
ORIGINAL ARTICLE

Correspondence:

Willem P. A. Boellaard, Department of Urology,

Erasmus MC Cancer Institute, University Medical

Center, Rotterdam, The Netherlands.

E-mail: w.boellaard@erasmusmc.nl

and

Leendert H. J. Looijenga, Pathology (LEPO),

ErasmusMCCancer Institute, University Medical

Center, Rotterdam, The Netherlands.

Princess M�axima Centre for Pediatric Oncology

Heidelberglaan 25; 3584 CS Utrecht; Netherlands

Room 3-4-N2

E-mails: l.looijenga@erasmusmc.nl,

l.looijenga@prinsesmaximacentrum.nl

Keywords:

microRNA-371a-3p, semen biomarker,

spermatogenesis, testicular neoplasm, urogenital

tract

Received: 17-Dec-2018

Revised: 9-Jan-2019

Accepted: 21-Jan-2019

doi: 10.1111/andr.12595

Cellular origin of microRNA-371a-3p
in healthy males based on
systematic urogenital tract tissue
evaluation

1W. P. A. Boellaard , 2A. J. M. Gillis, 2G. J. L. H. van Leenders, 2H. Stoop,
2T. van Agthoven, 2L. C. J. Dorssers, 1M. Dinkelman-Smit, 1J. L. Boormans

and 2,3L. H. J. Looijenga
1Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The
Netherlands, 2Pathology (LEPO), Erasmus MC Cancer Institute, University Medical Center,
Rotterdam, The Netherlands, 3Princess Maxima Center for Pediatric Oncology, Utrecht, The
Netherlands

ABSTRACT
Background: ThemicroRNA-371a-3p (miR-371a-3p) has been reported to be an informative liquid biopsy (serumandplasma)molecular

biomarker for both diagnosis and follow-up of patientswith amalignant (testicular) germ cell tumor ((T)GCT). It is expressed in all histologi-

cal cancer elements, with the exception of mature teratoma. However, normal testis, semen, and serum ofmales with a disrupted testicular

integrity without a TGCTmay containmiR-371a-3p levels above threshold, of which the cellular origin is unknown.

Objectives: Therefore, a series of relevant tissues (frozen and formalin-fixed paraffin-embedded (FFPE), when available) from the

complete male urogenital tract (i.e., kidney to urethra and testis to urethra) and semen was investigated for miR-371a-3p levels using

targeted quantitative RT-PCR (qRT-PCR).

Materials and methods: In total, semen of males with normospermia (n = 11) and oligospermia (n = 3) was investigated, as well

as 88 samples derived from 32 different patients. The samples represented one set of tissues related to the entire male urogenital tract

(11 anatomical locations), three sets for 10 locations, and four sets for six locations.

Results: All testis parenchyma (n = 17) cases showed low miR-371a-3p levels. Eight out of 14 (57%) semen samples showed detectable

miR-371a-3p levels, irrespective of the amount ofmotile spermatozoa, but related to spermconcentration andmatched Johnsen score (Spear-

man’s rho correlation coefficient 0.849 and 0.871,p = 0.000, respectively). In all other tissues investigated,miR-371a-3p could not be detected.

Discussion: This study demonstrates that themiR-371a-3p in healthy adultmales is solely derived from the germcell compartment.

Conclusions: The observation is important in the context of applying miR-371a-3p as molecular liquid biopsy biomarker for diag-

nosis and follow-up of patients with malignant (T)GCT. Moreover, miR-371a-3p might be an informative seminal biomarker for tes-

ticular germ cell composition.

INTRODUCTION
MicroRNAs (miRNAs) are small, non-coding single-stranded

RNA molecules about 22 nucleotides long that are involved in

post-transcriptional gene regulation (Lee et al., 1993; Reinhart

et al., 2000; Bentwich et al., 2005; Zamore & Haley, 2005).

miRNAs are found in diverse organisms, including animals and

plants (Ambros, 2003), and are highly stable in various types of

human body fluid, including serum, plasma, cerebrospinal fluid,

saliva, ejaculate, seminal plasma, and urine (Calin et al., 2002;

Reis et al., 2010).
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In 2006, the relevance of a defined set of embryonic stem cell-

associated miRNAs, including miR-371a-3p, was identified as

potential oncogene for malignant testicular germ cell tumors

(TGCT) (Voorhoeve et al., 2006). This was subsequently con-

firmed in a high-throughput profiling study on TGCTs and unaf-

fected testicular parenchyma, supported by various independent

investigations (Gillis et al., 2007; Looijenga et al., 2007; Palmer

et al., 2010; Murray et al., 2011; Bing et al., 2012; Dieckmann

et al., 2012). Of specific interest is the observation that these

miRNAs are also found to be elevated in serum and plasma of

patients with malignant (T)GCT compared to healthy individu-

als, and as such being considered as a promising alternative

serum biomarker for diagnosis of (T)GCT in addition to alpha-

fetoprotein (AFP) and human chorionic gonadotropin (hCG)

(Gillis et al., 2013; Ruf et al., 2014; Syring et al., 2015; van Agth-

oven et al., 2017; Dieckmann et al., 2017; Terbuch et al., 2018;

Mego et al., 2019). This relates both to the initial diagnosis and

to the follow-up of patients with a relapse or non-responding

disease. miR-371a-3p is highly expressed in all histological ele-

ments of primary as well as metastatic (T)GCT, except for pure

teratoma and is absent in other non-germ cell malignancies

(Catto et al., 2011; Leao et al., 2018). Even in tissue and in serum

of patients with the precursor of TGCT (germ cell neoplasia

in situ, GCNIS), miR-371a-3p is reported to be elevated, increas-

ing with the amount of GCNIS cells present (Novotny et al.,

2012; Radtke et al., 2017). Interestingly, the miR-371a-3p levels

can also be detectable in semen of healthy males, likely related

to the same origin as found in normal testicular parenchyma

(Gillis et al., 2007; Spiekermann et al., 2015b). However, the

actual source of miR-371-3p in healthy males has not yet been

defined. Hypothetically, it can be derived from other tissues of

the urogenital tract, that is, from kidney to urethra and from tes-

tis to urethra as well. The aim of the study was to assess the cel-

lular origin of miR-371a-3p in all different anatomical parts of

the urogenital tract of males without a TGCT. In addition, a ser-

ies of semen samples with varying sperm concentration was

analyzed.

MATERIAL AND METHODS

Ethics statement

The study was approved by the institutional review board

Medical Ethics Committee of the Erasmus MC, MEC-num-

ber-2014-458. The use of the human samples was in

accordance with the “Code for Proper Secondary Use of

Human Tissue in The Netherlands,” developed by the Dutch

Federation of Medical Scientific Societies (FMWV) (version

2002). The guidelines of the declaration of Helsinki were

followed.

Patient samples

Postoperative tissue samples of 25 different patients and

samples from seven autopsies were collected (Fig. 1). Both

frozen and formalin-fixed paraffin-embedded (FFPE) tissue

samples were included. The total cohort consisted of 88 sam-

ples: 55 postoperative samples and 33 autopsy samples of the

entire urogenital tract. In total, one entire representation of

tissues including the male urogenital tract for all the 11 dif-

ferent anatomical locations (kidney, renal pelvis, ureter, blad-

der, urethra, testis, epididymis, vas deferens, seminal vesicles,

prostate, and Cowper’s gland), three representations for 10

locations, and four representations for six locations were

investigated. The 17 testis samples of patients with non-

malignant disease were scored for spermatogenesis with a

Johnsen score (Johnsen, 1970). Semen of 14 cancer-free sub-

jects attending our clinic for an andrological work-up was col-

lected by masturbation after three to 5 days of abstinence. All

samples were allowed to liquefy at 37 °C for 60 min. before

analysis. Semen was analyzed following the World Health

Organization (WHO) 2012 criteria. The total motile sperm

count (TMSC = volume 9 concentration 9 motility) ranging

between 0.1 and 261.2, with a mean of 109.8, and a median

of 45.1. Thereafter, semen samples were stored at �80 °C.
After thawing, semen was immediately processed and ana-

lyzed for miR-371a-3p levels.

Figure 1 Male urogenital tract from kidney to urethra (left) and from testis to urethra (right). Total number of tissue samples (n = 88) of each anatomical

part are indicated.
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RNA isolation and investigation

Total RNA from fresh frozen tissue, FFPE samples, and ejacu-

lates (50 ll) was extracted using TRIzol Reagent (Thermo Fisher

Scientific, Life Technologies, Bleiswijk, the Netherlands) accord-

ing to manufacturers’ instruction. Same amount of tissue was

used for RNA isolation. Total RNA concentration was measured

in triplicate using a NanoDrop ND-1000 instrument (Isogen Life

Science B.V., de Meern, The Netherlands) followed by a quality

control (1 ng RNA input) using a qRT-PCR with TaqMan assays

for RNU48 (001006) and miR-20a-5p (000580). RNA samples of

suitable quality (Cq < 28) were subjected to miRNA profiling.

Total RNA (10 ng input) was converted into cDNA using a Taq-

Man miRNA RT-Kit and TaqMan miRNA RT-primers for miR-

371a-3p (002124), and the normalizers miR-20a-5p (semen), and

RNU48 (tissue). After cDNA synthesis, efficiency was checked.

miRNA levels were determined on a TaqMan 7500HT Real-Time

PCR machine and are depicted as 40 (the highest cycle) minus

Ct observed. The 40-Ct, scale log2 representation was used

because heterologous tissue samples were compared. The

2�ΔΔCT approach is specifically useful for comparison of individ-

ual samples to a selected control, not applicable for this study.

All devices and kits are purchased from Thermo Fisher Scientific.

miRNA levels in tissues were normalized using the average levels

of all samples of RNU48, and miR-levels in semen were normal-

ized using the average of miR-20a-5p.

Software and statistics

Microsoft Excel 2010 and IBM SPSS statistics V21.0 were used

for analysis. miRNA levels in tissues were normalized using the

average levels of all samples of RNU48, and miR-levels in semen

were normalized using the average of miR-20a-5p.

RESULTS
In total, 88 tissue samples were analyzed (Figs 1 and 2). Testis

parenchyma (n = 17) all showed low levels of miR-371a-3p. The

miR-371a-3p levels increased significantly with the Johnsen

score (Spearman’s rho correlation coefficient 0.871, p = 0.000)

(Fig. 3A). Epididymis tissue samples (five out of nine) showed

the presence of miR-371a-3p but lower levels than observed in

testicular tissue. Four epididymis samples did not show miR-

371a-3p even though the Johnsen score was above eight

(Fig. 3B). All other tissues lacked miR-371a-3p levels detectable

above threshold (Fig. 2). No differences were found between 64

frozen and 24 FFPE tissues (Table S1). The 14 semen samples

were normospermia in 11 and oligospermia in three. Concentra-

tions ranged between 2.7 and 129 million sperm cells per ml

with a mean of 50.7 (Fig. 3C). Eight out of 14 (57%) semen sam-

ples showed miR-371a-3p, irrespective of the mean amount of

motile sperm cells, but with a minimum concentration of 21 mil-

lion sperm cells per ml (Fig. 3C, sample 6, 7, 9–14). The miR-

371a-3p level increased with the sperm concentration (Spear-

man’s rho correlation coefficient 0.849, p = 0.000).

DISCUSSION AND CONCLUSION
This study indicates that in healthy males, the germ cell com-

partment is the cellular origin of miR-371a-3p. In addition, miR-

371a-3p seemed to correlate with the sperm concentration, the

output of spermatogenesis and therefore a proxy for the germ cell

composition. Individual miRNAs from the cluster miR-371-373

on chromosomal location 19q13 are expressed in all malignant

(T)GCTs, regardless of patient age, tumor site, and subtype

(Murray et al., 2015, 2016b). The cluster miR-371-373 is exp-

ressed in all histological elements of primary as well as meta-

static TGCT, except for pure teratoma (Voorhoeve et al., 2006;

Cheng et al., 2018; Leao et al., 2018; Terbuch et al., 2018). The

different tumor subtypes display differential expression of miR-

371a-3p, depending on the level of differentiation (Vilela-Sal-

gueiro et al., 2018). This is in line with our earlier studies (Gillis

et al., 2013). Tumor load seems to play a role in the level of

serum miR-371a-3p. miR-371a-3p levels in serum are increasing

with the amount of GCNIS cells in the pre-invasive stage of

TGCT and also with primary tumor size in localized disease

(Dieckmann et al., 2012; Novotny et al., 2012; Radtke et al.,

2017). This relation is confirmed by the reduction of miR-371a-

3p levels after tumor load is decreased by orchiectomy in GCNIS

and localized disease (Gillis et al., 2013; Syring et al., 2015;

Radtke et al., 2017, 2018). Moreover, miR-371a-3p levels increase

with dissemination degree in metastasized disease and levels

decrease after chemotherapy response (Dieckmann et al., 2012,

2017). In addition, proximity to the tumor seems related to the

miR-371a-3p levels as testicular vein blood showed higher levels

than cubital vein blood (Spiekermann et al., 2015a). Even cere-

brospinal fluid, pleural effusion, and hydrocele fluid next to

tumor contain high levels miR-371a-3p (Dieckmann et al., 2016;

Murray et al., 2016a). In semen of healthy males, miR-371a-3p is

detectable, likely related to the origin as found in normal testicu-

lar parenchyma (Gillis et al., 2007; Spiekermann et al., 2015a).

Theoretically, it can be derived from other tissues of the urogeni-

tal tract, that is, from kidney to urethra and from testis to urethra

as well. To elucidate the source of miR-371a-3p in the ejaculate

of healthy men, we analyzed the entire urogenital tract for miR-

371a-3p levels by qRT-PCR. This is because compounds in the

ejaculate can be deposited by these organs draining on the

Figure 2 Detection of miR-371a-3p in the male urogenital tract. Boxplots

of the relative levels of miR-371a-3p are presented (40-Ct, scale log2), nor-

malized with RNU48. Kidney (n = 11), renal pelvis (n = 4), ureter (n = 9),

bladder (n = 4), prostate gland (n = 9), Cowper’s gland (n = 1), urethra

(n = 7), seminal vesicle (n = 8), vas deferens (n = 9), epididymis (n = 9),

testis (n = 17), semen (n = 14), normalized with miR-20a-5p. The box

marks the first and third quartiles. Horizontal lines mark median values; out-

liers are indicated with an asterisk. The whiskers indicate the minimum and

maximum values.
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urogenital tract. In our series, no miR-371a-3p was found in tis-

sue derived from the kidney, renal pelvis, ureter, bladder, ure-

thra, vas deferens, seminal vesicles, prostate, or Cowper’s gland,

whereas both in the testis and in the epididymis, miR-371a-3p

levels were found, suggesting that the gonadal germ cell com-

partment is the source of origin. This was supported by the find-

ing of a positive correlation between miR-371a-3p, sperm

concentration, and the Johnsen score. Both increased sperm

Figure 3 (A) Detection of miR-371a-3p in testis

in relation to Johnsen score. Left Y-axis 40-Ct,

scale log2, right y-axis Johnsen score (Spear-

man’s rho correlation coefficient (0.871,

p = 0.000). (B) Detection of miR-371a-3p in epi-

didymis in relation to Johnson score. Left Y-axis

40-Ct, scale log2, right y-axis Johnsen score. (C)

Detection of miR-371a-3p in semen. The mea-

surements in the 14 semen samples normalized

with miR-20a-5p (samples 1–3 have oligosper-

mia with sperm concentrations below 12 mil-

lion/ml; numbers 4–8 have a sperm

concentration between 17 million/ml and 35

million/ml; and numbers 9–14 have a sperm

concentration between 48 and 129 million/ml).

Left Y-axis 40-Ct, scale log2, right y-axis sperm

concentration, linear scale. The miR-371a-3p

level increased with the sperm concentration

(Spearman’s rho correlation coefficient 0.849,

p = 0.000).
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concentration and Johnsen score indicate higher levels of gona-

dal cells. We speculate that the low levels of miR-371a-3p

detected in the epididymis in patients with a normal testicular

function might have been caused by epididymal obstruction.

A recent publication on seminal miR-371a-3p in TGCT

patients showed seminal plasma levels of stage I TGCT patients

to have an opposite trend to serum levels. Preoperatively stage I

TGCT patients had lower seminal miR-371a-3p levels than

healthy controls and seminal plasma levels normalized after

orchiectomy to levels comparable to healthy controls (Pelloni

et al., 2017). Possibly, miR-371a-3p levels are influenced by tes-

ticular integrity like we found in our previous studies on males

with a non-malignant testicular tumor (van Agthoven & Looi-

jenga, 2017). Our results on semen of healthy males are an

important start for further exploration of the role of seminal

miR-371a-3p levels in healthy and diseased males. Moreover, a

relation between the amount of germ cells and miR-371a-3p

levels was found. Even in patients histologically classified as Ser-

toli cell-only syndrome (i.e., Johnsen score 2), miR-371a-3p was

found. Possibly, these patients had an incomplete Sertoli cell-

only pattern with focal spermatogenesis. Thus, miR-371a-3p

might be informative as a liquid biopsy of spermatogenic func-

tion of the testis as well, discriminating patients who will have a

chance of surgical sperm retrieval on testicular sperm extraction

(TESE) (Vernaeve et al., 2006; Li et al., 2012).

Our study demonstrates for the first time that the miR-371a-

3p in normal adult males is solely derived from the germ cell

compartment. This finding can be used in further investigations

in the role of miR-371a-3p as a liquid biopsy for GCNIS detection

and follow-up of TGCT. A relation between spermatogenesis and

miR-371a-3p was found. Further research is needed to define

the role of seminal miR-371a-3p in predicting a successful TESE.
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