built temperature gradient apparatus for assaying flies of
the isogenic lab-strain w’’® that were either uninfected
(w-) or infected with one of the Wolbachia strains wMel,
wMelCS, or wMelPop (Supporting Information Figs. S1-
S4). We first investigated whether age (3—4, 5-7, or
10-14 days post-eclosion) and Wolbachia infections or
sex (males or females) and Wolbachia infections had an
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influence on T, by means of two-way mixed-effect Pois-
son regressions. We neither found significant effects of
age or sex nor significant interactions of either factor with
Wolbachia infections (see Fig. 1A and B and Table 2A,
B; Supporting Information Fig. S5; Poisson regression:
p > 0.05 for factors age and sex and both interaction
terms respectively). In contrast, both two-way regressions
revealed highly significant effects of Wolbachia infections
on T, (Poisson regression p < 0.001 for factor Wolbachia
in both analyses). Since both aforementioned analyses
were carried out on different subsets of the data which
did not include all four infection types (w-, wMel,
wMelCS, and wMelPop), we further investigated all data
jointly irrespective of sex and host age and evaluated the
effect of symbiont genetic variation on T, by means of
post-hoc pairwise comparisons based on Tukey’s hon-
estly significant differences (HSD). We found that temper-
ature preference of D. melanogaster strongly depended
on (1) the infection status of the flies and (2) on the Wol-
bachia strain used for infections: Uninfected flies (w-)
exhibited the highest mean T, at 24.4°C (Median: 25°C;
Mode: 26°C), while wMel-infected flies preferred average

A Age (days)
| 034
25 P
o .| @?A 01014
T 24 8 2
@ A
S 23 A
B oA
S
2 22
£ A
2 214 ﬁ g
20 : : %,A
w- wiel wMelCS
C
0.30

Frequency
o
>

Wolbachia and host thermal preferences 3261

temperatures at 23.2°C (Median: 24°C; Mode: 24°C),
which is 1.2°C lower than uninfected (w-) flies. In con-
trast, flies infected with wMelCS or wMelPop showed
highly similar thermal preferences at 20.6°C and 20.5°C
(Median: 19°C and Mode: 18°C for both) respectively,
which were both approximately 4°C lower than to w- (see
Fig. 1C, Tables 2C, and 3).

Discussion

In this study, we, for the first time, investigated the
relationship between temperature preference of D. mela-
nogaster and Wolbachia infection under laboratory condi-
tions. Using a custom-built thermal gradient apparatus,
we conducted temperature preference assays and
showed that the T, of D. melanogaster is shifted to lower
temperatures when flies are infected with Wolbachia.
Uninfected D. melanogaster flies preferred an average
temperature of 24.4°C, whereas wMel-infected flies pre-
ferred 23.2°C and both wMelCS- and wMelPop-infected
flies preferred 20.6°C and 20.5°C respectively.
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Fig. 1. Thermal preference of Drosophila with and without Wolbachia infections. Panels A and B show average T, (blue diamonds) with respect
to age (3—4, 57, or 10-14 days post eclosion, n = 4370 excluding flies infected with wMelPop) and sex (male or female; n = 1718, excluding
uninfected flies) respectively. Each symbol represents the average T, for a replicate at a given factor level of either age (circle: 3—4 days, triangle:
5-8 days and square: 10—14 days) or sex (circle: females, triangle: males). Panel C shows line plots with relative proportions of flies observed at
a given temperature. Each line represents the average proportion of flies which were either uninfected (w-; black diamonds) or infected with
wMel (green circles), wMelCS (orange triangles), or wMelPop (red squares). The error bars represent standard errors for average frequencies at
a given temperature across all replicated experiments carried out for each infection type. We found that infected flies exhibit significantly lower
thermal preference compared with uninfected flies. [Color figure can be viewed at wileyonlinelibrary.com]
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Table 2. Table showing the results of three analyses based on generalized linear mixed models with a Poisson error structure to account for the

statistical properties of count data.

Analysis Model Factor N df x p-value
A wol + age + wol x age wol 4370 6 119.71 1.87E-23
A wol + age + wol x age age 4370 6 2.10 0.91

A wol + age + wol x age wol x age 4370 4 1.31 0.86

B wol + sex + wol x sex wol 1718 6 61.19 2.58E-11
B wol + sex + wol x sex sex 1718 4 2.12 0.71

B wol + sex + wol x sex wol x sex 1718 3 1.90 0.59

C wol wol 5717 3 168.69 2.44E-36

The columns show ID’s for the different analyses (A-C), the models, the individual factors and interactions tested, the samples size, the degrees
of freedom for the %2 test of the analysis of deviance, the ¥ value and the corresponding p-value. Note that analyses with significant effects after

Bonferroni correction (adjusted a = 0.017) are highlighted in bold.

T, can vary significantly between populations of the
same species (Matute et al., 2009; Rajpurohit and
Schmidt, 2016) and can have profound effects on
immune function, fithess, and fecundity (Huey and Berri-
gan, 2001; Martin and Huey, 2008; Hoffmann, 2010).
Recent population analyses of Wolbachia and mitochon-
dria from D. melanogaster have provided evidence that
over the past few thousand years, the wMelCS variant is
being globally replaced by the wMel-variant (Riegler
et al., 2005; Nunes et al., 2008; Richardson et al., 2012;
Early and Clark, 2013). Rare cases of the wMelCS infec-
tion type were recently detected in the wild (Nunes et al.,
2008; llinsky, 2013), thus replacement by wMel is still
incomplete. Although the reason for the worldwide turn-
over remains elusive, it has been hypothesized that
wMel, which persists in hosts at significantly lower densi-
ties than wMelCS at 25°C (Chrostek et al., 2013), has
better adapted to D. melanogaster. Accordingly, wMel
infections are less costly to the host compared with the
more ancestral wMelCS variant (Chrostek et al., 2013;
reviewed by Miller, 2013).

Insects can actively reduce or avoid costs of potentially
fitness-reducing symbionts or parasites by behavioural
adjustments such as changing egg deposition (Kacsoh
et al., 2013) or mating behaviour (reviewed by Wedell,
2013). We find compelling evidence for Wolbachia-
induced behavioural changes in host T,, which may pro-
vide an alternative explanation for the recent global

Table 3. Table showing z-values from post-hoc pairwise compari-
sons with Tukey’s HSD for the factor Wolbachia (Analysis C; see
section on ‘Experimental Procedures’) with four levels (non-infected,
wMel, wMelCS and wMelPop).

w- wMel wMelCS wMelPop
w- _
wMel -6.76*** -
wMelCS -21.93*** —-15.49*** -
wMelPop -21.5%** -15.35*** -0.6 -

Bold type indicates significance after Bonferroni correction (adjusted
o =0.017). *p < 0.05; **p < 0.01; ***p < 0.001.

replacement of wMelCS by wMel independent of density
costs or anti-viral effects: we propose that wMel is less
costly for the host than wMelCS-infections because flies
harbouring wMel exhibit thermal preferences that are
closer to uninfected flies under natural conditions com-
pared with flies infected with wMelCS. Drosophila devel-
opment is strictly temperature dependent (~ 14 days of
egg-to-adult development at 20°C and 9 days at 24°C;
Ashburner, 1989). Due to cooler thermal preference,
infections with wMelCS may, thus, result in slower devel-
opment and lead to longer generation times compared
with wMel-infected flies. Variance in generation times as
a function of Wolbachia infections may, thus, have a sub-
stantial impact on fitness if wMel-infected flies produce
more generations per year resulting in higher net fecun-
dity compared with flies infected with wMelCS.

Small fluctuations in temperature can cause consider-
able modifications to host-symbiont interactions (Blanford
and Thomas, 1999). Pathogenicity of wMelPop is attrib-
uted to its active proliferation in host tissues at tempera-
tures = 19°C. The increase of wMelPop density confers
strong anti-viral protection but leads to a significant
reduction in host lifespan at 25°C (Chrostek et al., 2013).
However, at temperatures < 19°C, pathogenicity of wMel-
Pop is eliminated (Reynolds et al., 2003). Similarly, but
less dramatically wMelCS, the progenitor of wMelPop, is
also costly by reducing host lifespan due to high symbi-
ont densities at 25°C (Chrostek et al., 2013). We, there-
fore, speculate that the adjustment of lower temperature
preference in D. melanogaster as a response to the
wMelCS and wMelPop infections represents a physiolog-
ical self-medicating behaviour or behavioural chill
(Fedorka et al., 2016) to attenuate the fitness costs asso-
ciated with deleterious effects of Wolbachia over-
proliferation and high cell densities (Chrostek et al.,
2013; Strunov et al., 2013a, b).

Wolbachia’s ability to provide anti-viral protection to
their hosts has emerged as the most promising approach
to combatting insect-vector borne pathogens that pose
serious health risks to humans, such as dengue fever
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and Zika (Moreira et al., 2009; lturbe-Ormaetxe et al.,
2011; Dutra et al., 2016). However, because the strength
of anti-viral protection is associated with higher Wolba-
chia densities (Chrostek et al., 2013; Martinez et al.,
2014) and bacterial titres are a temperature sensitive trait
(Hoffmann et al., 1990; Reynolds et al., 2003; Mouton
et al., 2006; 2007; Bordenstein and Bordenstein, 2011;
Correa and Ballard, 2012; Chrostek et al., 2013; Strunov
et al., 2013a; Murdock et al., 2014; Versace et al., 2014),
it is feasible that under certain thermal conditions such as
lower environmental temperatures, Wolbachia-induced
virus protection could be attenuated or absent (Chrostek,
2014). Furthermore, our findings, as demonstrated in a
highly inbred lab strain of D. melanogaster, need to be
tested first in different host backgrounds, which are natu-
rally or artificially infected with the endosymbiont.

In conclusion, we present experimental support for a
potential ecological conflict between host and symbiont
that may have profound effects on host physiology. Our
results provide a novel conceptual platform from which to
further investigate host temperature preference or beha-
vioural chill, in other Wolbachia-infected insect hosts.
Future studies should examine if host temperature prefer-
ence has a direct impact on Wolbachia density regula-
tion. Additionally, it is important to determine any effects
that host T, has on the strength of anti-viral protection
that Wolbachia provide to some hosts.

Experimental procedures
Fly lines

For all assays, we used D. melanogaster without Wolba-
chia (w-) as well as flies infected with one of three
genetic variants of the Wolbachia wMel-strain; w-, wMel,
wMelCS_b, and wMelPop all set in the DrosDel w'’"®
isogenic background, which were kindly provided by Luis
Teixeira and previously described by Teixeira and col-
leagues (2008) and Chrostek and colleagues (2013).

We used biological replicates of approximately 30 flies
per vial, independently rearing each vial of flies at 25°C,
in a 12:12 light—dark cycle with constant 45% humidity.
Flies were raised on Drosophila Formula 4-24® Instant
Medium (Carolina®, NC) that was supplemented with
fresh yeast. Approximately equal numbers of male and
female flies were used in each assay except for assays
that explicitly tested sex-class T, differences (see Sup-
porting Information Table S1 and Supporting Information
File 1). In addition to testing for sex-class T, differences,
we performed assays to test for age-specific T,
differences, thus all fly lines were segregated into three
age-classes — 3—4 days, 5-7 days, and 10—-14 days post-
eclosion. Due to fitness costs to the host associated with
infection by wMelPop at 25°C, possibly due to the onset
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of the life reducing phenotype (Min and Benzer, 1997) or
increase in copy numbers of the Octomom repeat
(Chrostek and Teixeira, 2015), our wMelPop-infected fly
line did not produce enough flies to conduct all three
age-class assays. Therefore, we excluded wMelPop from
the statistical analyses of age-specific effects (see Sup-
porting Information Table S1 and the description of statis-
tical analyses).

Genotyping of Wolbachia strains

Genome sections that contain hypervariable loci or
hypervariable regions covering tandem repeats were
used as genetic markers to differentiate Wolbachia
strains and strain variants (O’Neill et al., 1992; Werren
et al., 1995; Zhou et al., 1998; Riegler et al., 2012). To
confirm Wolbachia-infection status, we performed diag-
nostic PCR amplification using primers for a gene that
encodes the Wolbachia surface protein, wsp
(Jeyaprakash and Hoy, 2000) and for an intergenic
region with 141 bp tandem repeats, VNTR-141 loci
(Riegler et al., 2005). The PCR reactions for wsp amplifi-
cation were carried out in a total volume of 10 pl contain-
ing 2 pl Promega 5x Green GoTaq buffer, 4 mM
Promega MgCl,, 0.8 uM of forward and reverse primers,
35 uM of each dNTP, 0.04 U Promega GoTaqg DNA Poly-
merase and 1 pl of genomic DNA template. Diagnostic
VNTR-141 PCR reactions were each a total of 10 pl com-
prised of the following: 2 pl Promega 5x Green GoTaq
buffer, 1.5 mM Promega MgCl,, 0.3 pM of forward and
reverse primers, 35 pM of each dNTP, 0.04 U Promega
GoTaq DNA Polymerase and 1 pl of genomic DNA tem-
plate. PCR products were visualized on a 1% agarose
gel. Presence/absence of the wsp signal and the size of
the diagnostic VNTR-141 locus confirmed their respec-
tive infection type (Riegler et al., 2012). The proper infec-
tion status of the wMelPop isoline was verified by
assaying flies for early mortality at 29°C.

Thermal gradient apparatus

Temperature preference assays were performed using a
custom made thermal gradient apparatus that allowed
the flies to move in a three-dimensional space (adapted
from Rajpurohit and Schmidt, 2016; Supporting Informa-
tion Fig. S2). An aluminium rod (length 74.93 cm, diame-
ter 3.02 cm; Part #R31-316 Metals Depot, Winchester,
KY) was encased within a 58.76 cm long and 6.35 cm
inside diameter polycarbonate tube, creating an enclosed
chamber allowing for three-dimensional movement. Con-
stant voltage was applied to Peltier devices on each end
of the aluminium rod to create a temperature gradient
inside the thermal preference chamber. Temperatures
along the gradient were measured at seven points that
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were 8.39 cm apart using K-type thermocouples and two
four-channel thermocouple recorders. We recorded tem-
peratures on the aluminium rod and inside polycarbonate
tube surfaces (bottom, top, and mid-point between the
top and bottom surfaces; Supporting Information Fig. S3).
The average temperatures from each thermocouple point
on all surfaces from 57 different assays are depicted in
Supporting Information Fig. S1. Mean temperatures
increased linearly and ranged from 12°C at the coldest
point to 40°C at the hottest point of the aluminium rod,
58.76 cm distance (Supporting Information Fig. S4).
Along the aluminium rod, for every 4.2 cm from cold to
hot, the temperature increased by 2°C. Temperatures
along each of the measured polycarbonate tube surfaces
(bottom, mid-point, and top) increased 1°C every 4.2 cm
from cold to hot. The gradient reached thermal stability
after approximately 20 min and remained stable for at
least 3 h. Assays were conducted once the device had
attained thermal stability.

Thermal preference assays

All assays were conducted in a room with a constant
temperature of 24°C and constant 40% humidity. During
several trial runs, we established that 75-100 flies for
each assay resulted in distributions along the thermal
gradient that avoided over-crowding in preferred temper-
ature ranges, eliminating potential counting errors during
analysis. Flies were introduced by aspiration into the ther-
mal gradient chamber through a small hole located half-
way along the top of the polycarbonate tube, where the
temperature consistently averaged 25°C. Flies used for
thermal preference assays were never anesthetized
because of the strong effects from CO, treatment on Dro-
sophila behaviour (Barron, 2000). Each assay was con-
ducted for 30 min. Between assays, the temperature
gradient chamber was taken apart and thoroughly
cleaned to avoid contamination from any pheromone par-
ticles. All aluminium parts were cleaned using 95% etha-
nol. Because ethanol and polycarbonate are chemically
incompatible, the polycarbonate tube and end caps were
cleaned using hot water and soap, followed by a 4-min
rinse with hot water to ensure that surfaces were free of
soap residue.

Data collection

Using three GoPro HERO3+ cameras, we collected data
for each assay in the form of digital images. To capture
images of the entire thermal gradient and the flies within
it, we mounted the cameras above, lateral to and below
the apparatus, capturing images every 30 s for the dura-
tion of each treatment. Following Goda and colleagues
(2014), treatment duration was 30 min to avoid any

behavioural aberration from the desiccation and/or star-
vation of the flies. Images were analyzed using Adobe
Photoshop CS6. All 60 images from each assay were
reviewed, from which we determined that (a) the flies
were highly active, retaining the ability to relocate as nec-
essary, for the entire assay, and (b) after being intro-
duced to the thermal gradient, actively flew around for up
to 15 min before they settled on either the aluminium rod
or polycarbonate tube surfaces. Therefore, we selected
images for analysis of fly distribution at the 20-min time
point as representative of the 30-min experiment. For
each assay, we manually counted flies and marked the
location of flies on a custom grid that delineated gradient
surfaces and surface temperatures.

Statistical analyses

We calculated generalized linear mixed models (GLMM)
with a Poisson error structure using the R (R Development
Core Team, 2009) package /Ime4 (Bates et al., 2015) to
account for the statistical properties of count data from
flies observed at different temperatures. To test for signifi-
cance of a given predictor variable, we compared the full
model including all factors to a reduced model excluding
the given factor by analysis of deviance with ? tests using
the R function anova (see Supporting Information File
1 for full R code).

At first, we excluded flies infected with wMelPop, since
we failed to obtain sufficient flies to test for age-specific
T, at all three age-classes (3—4 days, 5-7 days, and
10-14 days post-eclosion; Supporting Information
Table S1) and tested for age- and Wolbachia-specific dif-
ferences in thermal preference with a two-way GLMM of
the form: T; = wol + age + wol x age + Rep + ¢;. Here,
T is the continuous response variable “Temperature’, age
is a nominal fixed factor with three levels each (age:
3—-4 days, 5-7 days, and 10—14 days post-eclosion), wol
is a nominal fixed factor ‘Wolbachia’ with three levels
(un-infected, wMel, and wMelCS), wol x age is the inter-
action term, Rep is a nominal random factor ‘Replicate’
for replicate trials and ¢; is the error (Table 2A, Fig. 1A).
In a complementary analysis, we removed all flies of the
age class 3—4 days and repeated the abovementioned
analysis including all Wolbachia strains on two age clas-
ses (5—7 days and 10-14 days post eclosion) only. This
latter analysis yielded qualitatively similar results to the
former analysis including all age classes without wMel-
Pop (Supporting Information Table S2).

Next, we censored flies with undetermined sex status
and excluded uninfected flies (w-), since we failed to
obtain sufficient replication to test for male-specific T, for
uninfected flies (Supporting Information Table S1). We
then tested for sex- and Wolbachia-specific differences in
thermal preference with a two-way GLMM of the form:
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T = wol + sex + wol x sex + Rep + ¢ Here, T is the con-
tinuous response variable ‘Temperature’, sex is a nomi-
nal fixed factor with two levels (male and female), wol is
a nominal fixed factor ‘Wolbachia’ with three levels
(wMel, wMelCS, and wMelPop), wol x age is the interac-
tion term, Rep is a nominal random factor ‘Replicate’ for
replicate trials and ¢, is the error (Table 2B; Fig. 1B).

Finally, we included all flies, irrespective of age and
sex status and tested for the effect of infection status and
Wolbachia strain variation on thermal preference with a
GLMM of the form: T; = wol + Rep + ¢;, where T is the
continuous response variable ‘Temperature’, wol is a
nominal fixed factor ‘Wolbachia’ with four levels
(un-infected, wMel, wMelCS, and wMelPop), Rep is the
nominal random factor ‘Replicate’ and ¢; is the error
(Table 2C; Fig. 1C). Here, we further tested for significant
pair-wise comparisons among the level of the factor ‘Wol-
bachia’ with Tukey’s honestly significant difference
(HSD) post-hoc tests using the R package multcomp
(Table 3). We conservatively applied Bonferroni correc-
tions to the a threshold (¢’ = 0.05/3 = 0.017) to account
for multiple testing.
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Appendix S1 Supporting Information

Fig. S1. Thermal gradient apparatus gradient depicting dif-
ferent temperature zones and fly dispersion (wMelPop).

Fig. S2. Schematic of the thermal gradient apparatus used
for thermal gradient assays as adapted from Rajpurohit and
Schmidt (). The polycarbonate tube and length of aluminium
gradient within the tube were 58.76 cm and temperature was
recorded with K-type thermocouples.

Fig. S3. Average + 0.5°C (SD) temperatures from 18 runs
that were recorded at each surface measured using k-type
thermocouples. There was a linear increase in temperature
from cold to hot as measured at each of seven evenly
spaced (8.39 cm).

Fig. S4. Plots showing linearity of temperature change for
the different surfaces (a. aluminium rod, b. top, c. bottom,

and mid-point of the polycarbonate tube) as measured with
K-type thermocouples at regular intervals along the length of
apparatus from the hottest end (H3) to the coldest (C3).

Fig. S5. Line plots showing the portion of flies observed at a
given temperature for males and females in the left panel
and age classes (young: 3—4 days or old: 10-14 days post
eclosion) in the right panel. Each of the four subfigures
shows the average proportion of flies with respect to different
infection status (uninfected, wMel, wMelCS and wMelPop).
For wMelPop infected flies only two age groups were tested.
Error bars represent standard errors for average frequencies
at a given temperature across all replicated experiments car-
ried out for a given infection type and levels of the factors
sex or age.

Table S1. Counts of flies and number of replicates
(in parentheses) per sex and age class.

Table S2. Results of two-way GLMM with independent fac-
tors age, Wolbachia and the interaction between them (see
Table for more detail).
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