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The cause of colorectal cancer (CRC) is multifactorial, involving both genetic variants and environmental risk factors. We

systematically searched the MEDLINE, EMBASE, China National Knowledge Infrastructure (CNKI) and Wanfang databases from

inception to December 2016, to identify systematic reviews and meta-analyses of observational studies that investigated

gene–environment (G×E) interactions in CRC risk. Then, we critically evaluated the cumulative evidence for the G×E
interactions using an extension of the Human Genome Epidemiology Network’s Venice criteria. Overall, 15 articles reporting

systematic reviews of observational studies on 89 G×E interactions, 20 articles reporting meta-analyses of candidate gene- or

single-nucleotide polymorphism-based studies on 521 G×E interactions, and 8 articles reporting 33 genome-wide G×E
interaction analyses were identified. On the basis of prior and observed scores, only the interaction between rs6983267 (8q24)

and aspirin use was found to have a moderate overall credibility score as well as main genetic and environmental effects.

Though 5 other interactions were also found to have moderate evidence, these interaction effects were tenuous due to the lack

of main genetic effects and/or environmental effects. We did not find highly convincing evidence for any interactions, but

several associations were found to have moderate strength of evidence. Our conclusions are based on application of the

Venice criteria which were designed to provide a conservative assessment of G×E interactions and thus do not include an

evaluation of biological plausibility of an observed joint effect.

Introduction
Colorectal cancer (CRC) is the third most common cancer
worldwide, with 746,000 new cases in men and 614,000 new
cases in women.1 In some low-to-middle-income countries,
the incidence of CRC has been increasing partly due to
changes in lifestyle and environment combined with aging
populations.2 Thus, it is critical to understand both modifiable
and non-modifiable risk factors for CRC as this may enable
more specific prevention strategies and risk assessment, espe-
cially in developing countries where CRC screening may not
be feasible or affordable.3

CRC risk is determined by a complex interplay of both genetic
variants and environmental exposures. It has been speculated
that their interactions - known as gene–environment (G×E)
interactions should also be important determinants of CRC risk.
To date, genome-wide association study (GWAS) have shown
that up to 50% of CRC heritability can be explained by common
and rare variants included in popular genotyping arrays.4 Addi-
tional variants associated with CRC susceptibility that cannot be
easily detected in GWAS by marginal effects of genetic factors
may be identified by testing for interactions between single-
nucleotide polymorphisms (SNPs) and environmental risk fac-
tors.5,6 Thus, identification of G×E interactions influencing CRC
susceptibility may help to discover novel genetic and environ-
mental risk factors for CRC, and extend our understanding of
biological pathways and mechanisms of cancer etiology.

A number of systematic reviews, meta-analyses and
genome-wide G×E interaction analyses that explored interaction
effects in CRC have been published. We recently collected and
evaluated the evidence across existing meta-analyses of observa-
tional studies in dietary factors and gene-diet interactions for

the 5 most common cancers.7 Here, we performed an umbrella
review to collect, update, and assess the evidence across existing
systematic reviews, meta-analyses and genome-wide G×E inter-
action analyses that have explored the joint effects between
genes and a wider range of environmental exposures in CRC.
Our aim is to provide an overview on the associations between
G×E interactions and CRC risk and to pinpoint which of the
associations have robust evidence by evaluating the strength of
the evidence using predetermined guidelines.

Methods
Search strategy
We systematically searched the MEDLINE, EMBASE, China
National Knowledge Infrastructure (CNKI) and Wanfang data-
bases from inception to December 2016. The search strategy and
Medical Subject Headings terms are displayed in Supporting
Information Table S1. All identified publications went through a
2-step review before being included. Titles were reviewed by
1 investigator (TY). Abstracts and full texts were reviewed by
2 investigators (TY and MT). Any discrepancies were resolved by
discussion.

Eligibility criteria
Three types of studies were eligible for this umbrella review:
(i) systematic reviews of observational studies assessing interac-
tion effects between genes and environmental exposures in
CRC; (ii) meta-analyses of candidate gene- or SNP-based stud-
ies and analyses combining individual level data from multiple
studies exploring G×E interactions and (iii) genome-wide
investigation of G×E interactions on CRC risk within GWAS
consortia. We excluded reviews without explicit systematic
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literature searches; and systematic reviews or meta-analyses of
observational studies that explored associations between CRC
risk and genes or environmental exposures only.

Data extraction
One investigator (TY) extracted data which were then checked
by a second investigator (ZM). For each eligible article, we
extracted the first author, year of publication, the dietary and
genetic risk factors examined, study design and the number of
studies included. For meta-analyses, we extracted the sum-
mary study-specific relative risk estimates [relative risk (RR),
odds ratio (OR)] along with the corresponding 95% confi-
dence intervals (CIs), the number of cases and total partici-
pants, the p value for interaction and the p value (or I2) for
heterogeneity.

Statistical analysis
For systematic reviews, we performed descriptive analyses and
presented the authors’ main conclusions. The evaluation pro-
cess is described in detail in Supporting Information methods.

For meta-analyses of G×E interactions with a 2-sided
p value for interaction <0.05, or for G×E interactions reaching
genome-wide significance threshold, we used an extension of
the Human Genome Epidemiology Network’s Venice cri-
teria8,9 to evaluate the strength of the evidence (Table 110–17).
These guidelines have been used previously to assess cumula-
tive evidence on joint effects of genes and environments on
cancer risk.7,18

First, we scored the strength of the observed evidence for
the interaction between environmental exposures and genetic
variants (observed score). Each G×E association was graded
based on the amount of evidence, the extent of replication and
the protection from bias (Table 1). On the basis of the combi-
nation of these 3 criteria, the epidemiological evidence for the
association between G×E interaction and CRC risk was classi-
fied as strong, moderate or weak8 (Supporting Information
Fig. S1).

Second, we established a prior score category (expected)
for the G×E interactions using a framework presented in Bof-
fetta et al.,8 which is based on prior scores for (i) the evidence
of the main environmental and (ii) the evidence of the main
genetic effects (Table 1). In brief, we established the prior
score for the interactions based on the strength of evidence
for the main environmental effect and the main genetic effect
(1 = strong, 2 = moderate, 3 = weak) (Supporting Information
Table S2). When both of the evidence were convincing (Class
I), then the prior score category was strong. When one of the
evidence was suggestive (Class III) or weak (Class IV), then
the prior score category was weak.

Third, we examined the overall plausibility of each interac-
tion by combining the prior score and the strength of the
observed evidence. Higher weight was given to the observed
evidence in case of conflicting results between the observed
evidence and the prior scores.

Finally, for the statistically significant G×E interactions
(with a 2-sided p value for interaction <0.05) that were identi-
fied from the candidate meta-analyses or for interactions that
were concluded as suggestive by the authors of the systematic
reviews, we tested the interactions in the Scottish Colorectal
Cancer Study (SOCCS)19 dataset, and we also compared to
results from the Genetics and Epidemiology of Colorectal
Cancer Consortium (GECCO).20

Results
Number and type of articles identified
Overall, 14,219 publications were identified across the 4 data-
bases. After applying the inclusion and exclusion criteria,
42 publications were selected for inclusion (1 was in Chinese;
Fig. 1). The details of 89 G×E interactions covering 22 envi-
ronmental exposures identified in 15 systematic reviews of
observational studies21–35 are presented in Supporting Infor-
mation Results section.

Main findings of meta-analyses of candidate gene- or SNP-
based studies
Twenty articles21,36–54 reporting meta-analyses of candidate
gene- or SNP-based studies and analyses combining individual
level data from multiple studies explored G×E interactions on
CRC risk, covering 20 environmental exposures and 43 genes
or genetic variants (Supporting Information Table S5). We
identified 5 G×E interactions with 2-sided p value for interac-
tion <0.05 (or adjusted p <0.05 after accounting for multiple
comparisons): N-acetyltransferase 2 (NAT2) and processed
meat intake51; NAT2 and red meat intake51; rs16892766
(8q23.3) and vegetable consumption39; serine hydroxymethyl-
transferase 1 (SHMT1) C1420T polymorphism and folate
intake46; and rs6983267 (8q24) and aspirin use44 (Supporting
Information Table S5). Also, the interactions between the
above 5 environmental exposures (processed meat, red meat,
vegetables, folate, aspirin use) and approximately 2.7 million
genetic variants for CRC risk were also explored in GWAS
consortia55–57 (Supporting Information Tables S6 and S7).
However, none of the interactions observed in the candidate-
based studies were detected at the genome-wide significance
level in the GWAS consortia. We also tested interactions
between rs16892766 and vegetable consumption, SHMT1
C1420T polymorphism and folate intake and rs6983267 and
aspirin use in the SOCCS,19 and compared to the results from
the GECCO.20 None of the associations were nominally signif-
icant (α = 0.05) in our data (data not presented) or in the
GECCO (data not presented). Each identified G×E interaction
is described in detail in Supporting Information results.

Main findings of genome-wide investigation of G×E
interactions within GWAS consortia
Eight articles55–62 corresponding to 33 genome-wide G×E
interaction analyses explored joint effects between a large
number of common polymorphisms and 22 selected
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environmental exposures on CRC risk by using agnostic
searches (a summary of all the analyses and details are pre-
sented in Supporting Information Tables S6; SNPs with the
smallest p value for interaction from each genome-wide G×E
interaction analysis are presented in Supporting Information
Table S7). The following G×E interactions were identified that
reached genome-wide significance threshold specified by the
authors of the original publication: rs4143094 (10p14) and pro-
cessed meat intake55; rs9409565 (9q22.32) and light-to-

moderate alcohol drinking (1–28 g/day)60; rs2965667 (12p12.3),
rs16973225 (15q25.2) and aspirin and/or nonsteroidal anti-
inflammatory drug (NSAID) use57; patched domain containing
3 (PTCHD3) at 10p12.1, misshapen like kinase 1 (MINK1) at
17p13.2 and NSAID use61; rs964293 (20q13.2) and use of estro-
gen plus progestogen therapy59; and rs1944511 (11q23.3) and
overweight62 (Supporting Information Table S7). Each identi-
fied genome-wide G×E interaction is described in detail in Sup-
porting Information results.

Table 1. Description of the extension of the Human Genome Epidemiology Network’s Venice criteria that were used to assess cumulative

evidence on joint effects of genes and environments on cancer risk

Steps Description

Step 1
Score for the strength of the
observed evidence for the
G×E interactions

First, we scored the strength of the observed evidence for the interaction between environmental
exposures and genetic variants. Each G×E association was graded based on (i) the amount of
evidence, (ii) the extent of replication and (iii) the protection from bias.

(i) For the amount of evidence, the grade A, B or C was assigned when the total number of individuals
in the smallest comparison group (assuming 1:1 ratio of cases and controls) in the meta-analysis
was greater than 1,000, 100–1,000, or less than 100, respectively.

(ii) The replication consistency was assessed by the reported heterogeneity: grade A, I2 < 25%;
grade B, 25% ≤ I2 ≤ 50%; grade C, I2 > 50% or p value for heterogeneity <0.10.

(iii) For protection from bias 3 aspects of G×E association were taken into account as suggested by
Boffetta P et al.8: protection from bias for the environmental exposure, for the genetic analysis and
for the overall interaction. Grade A means that bias, if present, may change the magnitude but not
the presence of an association; grade B means that there is no evidence of bias that would
invalidate an association, but important information is missing; and grade C means that there is a
strong possibility of bias that would render the finding of an association invalid.

On the basis of the combination of these 3 criteria (amount of evidence, degree of replication and
protection from bias, each of which can be scored A, B and C), the epidemiological evidence for the
association between G×E interaction and CRC risk was classified as strong, moderate or weak8

(Supporting Information Fig. S1).

Step 2
Prior score (expected) for
G×E interactions

Second, we established a prior score category (expected) for the G×E interactions using a framework
presented in Boffetta P et al.8, which is based on prior scores for (i) the evidence of the main
environmental and (ii) the evidence of the main genetic effects (Supporting Information Table 2).

(i) Environmental main effect score: We scored the main environmental effects based on the
meta-analyses of the associations between environmental factors and CRC risk that were presented
in the World Cancer Research Fund International (WCRF)/American Institute for Cancer Research
(AICR) Third Expert Report,10 the subsequent Continuous Update Project (CUP) CRC reports11 and the
CUP CRC Systematic Literature Review 2016.12 For the information of environmental risk factors that
was not available in the above mentioned sections, we performed an additional literature search in
MEDLINE and abstracted the relevant data as summarized and presented in Supporting Information
methods. We then categorized the environmental factors in terms of strength of evidence by
applying previously described set of criteria.13 The evidence was classified as convincing (Class I),
highly suggestive (Class II), suggestive (Class III) or weak evidence (Class IV) based on sample size,
highly significant summary associations, the 95% prediction intervals, presence of the small-study
effect and the excess significance bias.

(ii) Genetic main effect score: For the genetic main effects, a search in the National Human Genome
Research Institute-European Bioinformatics Institute catalog of GWAS,14 the GWAS central
database15 and MEDLINE was conducted as described in Supporting Information methods.
Subsequently, we scored the genetic associations using the Human Genome Epidemiology Network
Venice criteria.9,16,17 Only genetic effects with p <10−5 were considered for evaluation, and the
evidence was classified as strong, moderate or weak based on a combination of the 3 criteria
(amount of evidence, degree of replication and protection from bias), each of which was scored A, B
or C (Supporting Information Fig. S1). For the genetic variants that reached genome-wide
significance threshold, the evidence class of the genetic variant was only based on the amount of
evidence.16 The search strategies, the Medical Subject Headings terms and the numbers of hits are
presented in Supporting Information Tables 3 and 4, respectively.

Step 3
Combined score

Lastly, we examined the overall plausibility of each interaction by combining the prior score and the
strength of the observed evidence. Higher weight was given to the observed evidence in case of
conflicting results between the observed evidence and the prior scores.
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Evaluation of the evidence for G×E interactions with main
genetic effects of a p < 10−5

Here, we present the evidence for the identified G×E interac-
tions in relation to CRC risk with main genetic effects
(p < 10−5; Fig. 2).

Gene-aspirin use interactions. Aspirin use was associated
with a reduced risk of CRC on the basis of a meta-analysis of
39 studies with 151,367 cases [users versus non-users RR,0.79
(95% CI: 0.74, 0.85); p = 7.8×10−11; I2 = 91.1%],63 thus the
association was graded as highly suggestive (class II) due to

Figure 1. Flow chart of the literature search in MEDLINE, EMBASE, CNKI and Wanfang. *For the search in MEDLINE and EMBASE, we used both
AND and OR to combine the keywords “G×E interactions” and “((gene* OR genom*) AND specific environmental risk factors)”, considering that
there might be some publications that did not include the keyword “G×E interactions”. †For the search in CNKI and Wanfang, both strategies that
included and not included specific environmental risk factors were used due to the limit of length of search strategies in these two databases.
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the high heterogeneity between the studies (Table 2). The
main effect of rs6983267 (8q24) on CRC risk was graded as
strong (ABA, equivalent to AAA based on the Venice cri-
teria16) in a meta-analysis including 13,348 cases and 26,438
controls of European ancestry [OR, 0.84 (95% CI: 0.80, 0.88);
p = 7.45×10−13; I2 = 37.7%]64 (Table 3). Consequently, the
interaction between rs6983267 (8q24) and aspirin use was
given a moderate prior score (Moderate – 2) and a moderate
overall plausibility score (Table 4).

Gene-vegetable interactions. A meta-analysis of the associa-
tion between vegetable intake and CRC risk in the latest Contin-
uous Update Project (CUP) CRC reports11 and the CUP
Colorectal Systematic Literature Review 201612 showed a reduc-
tion in CRC risk with 100 g/day increase in vegetable intake [RR,
0.98 (95% CI: 0.96, 0.99); p = 0.01; I2 = 0%; n = 11 prospective
studies; n of cases = 14,136] and the association was classified as
class IV (weak) (Table 2). On the basis of the strong (AAA, based
on the Venice criteria16) main genetic (Table 3) and weak (class
IV) environmental effects of vegetable intake on CRC risk, the
possible interactions between 8q23.3 locus and vegetable intake
on CRC risk was given a weak (Weak – 3) prior score and there-
fore no evidence was found for this interaction7 (Table 4).

Evaluation of the evidence for G×E interactions with no
main genetic effects (p > 10−5)
Here, we present the evidence for the identified G×E interac-
tions in relation to CRC risk with no main genetic effects
(p > 10−5; Fig. 2). The G×E interactions were considered as ten-
uous even if they were classified as having moderate evidence.

Interactions between genetic variants and use of aspirin,
NSAIDs or both. In a meta-analysis of 10 studies including
8,634 cases and 8,553 controls, regular use of aspirin and/or
NSAIDs, compared to non-regular use, was associated with
lower risk of CRC [RR 0.69 (95% CI: 0.64, 0.74);
p = 6.20 × 10−28; pheterogeneity = 0.02], thus the evidence was
classified as highly suggestive (class II) due to the high hetero-
geneity between the studies57 (Table 2). For the main genetic
effects, no associations were observed between rs2965667
(12p12.3), rs16973225 (15q25.2) and CRC risk (p > 10−5) in a
meta-analysis of 7 GWAS from Europe including 8,749 cases
and 18,245 controls (p = 0.552 and 0.242, respectively)65

(Table 3). Thus, the interactions between rs2965667
(12p12.3), rs16973225 (15q25.2) and aspirin and/or NSAID
use were given moderate overall plausibility scores and weak
(Weak – 3) prior scores (Table 4). Nevertheless, the overall
plausibility scores for the interactions between 10p12.1/
PTCHD3, 17p13.2/MINK1 and NSAID use could not be prop-
erly evaluated due to the missing elements of the extension of
the Venice criteria8 that was used for assessing the observed
evidence for the interactions (Table 4).

Interactions between genetic variants and use of estrogen
plus progestogen therapy. The RR for use of estrogen plus

progestogen therapy on CRC risk was 0.74 (95% CI: 0.68,
0.81; p < 0.001; I2 = 0%) in a meta-analysis of 17 studies,66

thus the association was classified as suggestive (class III;
Table 2). Furthermore, no association was observed between
the rs964293 variant and CRC risk (p > 10−5) in the meta-
analysis of 7 GWAS [OR, 0.97 (95% CI: 0.93, 1.01); p = 0.156;
I2 = 6.3%]65 (Table 3). On the basis of the prior and observed
scores, the interaction between rs964293 (20q13.2) and use of
estrogen plus progestogen therapy was given a moderate over-
all plausibility score and a weak (Weak – 3) prior score
(Table 4).

Gene-alcohol interactions. A meta-analysis of 8 prospective
studies in the latest CUP CRC reports11 and the CUP Colo-
rectal Systematic Literature Review 201612 showed one drink
per day increase was associated with increased CRC risk [RR,
1.06 (95% CI: 1.00, 1.11); p = 0.03; I2 = 60.4%; n of
cases = 36,942], and the association between light-to-moderate
drinking and CRC risk was categorized as weak (class IV)
(Table 2). Additionally, no main effect was observed for the
rs9409565 (9q22.32) on CRC risk (p > 10−5) of 18,299 cases
[OR, 0.98 (95% CI: 0.95, 1.01); p = 0.127]67 (Table 3). Hence,
the interaction between rs9409565 (9q22.32) and light-to-
moderate drinking was given a weak prior score (Weak – 3)
and a moderate overall plausibility score (Table 4).

Gene-meat interactions. No evidence was found for the
interactions between processed meat, red meat and NAT2
based on the weak (Weak – 3) prior score and the weak
observed score (Tables 2–4). The possible 10p14 locus-
processed meat interaction was given a weak prior score
(Weak – 3) and a moderate plausibility score7 (Tables 2–4).

Gene-folate interactions. No evidence was found for the
interaction between SHMT1 C1420T and folate intake on
CRC risk based on a weak (Weak – 3) prior score and a weak
observed score (Tables 2–4).

Gene-overweight interactions. No evidence was found for
the interaction between rs1944511 (11q23.3) and overweight
based on a weak (Weak – 3) prior score and a weak observed
score (Tables 2–4).

Discussion
Main findings
Based on the prior and observed scores, only the interaction
between rs6983267 (8q24) and aspirin use was found with a
moderate overall plausibility score and a main genetic effect
(p = 7.45 × 10−13; strong, based on the Venice criteria). In
particular, the benefit of regular aspirin use on CRC risk was
confined to individuals with T allele of rs6983267, which has
been associated with impaired binding of cadherin-associated
protein β1 (CTNNB1)/ transcription factor 7 like 2 (TCF7L2)
and lower expression of MYC.68–70 Moreover, aspirin has been
associated with Wnt pathway and the inhibition of nuclear

2320 Gene–environment interactions in colorectal cancer risk

Int. J. Cancer: 145, 2315–2329 (2019) © 2018 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf

of UICC

M
in
i
R
ev
ie
w



Ta
b
le

2
.
E
va
lu
a
ti
o
n
o
f
e
n
vi
ro
n
m
e
n
ta
l
m
a
in

e
ff
e
ct
s
fo
r
th
e
e
n
vi
ro
n
m
e
n
ta
l
e
xp

o
su

re
s
id
e
n
ti
fi
e
d
in

th
e
se
le
ct
e
d
G
×
E
in
te
ra
ct
io
n
s

E
n
vi
ro
n
m
e
n
ta
l

e
x
p
o
su

re
R
e
fe
re
n
ce

U
n
it
o
f
co
m
p
a
ri
so

n

N
u
m
b
e
r
o
f

ca
se
s

N
u
m
b
e
r
o
f

st
u
d
ie
s

R
e
la
ti
ve

ri
sk

(9
5
%

C
I)

p
V
a
lu
e

P
re
d
ic
ti
o
n

in
te
rv
a
l

H
e
te
ro
g
e
n
e
it
y

(I
2
a
n
d
/o
r
p
va
lu
e
)

E
vi
d
e
n
ce

cl
a
ss

1

P
ro
ce
ss
e
d
m
e
a
t

W
C
R
F,

C
U
P
2
0
1
7

P
e
r
5
0
g
/d
a
y

1
0
,7
3
8

1
0

1
.1
6
(1
.0
8
,
1
.2
6
)

0
.0
0
0
2

N
A

I2
=
2
0
.1
%
;

p
=
0
.2
5
8

II
I

R
e
d
m
e
a
t

W
C
R
F,

C
U
P
2
0
1
7

P
e
r
1
0
0
g
/d
a
y

6
,6
6
2

8
1
.1
2
(1
.0
0
,
1
.2
5
)

0
.0
5

N
A

I2
=
2
3
.6
%
;

p
=
0
.2
4
1

IV

Li
g
h
t-
to
-m

o
d
e
ra
te

a
lc
o
h
o
l
in
ta
k
e

W
C
R
F,

C
U
P
2
0
1
7

1
d
ri
n
k
/d
a
y

3
6
,9
4
2

8
1
.0
6
(1
.0
0
,
1
.1
1
)

0
.0
3

N
A

I2
=
6
0
.4
%
;

p
=
0
.0
1
3

IV

V
e
g
e
ta
b
le
s

W
C
R
F,

C
U
P
2
0
1
7

1
0
0
g
/d
a
y

1
4
,1
3
6

1
1

0
.9
8
(0
.9
6
,
0
.9
9
)

0
.0
1

N
A

I2
=
0
.0
%
;

p
=
0
.4
8

IV

To
ta
l
fo
la
te

W
C
R
F,

C
U
P
2
0
1
7

1
0
0
m
cg
/d
a
y

4
,6
3
3

8
0
.9
9
(0
.9
8
,
1
.0
0
)

0
.0
5

N
A

I2
=
0
.0
%
;

p
=
0
.9
2

IV

A
sp

ir
in

u
se

Q
ia
o
Y
,
2
0
1
8

U
se
rs

vs
.
n
o
n
-u
se
rs

1
5
1
,3
6
7

3
9

0
.7
9
(0
.7
4
,
0
.8
5
)

7
.8
×
1
0
−
1
1

N
A

I2
=
9
1
.1
%
;

p
=
0
.0
0
0

II
2

A
sp

ir
in

a
n
d
/o
r

N
S
A
ID

u
se

N
a
n
H
,
2
0
1
5

R
e
g
u
la
r
u
se
rs

o
f
a
sp

ir
in
,

N
S
A
ID
s
o
r
b
o
th

vs
.

n
o
n
-r
e
g
u
la
r
u
se
rs

8
,6
3
4

1
0

0
.6
9
(0
.6
4
,
0
.7
4
)

6
.2
0
×
1
0
−
2
8

N
A

p
=
0
.0
2

II
2

U
se

o
f
e
st
ro
g
e
n
p
lu
s

p
ro
g
e
st
o
g
e
n
th
e
ra
p
y

Li
n
K
J,
2
0
1
2

E
ve
r
u
se
rs

vs
.
n
o
n
-u
se
rs

N
R

1
7

0
.7
4
(0
.6
8
,
0
.8
1
)

<0
.0
0
1

N
A

I2
=
0
%
;

p
=
0
.8
8

II
I

O
ve
rw

e
ig
h
t

W
C
R
F,

C
U
P
2
0
1
7

P
e
r
5
k
g
/m

2
in
cr
e
a
se

in
B
M
I

7
1
,0
8
9

(t
o
ta
l
n
u
m
b
e
r)

3
8
(2
0
fo
r

m
e
n
a
n
d

2
4

fo
r
w
o
m
e
n
)

M
e
n
:
1
.0
8

(1
.0
4
,
1
.1
1
);

w
o
m
e
n
:
1
.0
5

(1
.0
2
,
1
.0
8
)

M
e
n
:

p
<
0
.0
0
1

W
o
m
e
n
:

p
<
0
.0
0
1

N
A

M
e
n
:
I2
=
8
3
.3
%
,

p
<
0
.0
0
1
;

w
o
m
en

:
I2
=
8
2
.5
%
,

p
<
0
.0
0
1

M
e
n
:
II
I;

W
o
m
e
n
:
II
I

A
b
b
re
vi
a
ti
o
n
s:

B
M
I,
b
o
d
y
m
a
ss

in
d
e
x;

C
I,
co
n
fi
d
e
n
ce

in
te
rv
a
l;
C
U
P
,
C
o
n
ti
n
u
o
u
s
U
p
d
a
te

P
ro
je
ct
;
G
×
E
,
g
e
n
e
–
e
n
vi
ro
n
m
e
n
t;
N
A
,
n
o
t
a
p
p
li
ca
b
le
;
N
R
,
n
o
t
re
p
o
rt
e
d
;
N
S
A
ID
,
n
o
n
st
e
ro
id
a
l
a
n
ti
-i
n
fl
a
m
m
a
to
ry

d
ru
g
;
vs
.,
ve
rs
u
s;

W
C
R
F,

W
o
rl
d
C
a
n
ce
r
R
e
se
a
rc
h
Fu
n
d
.

1
E
vi
d
e
n
ce

cl
a
ss

w
a
s
d
e
ci
d
e
d
u
si
n
g
th
e
a
ft
e
r
cr
it
e
ri
a
:
C
o
n
vi
n
ci
n
g
e
vi
d
e
n
ce

(c
la
ss

I)
re
q
u
ir
e
d
>1
,0
0
0
ca
se
s,

h
ig
h
ly

si
g
n
ifi
ca
n
t
su

m
m
a
ry

a
ss
o
ci
a
ti
o
n
s
(p

<
1
0
−
6
b
y
ra
n
d
o
m

e
ff
e
ct
s)
,
a
9
5
%

p
re
d
ic
ti
o
n
in
te
r-

va
l
n
o
t
in
cl
u
d
in
g
th
e
n
u
ll
,
n
o
e
vi
d
e
n
ce

o
f
sm

a
ll
-s
tu
d
y
e
ff
e
ct
s,

n
o
e
vi
d
e
n
ce

o
f
e
xc
e
ss

si
g
n
ifi
ca
n
ce

b
ia
s,

a
n
d
lo
w

h
e
te
ro
g
e
n
e
it
y
va
lu
e
s
(I
2
<
5
0
%
).
H
ig
h
ly

su
g
g
e
st
iv
e
e
vi
d
e
n
ce

(c
la
ss

II
)
re
q
u
ir
e
d
>1
,0
0
0

ca
se
s,

h
ig
h
ly

si
g
n
ifi
ca
n
t
su

m
m
a
ry

a
ss
o
ci
a
ti
o
n
s
(p

<
1
0
−
6
b
y
ra
n
d
o
m

e
ff
e
ct
s)
,
a
n
d
th
e
la
rg
e
st

st
u
d
y
to

h
a
ve

a
9
5
%

co
n
fi
d
e
n
ce

in
te
rv
a
l
th
a
t
e
xc
lu
d
e
d
1
.
S
u
g
g
e
st
iv
e
e
vi
d
e
n
ce

(c
la
ss

II
I)
re
q
u
ir
e
d
o
n
ly

>1
,0
0
0
ca
se
s
a
n
d
p
<
0
.0
0
1
b
y
ra
n
d
o
m

e
ff
e
ct
s.

E
vi
d
e
n
ce

w
a
s
co
n
si
d
e
re
d
w
e
a
k
(c
la
ss

IV
)
w
h
e
n
p
<
0
.0
5
.
N
o
a
ss
o
ci
a
ti
o
n
in
d
ic
a
te
s
e
vi
d
e
n
ce

fo
r
th
e
m
a
in

e
n
vi
ro
n
m
e
n
ta
l
e
ff
e
ct
s
w
it
h
p
>
0
.0
5
.

2
Th

e
e
vi
d
e
n
ce

w
a
s
cl
a
ss
ifi
e
d
a
s
h
ig
h
ly

su
g
g
e
st
iv
e
(c
la
ss

II
)
d
u
e
to

th
e
h
ig
h
h
e
te
ro
g
e
n
e
it
y
b
e
tw

e
e
n
th
e
st
u
d
ie
s.

Yang et al. 2321

Int. J. Cancer: 145, 2315–2329 (2019) © 2018 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf

of UICC

M
in
i
R
ev
ie
w



Ta
b
le

3
.
E
va
lu
a
ti
o
n
o
f
g
e
n
e
ti
c
e
vi
d
e
n
ce

fo
r
va
ri
a
n
ts

id
e
n
ti
fi
e
d
in

th
e
se
le
ct
e
d
G
×
E
in
te
ra
ct
io
n
s

G
e
n
e
ti
c
va
ri
a
n
t

G
e
n
e

(o
r
n
e
a
r
g
e
n
e
)

R
e
fe
re
n
ce

D
is
co
ve
ry

sa
m
p
le

si
ze

R
e
p
li
ca
ti
o
n
sa
m
p
le

si
ze

/
N
u
m
b
e
r
o
f

st
u
d
ie
s
in

m
e
ta
-

a
n
a
ly
si
s

R
e
p
o
rt
e
d
O
R

(9
5
%

C
I)

p
V
a
lu
e
fo
r
g
e
n
e
ti
c

m
a
in

e
ff
e
ct

H
e
te
ro
g
e
n
e
it
y
,
I2

V
e
n
ic
e

cr
it
e
ri
a

E
vi
d
e
n
ce

cl
a
ss

1

rs
4
1
4
3
0
9
4

1
0
p
1
4
/G

A
T
A
3

Fi
g
u
e
ir
e
d
o
JC
,
2
0
1
4

9
,2
8
7
ca
se
s
a
n
d

9
,1
1
7
co
n
tr
o
ls

o
f

E
u
ro
p
e
a
n

a
n
ce
st
ry

fr
o
m

U
S
A
,
A
u
st
ra
li
a
,

C
a
n
a
d
a
a
n
d

G
e
rm

a
n
y

M
e
ta
-a
n
a
ly
si
s,

1
0
st
u
d
ie
s

N
R

0
.2
6

N
R

N
A

N
o
a
ss
o
ci
a
ti
o
n

S
lo
w
/

in
te
rm

e
d
ia
te
/

ra
p
id

N
A
T
2

Z
h
a
n
g
L,

2
0
1
2

1
3
,6
0
6
ca
se
s
a
n
d

1
7
,9
5
7
co
n
tr
o
ls

o
f
A
fr
ic
a
n
s,

A
si
a
n
s,

C
a
u
ca
si
a
n
s
a
n
d

m
ix
e
d

p
o
p
u
la
ti
o
n
s

M
e
ta
-a
n
a
ly
si
s,

3
9
st
u
d
ie
s

S
lo
w
vs
.
ra
p
id

p
h
e
n
o
ty
p
e
:
0
.9
6

(0
.9
0
,
1
.0
1
)

N
o
a
ss
o
ci
a
ti
o
n

I2
=
1
7
.8
%

N
A

N
o
a
ss
o
ci
a
ti
o
n

S
lo
w
/

in
te
rm

e
d
ia
te
/

ra
p
id

N
A
T
2

W
a
n
g
H
,
2
0
1
5

2
,1
8
6
ca
se
s
a
n
d

3
,7
3
6
co
n
tr
o
ls

o
f

Ja
p
a
n
e
se
;

4
6
6
ca
se
s
a
n
d

4
,3
5
6
co
n
tr
o
ls

o
f

A
fr
ic
a
n

A
m
e
ri
ca
n
s

M
e
ta
-a
n
a
ly
si
s,

7
st
u
d
ie
s

R
a
p
id

vs
.
sl
o
w

p
h
e
n
o
ty
p
e
:

Ja
p
a
n
e
se
:
1
.0
5

(0
.8
7
,
1
.2
7
);

A
fr
ic
a
n

A
m
e
ri
ca
n
s:

0
.7
5
(0
.5
0
,

1
.1
4
);

C
o
m
b
in
e
d
:
0
.9
9

(0
.8
3
,
1
.1
8
)

Ja
p
a
n
e
se
:
0
.7
7
;

A
fr
ic
a
n

A
m
e
ri
ca
n
s:

0
.1
9
;

C
o
m
b
in
e
d
:
0
.8
1

N
R

N
A

N
o
a
ss
o
ci
a
ti
o
n

rs
9
4
0
9
5
6
5

9
q
2
2
.3
2
/H

IA
T
L1

S
ch

u
m
a
ch

e
r
FR
,

2
0
1
5
2

1
8
,2
9
9
ca
se
s
a
n
d

1
9
,6
5
6
co
n
tr
o
ls

o
f
E
u
ro
p
e
a
n

a
n
ce
st
ry

fr
o
m

N
o
rt
h
A
m
e
ri
ca
,

A
u
st
ra
li
a
a
n
d

E
u
ro
p
e

M
e
ta
-a
n
a
ly
si
s,

4
,7
2
5
ca
se
s
a
n
d

9
,9
6
9
co
n
tr
o
ls

o
f

E
a
st

A
si
a
n

a
n
ce
st
ry

fr
o
m

R
e
p
u
b
li
c
o
f

K
o
re
a
,
C
h
in
a
a
n
d

Ja
p
a
n

0
.9
8
(0
.9
5
,
1
.0
1
)

0
.1
2
7

N
R

N
A

N
o
a
ss
o
ci
a
ti
o
n

rs
1
6
8
9
2
7
6
6

8
q
2
3
.3
/E
IF
3
H

Li
M
,
2
0
1
5

4
1
,7
2
8
ca
se
s
a
n
d

4
4
,3
9
3
co
n
tr
o
ls

M
e
ta
-a
n
a
ly
si
s,

1
1
st
u
d
ie
s

1
.2
2
(1
.1
8
,
1
.2
7
)

1
.3
9
×
1
0
−
2
4

I2
=
4
%

A
A
A

S
tr
o
n
g

rs
6
9
8
3
2
6
7

8
q
2
4
.2
1

Ta
n
sk
a
n
e
n
T,

2
0
1
7

1
,7
0
1
Fi
n
n
is
h

ca
se
s
a
n
d

1
4
,0
8
2

p
o
p
u
la
ti
o
n
-

b
a
se
d
,
ca
n
ce
r-

fr
e
e
co
n
tr
o
ls

M
e
ta
-a
n
a
ly
si
s,

1
3
,3
4
8
ca
se
s

a
n
d
2
6
,4
3
8

co
n
tr
o
ls

o
f

E
u
ro
p
e
a
n

a
n
ce
st
ry

0
.8
4
(0
.8
0
,
0
.8
8
)

7
.4
5
×
1
0
−
1
3

I2
=
3
7
.7
%

A
B
A (e
q
u
iv
a
le
n
t
to

A
A
A
)
S
tr
o
n
g

C
1
4
2
0
T

S
H
M
T
1

W
a
n
g
Q
,
2
0
1
4

3
,9
1
2
ca
se
s
a
n
d

4
,9
5
4
co
n
tr
o
ls

M
e
ta
-a
n
a
ly
si
s,

7
st
u
d
ie
s

TT
vs
.
C
C
:
0
.8
4

(0
.7
3
,
0
.9
7
);

C
T
vs
.
C
C
:
1
.0
1

(0
.9
2
,
1
.1
0
);

TT
+
C
T
vs
.
C
C
:

0
.9
7
(0
.8
9
,

1
.0
6
);

TT
vs
.
C
T
+
C
C
:

0
.8
4
(0
.7
3
,

0
.9
6
)

TT
vs
.
C
C
:
0
.0
2
0
;

C
T
vs
.
C
C
:
0
.9
0
3
;

TT
+
C
T
vs
.
C
C
:

0
.4
7
6
;

TT
vs
.
C
T
+
C
C
:

0
.0
1
3

TT
vs
.
C
C
:

I2
=
3
.8
%
;

C
T
vs
.
C
C
:

I2
=
0
%
;

TT
+
C
T
vs
.
C
C
:

I2
=
0
%
;

TT
vs
.
C
T
+
C
C
:

I2
=
0
%

N
A

N
o
a
ss
o
ci
a
ti
o
n

(C
o
n
ti
n
u
e
s)

2322 Gene–environment interactions in colorectal cancer risk

Int. J. Cancer: 145, 2315–2329 (2019) © 2018 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf

of UICC

M
in
i
R
ev
ie
w



Ta
b
le

3
.
E
va
lu
a
ti
o
n
o
f
g
e
n
e
ti
c
e
vi
d
e
n
ce

fo
r
va
ri
a
n
ts

id
e
n
ti
fi
e
d
in

th
e
se
le
ct
e
d
G
×
E
in
te
ra
ct
io
n
s

(C
o
n
ti
n
u
e
d
)

G
e
n
e
ti
c
va
ri
a
n
t

G
e
n
e

(o
r
n
e
a
r
g
e
n
e
)

R
e
fe
re
n
ce

D
is
co
ve
ry

sa
m
p
le

si
ze

R
e
p
li
ca
ti
o
n
sa
m
p
le

si
ze

/
N
u
m
b
e
r
o
f

st
u
d
ie
s
in

m
e
ta
-

a
n
a
ly
si
s

R
e
p
o
rt
e
d
O
R

(9
5
%

C
I)

p
V
a
lu
e
fo
r
g
e
n
e
ti
c

m
a
in

e
ff
e
ct

H
e
te
ro
g
e
n
e
it
y
,
I2

V
e
n
ic
e

cr
it
e
ri
a

E
vi
d
e
n
ce

cl
a
ss

1

rs
2
9
6
5
6
6
7

1
2
p
1
2
.3
/P

IK
3
C
2
G

O
rl
a
n
d
o
G
,
2
0
1
6

8
,7
4
9
ca
se
s
a
n
d

1
8
,2
4
5
co
n
tr
o
ls

fr
o
m

E
u
ro
p
e

M
e
ta
-a
n
a
ly
si
s,

7
st
u
d
ie
s

0
.9
7
(0
.8
7
,
1
.0
8
)

0
.5
5
2

I2
=
4
.8
%

N
A

N
o
a
ss
o
ci
a
ti
o
n

rs
1
6
9
7
3
2
2
5

1
5
q
2
5
.2
/

in
te
rl
e
u
k
in

1
6

O
rl
a
n
d
o
G
,
2
0
1
6

8
,7
4
9
ca
se
s
a
n
d

1
8
,2
4
5
co
n
tr
o
ls

fr
o
m

E
u
ro
p
e

M
e
ta
-a
n
a
ly
si
s,

7
st
u
d
ie
s

1
.0
5
(0
.9
7
,
1
.1
5
)

0
.2
4
2

I2
=
0
%

N
A

N
o
a
ss
o
ci
a
ti
o
n

rs
9
6
4
2
9
3

2
0
q
1
3
.2
/C

Y
P
2
4
A
1

O
rl
a
n
d
o
G
,
2
0
1
6

8
,7
4
9
ca
se
s
a
n
d

1
8
,2
4
5
co
n
tr
o
ls

fr
o
m

E
u
ro
p
e

M
e
ta
-a
n
a
ly
si
s,

7
st
u
d
ie
s

0
.9
7
(0
.9
3
,
1
.0
1
)

0
.1
5
6

I2
=
6
.3
%

N
A

N
o
a
ss
o
ci
a
ti
o
n

In
cl
u
d
in
g

7
va
ri
a
n
ts

3
1
0
p
1
2
.1
/P

T
C
H
D
3

Ti
m
o
fe
e
va

M
,
2
0
1
5

8
,1
0
0
ca
se
s
a
n
d

2
1
,8
2
0
co
n
tr
o
ls

fr
o
m

E
u
ro
p
e

M
e
ta
-a
n
a
ly
si
s,

6
st
u
d
ie
s

N
R

0
.3
5
2

N
R

N
A

N
o
a
ss
o
ci
a
ti
o
n

In
cl
u
d
in
g

8
va
ri
a
n
ts

4
1
7
p
1
3
.2
/M

IN
K
1

Ti
m
o
fe
e
va

M
,
2
0
1
5

8
,1
0
0
ca
se
s
a
n
d

2
1
,8
2
0
co
n
tr
o
ls

fr
o
m

E
u
ro
p
e

M
e
ta
-a
n
a
ly
si
s,

6
st
u
d
ie
s

N
R

0
.3
8
1

N
R

N
A

N
o
a
ss
o
ci
a
ti
o
n

rs
1
9
4
4
5
1
1

1
1
q
2
3
.3

S
ie
g
e
rt
S
,
2
0
1
3

2
5
9
ca
se
s
a
n
d

1
,0
0
2
co
n
tr
o
ls

G
e
n
o
m
e
-w
id
e
G
×
E

in
te
ra
ct
io
n

a
n
a
ly
si
s

1
.0
7

0
.5
3
6

N
R

N
A

N
o
a
ss
o
ci
a
ti
o
n

A
b
b
re
vi
a
ti
o
n
s:

C
I,
co
n
fi
d
e
n
ce

in
te
rv
a
l;
G
×
E
,
g
e
n
e
–
e
n
vi
ro
n
m
e
n
t;
N
A
,
n
o
t
a
p
p
li
ca
b
le
;
N
R
,
n
o
t
re
p
o
rt
e
d
;
O
R
,
o
d
d
s
ra
ti
o
;
vs
.,
ve
rs
u
s.

1
E
vi
d
e
n
ce

cl
a
ss

w
a
s
d
e
ci
d
e
d
o
n
th
e
b
a
si
s
o
f
th
e
H
u
m
a
n
G
e
n
o
m
e
E
p
id
e
m
io
lo
g
y
N
e
tw

o
rk
’s

V
e
n
ic
e
cr
it
e
ri
a
:
N
o
a
ss
o
ci
a
ti
o
n
in
d
ic
a
te
s
e
vi
d
e
n
ce

fo
r
m
a
in

g
e
n
e
ti
c
e
ff
e
ct
s
w
it
h
p
>
1
0
−
5
.
O
n
ly

g
e
n
e
ti
c
e
ff
e
ct
s
w
it
h
p
<
1
0
−
5

w
e
re

co
n
si
d
e
re
d
fo
r
e
va
lu
a
ti
o
n
.
O
n
th
e
b
a
si
s
o
f
a
co
m
b
in
a
ti
o
n
o
f
3
cr
it
e
ri
a
(a
m
o
u
n
t
o
f
e
vi
d
e
n
ce
,
d
e
g
re
e
o
f
re
p
li
ca
ti
o
n
,
a
n
d
p
ro
te
ct
io
n
fr
o
m

b
ia
s)

(e
a
ch

o
f
w
h
ic
h
ca
n
b
e
sc
o
re
d
A
,
B
,
o
r
C
),
th
e
e
p
id
e
m
io
lo
g
ic
a
l
e
vi
-

d
e
n
ce

fo
r
a
n
e
ff
e
ct

o
f
th
e
g
e
n
o
ty
p
e
is

cl
a
ss
ifi
e
d
a
s
st
ro
n
g
,
m
o
d
e
ra
te
,
o
r
w
e
a
k
.
Fo
r
a
m
o
u
n
t
o
f
e
vi
d
e
n
ce
,
a
g
ra
d
e
o
f
A
,
B
,
o
r
C
w
a
s
a
ss
ig
n
e
d
w
h
e
n
th
e
sa
m
p
le

si
ze

fo
r
th
e
ra
re
r
g
e
n
o
ty
p
e
in

th
e
m
e
ta
-a
n
a
ly
se
s
w
a
s

g
re
a
te
r
th
a
n
1
,0
0
0
,
1
0
0
–
1
,0
0
0
,
o
r
le
ss

th
a
n
1
0
0
,
re
sp

e
ct
iv
e
ly
.
Fo
r
re
p
li
ca
ti
o
n
co
n
si
st
e
n
cy
,
w
e
u
se
d
I2
<
2
5
%

to
a
ss
ig
n
g
ra
d
e
A
,
2
5
–
5
0
%

to
a
ss
ig
n
g
ra
d
e
B
,
a
n
d
>
5
0
%

o
r
a
p
va
lu
e
fo
r
h
e
te
ro
g
e
n
e
it
y
<0
.1
0
to

a
ss
ig
n

g
ra
d
e
C
.
Fo
r
p
ro
te
ct
io
n
fr
o
m

b
ia
s,

a
g
ra
d
e
o
f
A
m
e
a
n
s
th
a
t
b
ia
s,

if
p
re
se
n
t,
m
a
y
ch

a
n
g
e
th
e
m
a
g
n
it
u
d
e
b
u
t
n
o
t
th
e
p
re
se
n
ce

o
f
a
n
a
ss
o
ci
a
ti
o
n
;
a
g
ra
d
e
o
f
B
m
e
a
n
s
th
a
t
th
e
re

is
n
o
e
vi
d
e
n
ce

o
f
b
ia
s
th
a
t
w
o
u
ld

in
va
l-

id
a
te

a
n
a
ss
o
ci
a
ti
o
n
,
b
u
t
im

p
o
rt
a
n
t
in
fo
rm

a
ti
o
n
is

m
is
si
n
g
;
a
n
d
a
g
ra
d
e
o
f
C
m
e
a
n
s
th
a
t
th
e
re

is
a
st
ro
n
g
p
o
ss
ib
il
it
y
o
f
b
ia
s
th
a
t
w
o
u
ld

re
n
d
e
r
th
e
fi
n
d
in
g
o
f
a
n
a
ss
o
ci
a
ti
o
n
in
va
li
d
.
Fo
r
th
e
g
e
n
e
ti
c
va
ri
a
n
ts

th
a
t

re
a
ch

e
d
g
e
n
o
m
e
-w
id
e
si
g
n
ifi
ca
n
ce

th
re
sh

o
ld
,
th
e
e
vi
d
e
n
ce

cl
a
ss

o
f
th
e
g
e
n
e
ti
c
va
ri
a
n
t
w
a
s
o
n
ly

b
a
se
d
o
n
th
e
a
m
o
u
n
t
o
f
e
vi
d
e
n
ce

b
a
se
d
o
n
th
e
cl
a
ri
fi
ca
ti
o
n
o
f
V
e
n
ic
e
C
ri
te
ri
a
(K
h
o
u
ry

M
J
e
t
a
l,
2
0
0
9
).

2
C
u
rr
e
n
t
st
u
d
y
e
xp

lo
ri
n
g
th
e
m
a
rg
in
a
l
a
ss
o
ci
a
ti
o
n
o
f
rs
9
4
0
9
5
6
5
w
a
s
u
se
d
si
n
ce

it
is

a
b
o
u
t
tw

ic
e
a
s
la
rg
e
a
s
G
o
n
g
e
t
a
l.
(2
0
1
6
).

3
S
e
ve
n

va
ri
a
n
ts

a
t
1
0
p
1
2
.1

w
e
re

in
cl
u
d
e
d

in
th
e

a
n
a
ly
si
s
th
a
t
e
xp

lo
re
d

m
a
in

g
e
n
e
ti
c
e
ff
e
ct
s
b
y
Ti
m
o
fe
e
va

M
e
t
a
l,

2
0
1
5
.
H
o
w
e
ve
r,

th
e

in
te
ra
ct
io
n

a
n
a
ly
si
s
(b
y
Ji
a
o

S
e
t
a
l,

2
0
1
5
)
in
cl
u
d
e
d

8
va
ri
a
n
ts
:

ch
r1
0
:2
7
6
8
7
2
8
4
,
ch

r1
0
:2
7
6
8
7
4
3
7
,
ch

r1
0
:2
7
6
8
7
6
3
8
,
ch

r1
0
:2
7
6
8
7
7
7
5
,
ch

r1
0
:2
7
6
8
7
9
8
9
,
ch

r1
0
:2
7
6
8
8
1
0
1
,
ch

r1
0
:2
7
7
0
2
1
7
4
a
n
d
ch

r1
0
:2
7
7
0
2
6
2
4
.

4
E
ig
h
t
va
ri
a
n
ts

a
t
1
7
p
1
3
.2

w
e
re

in
cl
u
d
e
d
in

th
e
a
n
a
ly
si
s
th
a
t
e
xp

lo
re
d
m
a
in

g
e
n
e
ti
c
e
ff
e
ct
s
Ti
m
o
fe
e
va

M
e
t
a
l,
2
0
1
5
.
H
o
w
e
ve
r,
th
e
in
te
ra
ct
io
n
a
n
a
ly
si
s
(b
y
Ji
a
o
S
e
t
a
l,
2
0
1
5
)
in
cl
u
d
e
d
4
va
ri
a
n
ts
:
ch

r1
7
:4
7
9
4
3
1
3
,

ch
r1
7
:4
7
9
4
4
0
7
,
ch

r1
7
:4
7
9
6
8
3
9
a
n
d
ch

r1
7
:4
7
9
7
9
1
0
.

Yang et al. 2323

Int. J. Cancer: 145, 2315–2329 (2019) © 2018 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf

of UICC

M
in
i
R
ev
ie
w



Ta
b
le

4
.
E
va
lu
a
ti
o
n
o
f
e
vi
d
e
n
ce

fo
r
th
e
se
le
ct
e
d
G
×
E
in
te
ra
ct
io
n
s
in

re
la
ti
o
n
to

C
R
C
ri
sk

E
n
vi
ro
n
m
e
n
ta
l
e
x
p
o
su

re
G
e
n
e
ti
c
va
ri
a
n
t

G
e
n
e

(o
r
n
e
a
r
g
e
n
e
)

S
co
re

b
a
se
d

o
n
o
b
se
rv
e
d

e
vi
d
e
n
ce

1

S
tr
e
n
g
th

o
f

o
b
se
rv
e
d

e
vi
d
e
n
ce

fo
r

in
te
ra
ct
io
n

S
co
re

fo
r

e
n
vi
ro
n
m
e
n
ta
l

e
vi
d
e
n
ce

(e
vi
d
e
n
ce

cl
a
ss
)

p
V
a
lu
e
fo
r
m
a
in

g
e
n
e
ti
c
e
ff
e
ct

S
co
re

fo
r

g
e
n
e
ti
c

e
vi
d
e
n
ce

/
V
e
n
ic
e
cr
it
e
ri
a
2

P
ri
o
r

sc
o
re

3
C
o
m
b
in
e
d

sc
o
re

4

M
e
ta
-a
n
a
ly
se
s
o
f
ca
n
d
id
a
te

g
e
n
e
-
o
r
S
N
P
-b
a
se
d
st
u
d
ie
s

P
ro
ce
ss
e
d
m
e
a
t

S
lo
w
/i
n
te
rm

e
d
ia
te
/r
a
p
id

N
A
T
2

(B
o
r
C
)
B
C

W
e
a
k

II
I

N
o
a
ss
o
ci
a
ti
o
n

N
o
a
ss
o
ci
a
ti
o
n

W
e
a
k
:
3

N
o
e
vi
d
e
n
ce

R
e
d
m
e
a
t

S
lo
w
/i
n
te
rm

e
d
ia
te
/r
a
p
id

N
A
T
2

(B
o
r
C
)
A
C

W
e
a
k

IV
N
o
a
ss
o
ci
a
ti
o
n

N
o
a
ss
o
ci
a
ti
o
n

W
e
a
k
:
3

N
o
e
vi
d
e
n
ce

V
e
g
e
ta
b
le
s

rs
1
6
8
9
2
7
6
6

8
q
2
3
.3
/E
IF
3
H

C
B
B

W
e
a
k

IV
1
.3
9
×
1
0
−
2
4

S
tr
o
n
g
/A

A
A

W
e
a
k
:
3

N
o
e
vi
d
e
n
ce

Fo
la
te

in
ta
k
e

C
1
4
2
0
T

S
H
M
T
1

C
A
C

W
e
a
k

IV
TT

vs
.
C
C
:
0
.0
2
0
;

C
T
vs
.
C
C
:
0
.9
0
3
;

TT
+
C
T
vs
.

C
C
:
0
.4
7
6
;
TT

vs
.

C
T
+

C
C
:
0
.0
1
3

N
o
a
ss
o
ci
a
ti
o
n

W
e
a
k
:
3

N
o
e
vi
d
e
n
ce

A
sp

ir
in

u
se

rs
6
9
8
3
2
6
7

8
q
2
4

B
A
B
5

M
o
d
e
ra
te

II
7
.4
5
×
1
0
−
1
3

S
tr
o
n
g
/A

B
A

(e
q
u
iv
a
le
n
t
to

A
A
A
)

M
o
d
e
ra
te
:
2

M
o
d
e
ra
te

G
e
n
o
m
e
-w

id
e
G
×
E
in
te
ra
ct
io
n
a
n
a
ly
se
s

P
ro
ce
ss
e
d
m
e
a
t

rs
4
1
4
3
0
9
4

1
0
p
1
4
/G

A
T
A
3

B
B
B

M
o
d
e
ra
te

II
I

0
.2
6

N
o
a
ss
o
ci
a
ti
o
n

W
e
a
k
:
3

M
o
d
e
ra
te

Li
g
h
t-
to
-m

o
d
e
ra
te

d
ri
n
k
in
g

rs
9
4
0
9
5
6
5

9
q
2
2
.3
2
/H

IA
T
L1

B
B
A

M
o
d
e
ra
te

IV
0
.1
2
7

N
o
a
ss
o
ci
a
ti
o
n

W
e
a
k
:
3

M
o
d
e
ra
te

A
sp

ir
in

a
n
d
/o
r
N
S
A
ID

u
se

rs
2
9
6
5
6
6
7

1
2
p
1
2
.3
/P

IK
3
C
2
G

B
-
A

M
o
d
e
ra
te

II
0
.5
5
2

N
o
a
ss
o
ci
a
ti
o
n

W
e
a
k
:
3

M
o
d
e
ra
te

rs
1
6
9
7
3
2
2
5

1
5
q
2
5
.2
/i
n
te
rl
e
u
k
in

1
6

B
-
A

M
o
d
e
ra
te

II
0
.2
4
2

N
o
a
ss
o
ci
a
ti
o
n

W
e
a
k
:
3

M
o
d
e
ra
te

N
S
A
ID

u
se

In
cl
u
d
in
g
8
va
ri
a
n
ts

1
0
p
1
2
.1
/P

T
C
H
D
3

-
-
B

N
o
t
p
o
ss
ib
le

to
e
va
lu
a
te

6
II

0
.3
5
2

N
o
a
ss
o
ci
a
ti
o
n

W
e
a
k
:
3

N
o
t
p
o
ss
ib
le

to
e
va
lu
a
te

In
cl
u
d
in
g
4
va
ri
a
n
ts

1
7
p
1
3
.2
/M

IN
K
1

-
-
B

N
o
t
p
o
ss
ib
le

to
e
va
lu
a
te

6
II

0
.3
8
1

N
o
a
ss
o
ci
a
ti
o
n

W
e
a
k
:
3

N
o
t
p
o
ss
ib
le

to
e
va
lu
a
te

U
se

o
f
e
st
ro
g
e
n

p
lu
s
p
ro
g
e
st
o
g
e
n

th
e
ra
p
y

rs
9
6
4
2
9
3

2
0
q
1
3
.2
/C

Y
P
2
4
A
1

B
B
A

M
o
d
e
ra
te

II
I

0
.1
5
6

N
o
a
ss
o
ci
a
ti
o
n

W
e
a
k
:
3

M
o
d
e
ra
te

O
ve
rw

e
ig
h
t

rs
1
9
4
4
5
1
1

1
1
q
2
3
.3

C
-
B

W
e
a
k

II
I

0
.5
3
6

N
o
a
ss
o
ci
a
ti
o
n

W
e
a
k
:
3

N
o
e
vi
d
e
n
ce

A
b
b
re
vi
a
ti
o
n
:
C
R
C
,
co
lo
re
ct
a
l
ca
n
ce
r;
G
×
E
,
g
e
n
e
–
e
n
vi
ro
n
m
e
n
t;
N
S
A
ID
,
n
o
n
st
e
ro
id
a
l
a
n
ti
-i
n
fl
a
m
m
a
to
ry

d
ru
g
;
S
N
P
,
si
n
g
le
-n
u
cl
e
o
ti
d
e
p
o
ly
m
o
rp
h
is
m
s;

vs
.,
ve
rs
u
s.

1
Th

e
st
re
n
g
th

o
f
th
e
o
b
se
rv
e
d
e
vi
d
e
n
ce

fo
r
in
te
ra
ct
io
n
b
e
tw

e
e
n
th
e
e
n
vi
ro
n
m
e
n
ta
l
e
xp

o
su

re
s
a
n
d
th
e
g
e
n
e
ti
c
va
ri
a
n
ts

w
a
s
b
a
se
d
o
n
a
n
e
xt
e
n
si
o
n
o
f
th
e
H
u
m
a
n
G
e
n
o
m
e
E
p
id
e
m
io
lo
g
y
N
e
tw

o
rk
’s

V
e
n
ic
e
cr
it
e
ri
a

u
se
d
fo
r
a
ss
e
ss
in
g
cu
m
u
la
ti
ve

e
vi
d
e
n
ce

fo
r
g
e
n
e
ti
c
a
ss
o
ci
a
ti
o
n
s.

E
a
ch

G
×
E
a
ss
o
ci
a
ti
o
n
w
a
s
g
ra
d
e
d
b
a
se
d
o
n
th
e
a
m
o
u
n
t
o
f
e
vi
d
e
n
ce
,
th
e
e
xt
e
n
t
o
f
re
p
li
ca
ti
o
n
a
n
d
p
ro
te
ct
io
n
o
f
b
ia
s.

D
a
sh

e
s
in
d
ic
a
te

th
a
t
1
,
2
,
o
r

3
e
le
m
e
n
ts

o
f
th
e
V
e
n
ic
e
cr
it
e
ri
a
ca
n
n
o
t
b
e
d
e
ci
d
e
d
.
A
co
m
p
le
te

sc
o
re

sh
o
u
ld

h
a
ve

3
le
tt
e
rs
,
co
rr
e
sp

o
n
d
in
g
to

a
m
o
u
n
t
o
f
e
vi
d
e
n
ce
,
d
e
g
re
e
o
f
re
p
li
ca
ti
o
n
,
a
n
d
p
ro
te
ct
io
n
fr
o
m

b
ia
s
co
m
p
o
n
e
n
ts

o
f
th
e
V
e
n
ic
e
cr
i-

te
ri
a
.
If
1
e
le
m
e
n
t
is

m
is
si
n
g
,
th
e
sc
o
re

is
re
p
re
se
n
te
d
b
y
a
si
n
g
le

d
a
sh

a
n
d
2
le
tt
e
rs
.
If
2
e
le
m
e
n
ts

a
re

m
is
si
n
g
,
th
e
sc
o
re

is
re
p
re
se
n
te
d
b
y
2
d
a
sh

e
s
a
n
d
a
le
tt
e
r.

2
N
o
a
ss
o
ci
a
ti
o
n
in
d
ic
a
te
s
e
vi
d
e
n
ce

fo
r
m
a
in

g
e
n
e
ti
c
e
ff
e
ct
s
w
it
h
p
>
1
0
−
5
.
O
n
ly

g
e
n
e
ti
c
e
ff
e
ct
s
w
it
h
p
<
1
0
−
5
w
e
re

co
n
si
d
e
re
d
fo
r
e
va
lu
a
ti
o
n
u
si
n
g
th
e
H
u
m
a
n
G
e
n
o
m
e
E
p
id
e
m
io
lo
g
y
N
e
tw

o
rk
’s

V
e
n
ic
e
cr
it
e
ri
a
.

3
Th

e
p
ri
o
r
sc
o
re

w
a
s
b
a
se
d
o
n
sc
o
re
s
fo
r
e
n
vi
ro
n
m
e
n
ta
l
e
vi
d
e
n
ce

a
n
d
g
e
n
e
ti
c
e
vi
d
e
n
ce

(T
a
b
le

2
a
n
d
Ta
b
le

3
).

4
Th

e
o
ve
ra
ll
p
la
u
si
b
il
it
y
o
f
a
n
in
te
ra
ct
io
n
w
a
s
e
xa
m
in
e
d
b
y
co
m
p
a
ri
n
g
th
e
p
ri
o
r
sc
o
re

a
n
d
th
e
sc
o
re

fo
r
th
e
st
re
n
g
th

o
f
th
e
o
b
se
rv
e
d
e
vi
d
e
n
ce
.
H
ig
h
e
r
w
e
ig
h
t
w
a
s
g
iv
e
n
to

th
e
o
b
se
rv
e
d
e
vi
d
e
n
ce

in
ca
se

o
f
co
n
fl
ic
t-

in
g
re
su

lt
s
b
e
tw

e
e
n
th
e
p
ri
o
r
a
n
d
o
b
se
rv
e
d
sc
o
re
s.

5
Th

e
re
p
li
ca
ti
o
n
co
n
si
st
e
n
cy

w
a
s
g
ra
d
e
d
a
s
A
b
e
ca
u
se

th
e
in
te
ra
ct
io
n
b
e
tw

e
e
n
a
sp

ir
in

u
se

a
n
d
rs
6
9
8
3
2
6
7
w
a
s
re
p
li
ca
te
d
in

th
e
G
E
C
C
O
.

6
Ji
a
o
e
t
a
l
(2
0
1
5
)
p
re
se
n
te
d
n
o
in
fo
rm

a
ti
o
n
o
n
th
e
to
ta
l
n
u
m
b
e
r
o
f
in
d
iv
id
u
a
ls

in
th
e
sm

a
ll
e
st

co
m
p
a
ri
so

n
g
ro
u
p
a
n
d
h
e
te
ro
g
e
n
e
it
y
b
e
tw

e
e
n
th
e
st
u
d
ie
s.

Th
e
re
fo
re

e
va
lu
a
ti
n
g
th
e
a
m
o
u
n
t
o
f
e
vi
d
e
n
ce

a
n
d
th
e
e
xt
e
n
t

o
f
re
p
li
ca
ti
o
n
a
cc
o
rd
in
g
to

th
e
V
e
n
ic
e
cr
it
e
ri
a
w
a
s
n
o
t
p
o
ss
ib
le
.

2324 Gene–environment interactions in colorectal cancer risk

Int. J. Cancer: 145, 2315–2329 (2019) © 2018 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf

of UICC

M
in
i
R
ev
ie
w



CTNNB1 expression in colon cancer cell lines.71 Hence, it
is suggested that a genetic background by which CTNNB1/
TCF7L2 binding is not constitutively active is necessary for
the susceptibility to the effects of aspirin on the Wnt/CTNNB1
pathway.44

Moderate overall plausibility scores were also found for the
interactions between rs4143094 (10p14) and processed meat
intake, rs9409565 (9q22.32) and light-to-moderate alcohol
drinking (1–28 g/day), rs964293 (20q13.2) and use of estrogen
plus progestogen therapy, as well as rs2965667 (12p12.3),
rs16973225 (15q25.2) and aspirin and/or NSAID use. How-
ever, these interactions are regarded as tenuous due to the lack
of main genetic effects (p > 10−5), even though they may pro-
vide clues to discovering novel CRC susceptibility loci that
have not been readily detected in GWAS by their marginal
effects of genetic factors.5,6

Little is known about the underlying molecular mechanisms
of the interactions between rs2965667 at the 12p12.3/
phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type
2 gamma (PIK3C2G) locus, rs16973225 (15q25.2/interleukin 16)
and aspirin and/or NSAID use on CRC risk. PIK3C2G gene
encodes a protein of the phosphatidylinositol-4,5-bisphosphonate
3-kinase (PI3K) family,72 of which the activated signaling can
inhibit apoptosis in colon cancer cell lines that can be restored

with NSAID-mediated blockade of PI3K.57,73 Interleukin 16 may
stimulate monocyte induction of proinflammatory cytokines
associated with tumorigenesis,74,75 which suggests that polymor-
phisms in or near the interleukin 16 gene may be associated with
the production of inflammatory cytokines that modify the che-
mopreventive effect of aspirin and/or NSAIDs on CRC.57 How-
ever, it is proposed that those GWAS-identified promising loci
outside of a known coding region may affect more distant genes
rather than the closest gene.76

The interaction between use of estrogen plus progestogen
hormone preparations and the rs964293 variant in the
20q13.2, known as cytochrome P450 family 24 sub-family A
member 1 (CYP24A1) is biologically plausible. CYP24A1 is
greatly expressed in malignant colon tumours,77 and some
variants in CYP24A1 have been associated with CRC risk.78 In
a recent meta-analysis, ever use of estrogen plus progestogen
therapy has been associated with lower CRC risk [OR: 0.74
(95% CI: 0.68, 0.81); p <0.001].66 Also, an inverse association
was found in the meta-analysis of randomized controlled trials
with a hazard ratio of 0.77 (95% CI: 0.59, 0.98) (p = 0.037).66

It is suggested that CYP24A1 may only be a metabolizing
enzyme for progestrogens but not estrogen, since an interac-
tion effect was only found with the use of combined estrogen-
progestogen therapy and not with estrogen-only intake.59

Figure 2. Steps in assessing G×E interactions with P for interaction < 0.05 or reached genome-wide significance thresholds. [Color figure can
be viewed at wileyonlinelibrary.com]

Yang et al. 2325

Int. J. Cancer: 145, 2315–2329 (2019) © 2018 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf

of UICC

M
in
i
R
ev
ie
w

http://wileyonlinelibrary.com


The mechanism of the modifying effect of the rs4143094
variant at the 10p14 locus, near GATA binding protein
3 (GATA3) region, on the association between processed meat
intake and CRC risk is even less clear. GATA3 has been
described as a master regulator of T-helper 2 cell differentiation
in mature CD4 (+) T cells and has been associated with T cell
development.79 One possible explanation of the functional
impact is that processed meat could trigger a pro-tumorigenic
inflammatory or immunological response,55,80 and loss of
GATA genes or silencing of expression can increase CRC risk.81

Furthermore, the mechanism of the modifying effect of
alcohol consumption on the association between rs9409565
at the 9q22.32/ Hippocampus Abundant Transcript-Like
1 (HIATL1) locus and CRC risk has not been understood.
HIATL1 is a member of the solute carrier group of mem-
brane transport, which makes the move of substances (such
as peptides, amino acids, proteins, metals, and neurotrans-
mitters) directly into or out of cells possible.82,83 Gene
expression analyses indicate that the variants at 9q22.32/
HIATL1 that interact with alcohol on CRC risk through
genome-wide G×E interaction analyses can also impact
HIATL1 expression,60 which suggests that alcohol may mod-
ify the effects of HIATL1 on CRC risk through its influence
on HIATL1 expression levels.60

Challenges for G×E interaction studies
Studies of G×E interactions require much larger sample sizes
than main effect analyses due to small effect sizes, multiple
testing, misclassification due to imperfect measures of envi-
ronmental exposures and more model parameters.5,84–86

Even if the sample size is large enough to detect interactions
with common exposures, it may still be insufficient when
analyzing relatively rare exposures or genotypes of interest.5

Meta-analyses of existing G×E interactions can address this
sample size limitation, though investigators should be aware
of other issues, such as i) inconsistencies in the definitions of
exposures and outcomes and ii) differences in study designs,
tools for assessing exposures, distributions of exposures, sta-
tistical analyses, presentation of results and publication
bias.87 Additionally, the scale and distribution of environ-
mental exposures in a population can also influence power.
In dietary studies, it is suggested that the diet under investi-
gation should be sufficiently variable in the population to
allow evaluation of various intakes, and risk should be
reported per similar units of exposure (e.g. per 100 g meat
intake per day) to ensure that comparisons between popula-
tions is possible.21 In studies performed under the frame-
work of GWAS consortia, the nature of exposure assessment
may be different from other studies. Thus, harmonization of
exposure may have been more difficult. Consequently, an
increased sample size and decreased quality of exposure data,
as well as a fully validated design may help to address the
measurement error issue.5

Strengths and limitations of current review
The strengths of umbrella reviews have been described else-
where.13,88,89 In our study, we found moderate evidence for
some G×E interactions on CRC risk, though most of these
interaction effects were tenuous due to the lack of main
genetic effects and/or environmental effects. The proposed
biological mechanisms for the G×E interactions are hypotheti-
cal and in the absence of experimental studies could not be
used to prove causality. Ideally, evidence from a model system
or/and organism with genetic variations in the gene/polymor-
phisms of interest and exposed to the physiological dose of
the environmental factor (aspirin, processed meat, alcohol,
and sex hormone) is required to support the epidemiological
evidence described here. Thus, further replication and func-
tional studies are required to confirm our findings and under-
stand the biologic implications of the interactions.

Our study has limitations. First, interaction effects that
have not yet been assessed through meta-analyses or system-
atic reviews would not have been included, since umbrella
reviews do not focus on individual studies. Second, we did not
use an established tool to assess the risk of bias in the
included observational studies, because available tools such as
Q-Genie90 and the Newcastle-Ottawa Scale do not capture
aspects relevant to the G×E assessment. Third, we excluded
reviews without explicit systematic literature searches in order
to avoid bias, but this could have resulted in the exclusion of
syntheses of literature that have not been systematic.91 Fourth,
interactions with limited evidence or limited sample size may
have led to false-negative findings for some joint effects that
have long been thought to exist. False-positives may also exist,
although we have applied our criteria to assess the evidence to
minimize biases. In our study, we used I2 to assess the hetero-
geneity in the evaluation, however, it has been reported that I2

represents what proportion of the observed variance would
remain if we could eliminate the sampling error rather than
how much the effect size varies.92 Additionally, we would miss
interactions in which there were no marginal effects of geno-
type or exposure on CRC risk, since the Venice criteria only
aim to grade the credibility of evidence of significant main
effects; and 2 of the identified G×E interactions in our study
could not be properly evaluated due to lack of information
required to apply these criteria.

We combined systematic literature reviews, candidate and
genome-wide G×E studies together. The main reason for this
was to provide a comprehensive overview of the existing litera-
ture on G×E interaction in relation to CRC risk. However, an
issue is that in each of these types of studies, different criteria
and p value thresholds are typically used to evaluate the credit-
ability of findings. Candidate gene studies with liberal p value
thresholds might be biased toward false positive findings, while
the genome-wide approach is prone to false negative observa-
tions, because true interactions may not reach a stringent
genome-wide significance threshold. This, as well as other
issues such as genotyping and imputation problems, could be a
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reason why none of the interactions identified in the candidate
gene studies were replicated in genome-wide G×E studies.

The extension of Venice criteria used here has been applied
in the past to assess joint effects of environments and genes
on risk of multiple cancers.7,10 This method does not take into
account other lines of evidence, such as biological plausibility
of observed associations, biological gradient of effects, coher-
ence of the observations across multiple type of studies or
support by experiments. Although other guidelines are more
comprehensive in the range of evidence considered such as
the newly developed “integrative research” method that com-
bines causal criteria of Austin Bradford Hill with graphical
models,93 we did not use it to evaluate the evidence in our
study, since some of the criteria are difficult to apply and
interpret in molecular epidemiology (e.g. temporality).94

Conclusions
Our assessment maps the status of evidence on the associa-
tions between G×E interactions and CRC risk. Despite the
identified studies exploring a wide variety of G×E interactions
on CRC, we conclude that we did not find highly convincing
evidence for any interactions, but several associations were
found to have moderate strength of evidence using our set of
guidelines.

Though most of the evaluated G×E interactions in our study
were with no main genetic effects, it has been suggested that
such kind of risk loci that have not been readily detected in tra-
ditional GWAS may be identified by testing for interactions
between SNPs and environmental risk factors, even though there
is no strong evidence for a G×E interaction.5,6 Thus, studies
incorporating accurate assessment of environmental exposures
are encouraged not only to identify novel G×E interactions, but
also to discover novel risk loci for CRC by characterizing any
underlying G×E interactions.5 Moreover, there remains insuffi-
cient evidence for G×E interactions on CRC risk, and some
G×E interactions without strong evidence may still be important
in CRC prevention. Hence, studies with large sample sizes and
further functional studies are required to identify important
G×E interactions that could have public health impact, so as to
shed light to CRC etiology and to allow for more specific risk
assessment for early-detection or prevention strategies.
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