
© 2019 The Authors. Genetic Epidemiology Published by Wiley Periodicals, Inc.

Genet. Epidemiol. 2019;43:609–616. www.geneticepi.org | 609

Received: 25 October 2018 | Revised: 1 April 2019 | Accepted: 4 April 2019

DOI: 10.1002/gepi.22207

BR I E F REPORT

ImplementingMR‐PRESSO and GCTA‐GSMR for
pleiotropy assessment inMendelian randomization
studies from a practitioner's perspective

Jue‐Sheng Ong | Stuart MacGregor

Statistical Genetics Laboratory, Genetics
and Computational Biology Department,
QIMR Berghofer Medical Research
Institute, Brisbane, Australia

Correspondence
Stuart MacGregor, Statistical Genetics
Lab, Genetics and Computational Biology
Department, QIMR Berghofer Medical
Research Institute, 300 Herston Road,
Brisbane, QLD 4006, Australia.
Email: stuart.macgregor@
qimrberghofer.edu.au

Funding information
National Health and Medical Research
Council, Grant/Award Number: 1123248;
Australian National Health and Medical
Research Council (NHMRC), Grant/
Award Number: 1123248; University of
Queensland; QIMR Berghofer Medical
Research Institute

Abstract

With the advent of very large scale genome‐wide association studies (GWASs),

the promise of Mendelian randomization (MR) has begun to be fulfilled.

However, whilst GWASs have provided essential information on the single

nucleotide polymorphisms (SNPs) associated with modifiable risk factors needed

for MR, the availability of large numbers of SNP instruments raises issues of how

best to use this information and how to deal with potential problems such as

pleiotropy. Here we provide commentary on some of the recent advances in the

MR analysis, including an overview of the different genetic architectures that are

being uncovered for a variety of modifiable risk factors and how users ought to

take that into consideration when designing MR studies.
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Mendelian Randomization (MR) is an approach which
uses genetic data to infer if a risk factor is causally related
to an outcome. It utilizes the random assortment of
variants at meiosis to mimic a pseudo‐randomised
controlled trial. Essentially, if variants associated with a
risk factor are also associated with the outcome of
interest then, subject to some assumptions, a causal
relationship may be inferred (Lawlor, 2016). Power is a
major rate‐limiting step in MR. Many early MR studies
used a one‐sample approach where the SNP‐exposure
and SNP‐outcome associations were determined within a
single data set. However, such an approach fails to
capitalize on the power now available via consortia
scale genome‐wide association studies (GWASs), where
more SNP instruments can be identified in the

SNP‐exposure step and/or where the size of the SNP‐
outcome data set is increased. It is hence now common to
employ two sample approaches, which uses the largest
possible datasets, with the inverse variance weighted
(IVW) method used to combine estimates across SNPs
(Pierce & Burgess, 2013). However, the IVW approach
can yield biased estimates in the presence of horizontal
pleiotropy. Two classes of approach try to address this;
first approaches on the basis of for example, the median
(Bowden, Davey Smith, Haycock, & Burgess, 2016) or
mode (Hartwig, Davey Smith, & Bowden, 2017) can
provide more robust estimates. Second, approaches on
the basis of Egger regression can be used, resulting in
valid inference in a broader set of scenarios (InSIDE
assumption (Bowden, Davey Smith, & Burgess, 2015)).
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Whilst these approaches complement IVW estimates,
allowing better triangulation of evidence on causality,
these estimators are less efficient, reducing power (wider
confidence intervals on the causal estimates).

An overview of these approaches has been previously
described (Burgess, Timpson, Ebrahim, & Davey Smith,
2015; Zheng et al., 2017), although this is an active area of
research, with new ongoing methods development. Whilst
a fully updated review of the literature may be seen as
premature, two high profile methodological approaches
were published recently, which have the potential to
address the pleiotropy issue more reliably. Hence, in this
article, we focus on two approaches: (a) the Genome‐wide
Complex Trait Analysis‐Generalized Summary Mendelian
Randomization (GCTA‐GSMR; Zhu et al., 2018) and (b)
Mendelian Randomization Pleiotropy RESidual Sum and
Outlier (MR‐PRESSO; Verbanck, Chen, Neale, & Do,
2018) and provide some perspective on their utility from a
MR practitioner's point of view.

The GCTA‐GSMR framework developed by Zhu et al.
(2018) is a generalized model to draw MR causal inference
between any modifiable exposure and outcome of interest,

expanded from its previous SMR framework, which was
originally developed to evaluate causality between the gene
expression and disease outcomes. GSMR builds on previous
approaches for modeling multiple correlated SNPs in MR
(Burgess et al., 2015), by estimating the Linkage Disequili-
brium (LD) between SNPs from a reference sample ‐ this
avoids the power loss inherent in only using uncorrelated
SNPs. The GCTA‐GSMR model borrows the GCTA‐SMR
heterogeneity in dependent instrument (HEIDI) test (Zhu
et al., 2016) for assessing heterogeneity in the causal
estimates across instruments; the test removes outliers,
which may be associated with confounding factors. In
addition, GCTA‐GSMR models the error in the SNP‐
exposure estimate, a term that was left out in conventional
2‐sample MR models as it was assumed to be negligible in
the delta‐approximation when the F‐statistic for the SNP‐
exposure association is large (Stephen Burgess, Butterworth,
& Thompson, 2013). The method also implemented a
multivariate MR framework to investigate mediation and
marginal contribution(s) of multiple risk factors on disease
outcomes. The software is easy to apply, requiring only SNP‐
exposure and SNP‐outcome genetic association estimates and

TABLE 1 Comparison of SNP‐Heterogeneity tests across MR‐PRESSO, gSMR, and classical 2‐sample MR methods

Method
Formulation of heterogeneity
test Test statistics Description

GCTA‐GSMR HEIDI d β β= ( − )i i
2

best
2 The test statistic Ti

converges to

χ df( = 1)2

Computes SNP‐level heterogeneity only, and
uses the HEIDI test to discard outliers (e.g.Ti
p value < 0.01). However, theoretically
possible to implement a global test.

T d var d= / ( )i i i
2

MR‐PRESSO ∑ β β β( − )i

k
zy i zx i i=1 ( ) ( ) −

2 Empirical Relies on bootstrap to generate empirical
distribution for the causal estimates. The
main difference is that it uses a “leave‐one‐
out” approach to obtain unbiased RSS
values. Evaluates both SNP‐level and global
heterogeneity.

Note that this can also be
rewritten as

∑ h β β( − )i

k
i i i=1 −

2

Where h β= ( )i zx i( )
2

Mode, median, inverse
variance weighted
models

Cochran Q test: Convergence to

χ df k( = − 1)2

Estimates global heterogeneity

∑ w β β( − )i

k
i i=1 IVW

2

≈wi
β

var β( )

zx i

zy i

( )
2

( )
(1st order term)

Modified MR‐Egger Cochran Q' test: Convergence to

χ df k( = − 2)2

Fits an additional intercept term before
adjusting for directional pleiotropy. Also
models global heterogeneity

∑ w β β β( − + )i

k
i i=1 IVW 0

2

Abbreviations: GSMR, generalized summary mendelian randomization; HEIDI, heterogeneity in dependent instrument; MR‐PRESSO, mendelian
randomization pleiotropy residual sum and outlier.
βzx and βzy refer to the SNP‐exposure and SNP‐outcome association estimate.
βi refers to the wald‐type estimator for SNP i, given by β β β= /i zy i zx i( ) ( ).
βbest is the GSMR causal estimate for the SNP at top 25‐th percentile of log(p value) on the SNP‐exposure association. The reason for not using the SNP with the
highest log(p value) is to avoid potential SNP‐pleiotropy generating a bias on the test statistics.
βIVW is the inverse‐variance weighted estimate for all SNP instruments.
β j− refers to the IVW estimate for all SNP instruments excluding SNP j. Finally, β0 is the MR‐Egger intercept of the regression.
Each model in the above also assumes that β values follow Gaussian distributions. In other 2‐sample MR models, heterogeneity is often quantified via the
Cochran Q test statistics (or Q’ for modified MR Egger).
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a LD‐matrix to account for correlation between SNP‐
instruments. On the other hand, MR‐PRESSO by Verbanck
and colleagues (Verbanck et al., 2018) assesses pleiotropy
from a different viewpoint. MR‐PRESSO adopts a “leave‐one‐
out” approach to evaluate whether a specific SNP‐instrument
is driving the difference in computed residual sum of squares
(RSS) against simulated expectations. Briefly, the model
incorporates three stages to examine the extent of horizontal
pleiotropy. First, a global test is conducted to test whether the
total RSS (computed by excluding one SNP each turn) is
consistent with that expected by chance. The second stage
uses the RSS of individual SNP‐instruments to identify
outliers. The third stage employs a distortion test to
determine the extent to which outliers change the MR
causal estimates. Because simulation is used to derive
p values, the computational requirements are not trivial.

Required user‐input is similar to GCTA‐GSMR, although as
the approach does not, however, handle correlated SNPs,
there is no requirement for a LD‐matrix; instead, SNPs must
be pre‐screened for LD.

Although theMR‐PRESSO and GSMRHEIDI approaches
tackle pleiotropy within a different framework, they are
conceptually similar. Both assume that most SNPs are not
strongly affected by horizontal pleiotropy and attempt to
control SNP‐heterogeneity by removing SNP‐outliers. In
conventional 2‐sample MR techniques, heterogeneity of the
causal estimates derived from SNPs is often quantified
by the Cochran Q test statistics (Bowden et al., 2018). For
MR‐PRESSO and GSMR, the methodological differences
mainly come from the choice of formulation of the test‐
statistics to quantify statistical heterogeneity and reliance of
parametric/non‐parametric solutions (see Table 1).

TABLE 2 Selection of commonly used modifiable risk factors in published MR studies

Modifiable risk factor Number of instruments Approximate instrument r2 PubMed ID

Alcohol intake (European) 1 1% 28645180; 29212772; 25503943

Alcohol intake (Asian) 1 3% 27575649

Age at menarche 375 7% 28436984

Bitter taste liking 1 43% 23900446

Body mass index 73–97 1.4–2.7% 29232439; 27401727; 27427428

Coffee consumption 5 0.60% 29760501

C‐reactive protein 4 2% 20056955

Calcium 1 1% 28742912

Dairy intake 1 1% 28302601; 29071490

Education attainment 162 1.80% 28855160

Fasting glucose 37 5% 28954281

Fasting Insulin 17 1% 28954281

H.pylori susceptibility 2 1% 29089580

Height >2000 13% 29581483

High‐density lipoprotein (HDL) 63 14% 28594918

Hydroxyvitamin‐D 4 3% 27594614; 29089348; 26305103

Low‐density lipoprotein (LDL) 50 15% 28594918

Plasma vitamin C 1 1% 29939348

Plasma urate 1 2% 28428355

Polyunsaturated fatty acids (multiple) 2–5 8–30% 29473154; 27490808

Serum iron level 5 4% 28186534

Smoking heaviness 1 1% 29509885

Triglyceride 45 12% 28594918

Tobacco consumption 1 1% 29688528

Total cholesterol 65 15% 28594918

Vitamin B12 3–11 3–6% 22199995; 29249824

Waist‐to‐hip ratio (both sexes) 47 1.40% 27550749

The table above represents a selection of some of the risk factors considered in MR studies to date. Note that this list is not a complete representation of all the
modifiable traits in the MR literature, but merely to show that traits that MR studies with few instruments remain relevant in the field. Selection of studies are
on the basis of the criteria that (a) variance explained by instruments (r^2) are reported and (b) total sample size in the outcome set. r^2 are approximated on
the basis of sample size and reported F‐statistics if r^2 is not available from previously cited GWASs or the original article itself.
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Despite MR‐PRESSO and GSMR being promising
additions to the MR sensitivity toolbox, there are some
important limitations. As previously mentioned, the MR‐
PRESSO model does not incorporate LD (although
theoretically it could be implemented using a multi-
variate normal simulation framework), which may mean
the variance explained in the modifiable risk factor is
lower than that attainable when correlated SNPs are
included. Although GCTA‐GSMR does allow correlated
SNPs to be included, the model relies on the LD reference
panel used to inform LD between SNP instruments being

reflective of the target sample (Vilhjálmsson et al., 2015)
in a 2‐sample MR design. This is unlikely to be an issue
for quantitative outcomes but may impact findings for
disease outcomes if the LD pattern is substantially
different between cases and controls. MR‐PRESSO
applies a global distortion test, to evaluate whether the
removal of the potentially pleiotropic instrument makes a
meaningful difference to the overall causal estimate,
whereas GCTA‐GSMR filters SNP‐outlier one at a time
and does not apply a global test. Because of its reliance on
simulation, the MR‐PRESSO runtime varies. In our test

FIGURE 1 Illustrative scenarios for the genetic architecture of modifiable risk factors. The figure above shows the Manhattan plots (left
panel) illustrating the different type of genetic architecture for modifiable risk factors used in MR studies. The red line (at y = log10(5e‐8))
indicates the genome‐wide significance (GW) threshold, where variants with a ‐log10(p value) above the line are deemed to be genome‐wide
significant. As genome‐wide significant SNPs have F‐statistics > 30, they can be used as viable instruments given the other MR‐assumptions
hold. The GWAS for trait A was modeled after coffee consumption; trait B modeled after Alcohol intake; trait C modeled after BMI. Note
that the plots above are illustrative and do not represent the current state of knowledge for these traits. GWASs, genome‐wide association
studies; SNP, single nucleotide polymorphism
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example using publicly available GWAS data (Table 3),
10,000 simulation replicates were sufficient (runtime
about 6 minutes). The GCTA‐GSMR runtime was faster
although in practice runtime is not a major issue for
either method. In common with other MR sensitivity
models (Zheng et al., 2017; median, mode, MR Egger),
although both approaches can theoretically be applied to
a relatively small number of SNP instruments (>5 say),
their power to identify outliers is likely to be limited in
such scenarios.

Before we further evaluate the feasibility of these MR
approaches in practice, it is useful to give some thought to
the likely genetic architecture of the exposure of interest. To
examine how practical these recently developed models are
in terms of modeling pleiotropy, let us first consider three
illustrative scenarios for the genetic architecture of the
modifiable risk factor of interest (Figure 1) modeled after
real traits (coffee consumption; Coffee & Caffeine Genetics
Consortium et al., 2015), alcohol intake (Liu et al., 2019),
and body mass index (Locke et al., 2015). Power is a key
issue in MR and power is directly related to the
variance explained by the chosen SNP instruments (Brion,
Shakhbazov, & Visscher, 2013). Hence a key consideration
is the increase in cumulative r2 as increasingly weaker
instruments are added (Figure 2). With the total instrument
r2 calculated, the statistical power for the MR analysis can

then be easily estimated using the online MR power
calculator, mRnd (http://cnsgenomics.com/shiny/mRnd/)
web interface (Brion et al., 2013).

For modifiable risk factors from scenario 1 (Figure 1,
top panel), power will be adequate with only a few SNPs;
most statistical pleiotropy evaluation methods (including
GCTA‐GSMR and MR‐PRESSO) will not be effective in
such situations ‐ instead, it is usual to include the few
SNP instruments on the basis of biological grounds. In
addition, Phenome‐wide Association Studies (Hebbring,
2014; PheWAS) can be conducted to evaluate whether
the SNPs affect putative confounders of the exposure‐
outcome relationship.

On the basis of scenario 2a (Figure 1, middle panel), if
the confidence intervals on the causal odds ratios are
sufficiently narrow with just a few SNPs of large effect,
then theoretically, the MR analysis can proceed as per
scenario 1. However, if additional polygenes are available
then these can be used alongside the genes of large effect
in a GCTA‐GSMR or MR‐PRESSO analysis ‐ this will
provide a statistical evaluation of whether pleiotropy will
potentially bias causal inference. This statistical approach
may be used to supplement the information on the
biological function of specific SNP instruments, where
this data is available for the risk factor of interest.

In scenario 2b (Figure 1, bottom panel), power is very
unlikely to be sufficient with just a few top SNPs and
pleiotropy evaluation for a large number of required
polygenes will again be critical. With a large number of
SNPs, incorporating biological/functional information for
each SNP is unlikely to be tractable and the statistical
approaches to identify and remove outliers in GSMR and
MR‐PRESSO will be useful. In the flowchart (Figure 3),
depending on the anticipated genetic architecture of the
modifiable risk factor we provide guidance on the
preferred MR approach. An overview of the broad
selection of modifiable risk factors commonly used in
MR studies is given in Table 2 where MR analyses
involving a low number of variants remain prevalent in
the literature. Furthermore, Table 2 also shows no clear
relationship between total variance explained by instru-
ments and the number of instruments, hence the need to
evaluate the genetic architecture for our trait of interest
before deciding a sensible approach (Table 3).

The MR flowchart (Figure 3) provide potential guide-
lines on how to utilize various sensitivity analyses at
different stages of the MR analysis. Although we attempt
to streamline the process for display in the chart, in
practice every step requires critical consideration. First,
plotting the cumulative r2 (Figure 2) can help breakdown
the distribution of variance explained by instruments to
evaluate whether sufficient variance can be captured by
several SNPs to allow a well‐powered MR. The choice and

FIGURE 2 Distribution of cumulative SNP variance explained
based on different forms of polygenicity in genetic architecture.
The x‐axis represents the cumulative variance explained by SNPs
(commonly denoted as r^2) for the underlying trait of interest ‐ an
important indicator of power for MR analyses. While the y‐axis
refers to the number of instruments starting from the SNP with the
largest r^2 on the underlying trait. The mixed form is analogous to
Scenario 2a in the main text. The change in cumulative variance
explained by instruments can be used to evaluate whether there is
any marginal benefit (on power) for including more SNP
instruments. SNP, single nucleotide polymorphism
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proposed method for pleiotropy assessment will then
depend on whether substantial variance can be captured
by only a few SNPs. Although approaches, such as GCTA‐
GSMR and MR‐PRESSO offer a statistical approach for
dealing with outliers, in some scenarios biological
information is available and should be used sensibly (e.g.
if one of the SNP instruments explains a high proportion
of variance and that SNP has strong pleiotropic effects on
putative confounders then it may make sense to drop the
SNP before outlier screening in e.g. MR‐PRESSO). Where
applicable, bidirectional MR (Davey Smith & Hemani,
2014) can be conducted to clarify horizontal pleiotropy
from mediation/vertical pleiotropy. Note that statistical
methods (for 2‐sample MR) available in the literature are
not limited to those described in Figure 3.

It is becoming clear that many modifiable risk
factors of interest in causal inference studies have a
polygenic architecture. Although power remains a rate‐
limiting step in some applications, with the advent of
very large bio‐bank scale studies, there are scenarios
where power is reasonable provided one is willing to
use large numbers of SNPs as MR instruments. In such
situations, the pleiotropy assessments provided by
tools, such as MR‐PRESSO and GSMR will be invalu-
able in enabling effective and robust causal inference
using MR.
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FIGURE 3 Flowchart outlining approaches for performing two‐sample Mendelian randomization studies. The flowchart outlines some
recommended steps to perform MR sensitivity analyses on the basis of the genetic architecture of the modifiable risk factors (Scenario 1, 2a
and 2b). The path highlighted in purple refers to techniques commonly applied for traits in Scenario 1, whereas those highlighted in blue are
for traits with a more polygenic architecture. In Scenario 1, SNPs that are (or are from genes) potentially associated with other confounding
risk factors should first be removed before the main analysis. For Scenario 2, evidence of SNP‐pleiotropy can be identified via outliers on the
MR funnel plot. The main difference between two paths is that methods in Scenario 1 rely on biological knowledge of instruments to
evaluate pleiotropy whereas more statistical approaches were utilized in Scenario 2. The MR‐TRYX software can be found here: https://
github.com/explodecomputer/tryx. SNP, single nucleotide polymorphism
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